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The evaluation procedure will pay attention to the quality of the dissertation and
most particularly to the clarity and readability in the proposed argumentation.
As usual the subscript # denotes spaces of periodic functions. Throughout the
problem C denotes a positive constant which does not depend on ǫ.

The goal of this problem is to study a model of mixed diffusive and radiative
thermal transfer in a porous medium. Let Ω be a smooth bounded open set
of RN which represents a porous medium. The domain Ω is tiled by a square
periodic tiling of size ǫ. The cubes of this tiling (Y ǫ

p )1≤p≤n(ǫ), with n(ǫ) ≈
|Ω|ǫ−N , are all equal, up to a translation, to [0, ǫ]N . Thus, after translation each
cube is homothetic of ratio ǫ to the unit cell Y = [0, 1]N which is decomposed in
a solid part Y ∗ and a smooth, simply connected hole T ⋐ Y , compactly included
in Y , with boundary Γ = ∂T , with Y = Y ∗ ∪ T . Using the same notation in
each cube, Y ǫ

p = Y ∗,ǫ
p ∪ T ǫ

p , we define the solid part Ωǫ of the porous medium
Ωǫ by

Ωǫ = Ω \
(

∪n(ǫ)
p=1T

ǫ
p

)

.

The holes T ǫ
p being disconnected, the domain Ωǫ is connex. The interface Γǫ

between the holes and the solid part is defined by

Γǫ = ∂Ωǫ \ ∂Ω = ∪n(ǫ)
p=1∂T

ǫ
p .

For simplicity we assume that no hole cut the outer boundary ∂Ω. In the
solid part Ωǫ, heat propagates by diffusion, while in the holes it propagates by
radiation without absorption.

The diffusion tensor in the solid is A
(

x
ǫ

)

where A(y) ∈ L∞
# (Yf )

N×N is a
periodic coercive symmetric matrix satisfying, for 0 < α ≤ β,

α|ξ|2 ≤ A(y)ξ · ξ ≤ β|ξ|2, for any ξ ∈ R
N , y ∈ Yf .

The temperature in the porous medium is denoted by uǫ(x). We consider a
(very) simplified model of radiative transfer such that any point x on the bound-
ary ∂T ǫ

p of one hole emits thermal radiations proportionally to its temperature
and receives thermal radiations from all other points of the same hole’s, equal
to the average of the temperature on ∂T ǫ

p . On each hole’s boundary we write
the continuity of the normal heat flux

−ǫA
(x

ǫ

)

∇uǫ · n = Gǫ(uǫ) on ∂T ǫ
p

where Gǫ is an integral operator, defining the radiative transfer, given by

Gǫ(uǫ)(x) = σ

(

uǫ(x) −
1

|∂T ǫ
p |

∫

∂T ǫ
p

uǫ(x
′) ds(x′)

)
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with a positive constant σ > 0, ds(x′) the surface measure (depending on the
variable x′). The model is thus:























−div
(

A
(x

ǫ

)

∇uǫ

)

= f in Ωǫ,

−A
(x

ǫ

)

∇uǫ · n =
1

ǫ
Gǫ(uǫ) on Γǫ,

uǫ = 0 on ∂Ω,

(1)

where n is the exterior unit mormal to Ωǫ and f(x) ∈ L2(Ω) is a source term.
The scaling in the second line of (1) is natural since it ensures a perfect balance
between diffusion and radiation, as we shall see.

Part I

In this part we study, at fixed ǫ, the properties of model (1).

1. Prove that the operator Gǫ is linear continuous self-adjoint from L2(Γǫ)
into L2(Γǫ) and that it is positive in the sense that

∫

Γǫ

Gǫ(u)u ds ≥ 0 ∀u ∈ L2(Γǫ).

2. Deduce the existence and uniqueness of a solution to (1) in the space
H1(Ωǫ) ∩H1

0 (Ω).

3. Show that the kernel of Gǫ is made of functions in L2(Γǫ) which are
constant on each component ∂T ǫ

p .

Partie II

In this part the method of formal two-scale asymptotic expansions is applied
in order to find the homogenized problem for (1). It is thus assumed that the
solution uǫ can be written as a series

uǫ(x) =
+∞
∑

i=0

ǫiui(x,
x

ǫ
)

with Y -periodic functions y → ui(x, y).

1. Let φ(y) ∈ L2(Γ) be extended by Y -periodicity and define φǫ(x) = φ(x
ǫ
) ∈

L2(Γǫ). Show that Gǫ(φ
ǫ)(x) = [G(φ)](y = x

ǫ
) with the operatorG defined

on L2(Γ) by

G(φ)(y) = σ

(

φ(y)− 1

|Γ|

∫

Γ

φ(y′) ds(y′)

)

.
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Unfortunately, if φ(x, y) is a smooth, Y -periodic in y finction, for φǫ(x) =
φ(x, x

ǫ
) we usually have

Gǫ(φ
ǫ)(x) 6=

[

G(φ(x, ·))
]

(y =
x

ǫ
),

where the operator G is integral in y (but not in x). This difference is
at the root of additional difficulties in the application of the method of
two-scale asymptotic expansions...

2. For each cell Y ǫ
p , x

p
ǫ denote its origin in such a way that the following

change of variables holds true x = xp
ǫ + ǫy with x ∈ Y ǫ

p and y ∈ Y . Show
that a smooth function ui(x, y) satisfies, for any x ∈ Y ǫ

p ,

ui(x,
x

ǫ
) = ui(x

p
ǫ ,

x

ǫ
) + (x− xp

ǫ ) · ∇xui(x
p
ǫ ,

x

ǫ
)

+
1

2
(x− xp

ǫ )⊗ (x− xp
ǫ ) · ∇x∇xui(x

p
ǫ ,

x

ǫ
) +O(ǫ3).

(2)

3. Prove that, on each boundary ∂T ǫ
p ,

Gǫ(uǫ)(x) = Q0(x
p
ǫ ,

x

ǫ
) + ǫQ1(x

p
ǫ ,

x

ǫ
) + ǫ2Q2(x

p
ǫ ,

x

ǫ
) +O(ǫ3)

with
Q0(x

p
ǫ , y) = G

(

u0(x
p
ǫ , y)

)

,

Q1(x
p
ǫ , y) = G

(

u1(x
p
ǫ , y) + y · ∇xu0(x

p
ǫ , y)

)

,

Q2(x
p
ǫ , y) = G

(

u2(x
p
ǫ , y) + y · ∇xu1(x

p
ǫ , y) +

1

2
y ⊗ y · ∇x∇xu0(x

p
ǫ , y)

)

,

where the operatorG is integral in y only. Show also that, for any x ∈ ∂T ǫ
p ,

Qi(x
p
ǫ , y) = Qi(x, y)− (x − xp

ǫ ) · ∇xQi(x, y) +O(ǫ2). (3)

4. Plugging the ansatz in (1) and using both (2) and (3), deduce the equations
and boundary conditions satisfied by u0, u1 and u2. Hint: these equations
must involve only the x and y variables ; the points xp

ǫ should have been
eliminated.

5. Let g(y) ∈ L2
#(Y

∗) and h(y) ∈ L2(Γ). Prove that the following problem

admits a unique solution in H1
#(Y

∗)/R






−divy (A(y)∇yw) = g in Y ∗

−A(y)∇yw · n = G(w) − h on Γ
y → w(y) Y -periodic

(4)

if and only if the data satisfy
∫

Y ∗

g(y)dy +

∫

Γ

h(y)ds = 0.

One should rely on the self-adjointness of G and on its explicit kernel.
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6. Deduce that u0(x, y) does not depend on y, and that u1(x, y) can be writ-
ten in terms of the gradient of u0 and of solutions wk(y) of cell problems
which must be given explicitly.

7. Write the necessary and sufficient condition of existence of u2(x, y). De-
duce from it that the homogenized equation is a diffusion equation in Ω
with a constant homogenized tensor A∗ which must be given explicitly.

8. Using the variational formulation of the cell problem, prove that A∗ is
positive definite.

Partie III

In this part we use two-scale convergence to rigorously prove a homogenization
theorem. We recall the following Poincaré inequality (uniform in ǫ): there exists
a constant C > 0 such that

‖φ‖L2(Ωǫ) ≤ C‖∇φ‖L2(Ωǫ)N ∀φ ∈ H1(Ωǫ) ∩H1
0 (Ω).

1. Prove that there exists C > 0 such that the solution uǫ of (1) satisfies

‖uǫ‖L2(Ωǫ) + ‖∇uǫ‖L2(Ωǫ)N +
√
ǫ‖uǫ‖L2(Γǫ) ≤ C‖f‖L2(Ω). (5)

2. Recall the results from the course on the structure of the two-scale limit
of a sequence uǫ satisfying the a priori estimate (5).

3. Let φ1(x, y) be a smooth Y -periodic test function with compact support in
x ∈ Ω. Prove that there exists at least one vector-valued function θ(x, y)
(with the same compact support in x) which is a solution of







−divyθ(x, y) = 0 in Y ∗,
θ(x, y) · n = G(φ1)(x, y) on Γ,
y → θ(x, y) Y -periodic.

4. Multiplying (1) by a test function ǫφ1(x,
x
ǫ
), find the cell problem. One

shall first use the Taylor expansion (2) for φ1 before applying to it the Gǫ

operator and then the previous question for x = xp
ǫ .

5. Multiplying (1) by a test function of the type φ(x) + ǫφ1(x,
x
ǫ
), with a

smooth compactly supported in Ω function φ and with φ1 explicitly given
by

φ1(x, y) =

N
∑

k=1

∂φ

∂xk

(x)wk(y),

where the wk’s are the solutions of the cell problems, find the homogenized
problem. One shall use again the Taylor expansion (2) for φ, φ1 before
applying the operator Gǫ, as well as the cell equation defining wk(y).

Prove that the homogenized problem has a unique solution and deduce
the convergence of the entire sequence uǫ.
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