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‘ INTRODUCTION '

We recall the model problem of diffusion

—div (A (%) Vue) =f in Q
u. =0 on Of?

where 2 is a smooth bounded open set of RY, f € L?(Q2) and the coefficient

tensor A(y) is Y-periodic, uniformly coercive and bounded

N
€]’ < Y Ay()&k; < BIEP, VEERY, ae yeY (B2a>0).

ij=1
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Lemma (a priori estimate). If 2 is bounded, then there exists a constant
C' > 0 depending only on {2 such that

el g1 ) < CllfllLz)-

Therefore, up to a subsequence, there exists a limit v € H'(Q) such that the
sequence u, of solutions of the model problem converges to u weakly in H}(£2)
and strongly in L?(Q), as € goes to 0,

lim/]ue—u]2da::(), lim | V(ue—u)-¢pdr=0 Voe L*(Q)N.
Q

e—0

e—0 0O

Goal: find the equation satisfied by w.
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[Proof of the a priori estimate]

Variational formulation

/ng (:zc, z) Vue(z) - Vo(z)dr = /Qf(a:)gp(m)da:, Ve Hy(Q).

€

Take ¢ = u. and use coercivity

al|[ V|72 q) < /Qf(ilf)ue(ffff)dﬂj < [[fllz2(o lluel 2 o)

Poincaré inequality in €2

el 2(0) < C(Q)||Vue| L2 ()

CEVfllz2

«

Vel r2) <
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‘-I- MAXIMUM PRINCIPLE'

Restricted to scalar elliptic equations ! Need some smoothness of the
coefficients.

Recall that, at least formally,
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Cell problem:

—divy A(y) (e; + Vyw;(y)) =0 inY
y — w;(y) Y -periodic

Second order cell problem:

/

—divy A(y)Vyus(z,y) = divy A(y) Vaur + dive A(y) (Vyur + Vau)
— divg(A*V,u) inY

Ly — uz(7,y) Y -periodic

which implies the form us(zx,y) = Z,‘Zvjzl %(x))@j(y) (up to addition of
) 1 J

U, U2).
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Define the remainder

which satisfy

[ _div (A (%) we) = —e[diveA(Vaur + Vyus) + divy A(V,us)) (:p ;)
— 2 [dive A(V us)] (a: f) in O

T T
re = —€U] (ZC, —) — €U (ac, —) on 0f)
€ €

\

Theorem. Assume A(y) € WH°(Y) and u € W**°(Q). Then

Jue() — u(@)|[ = (@) < Ce

Proof. Apply the maximum principle to r..
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Comparison of the exact and reconstructed solution u + eu; (K. El Ganaoui)
Correctors really matter !
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-II- Oscillating test function method (L. Tartar)

The goal is to mathematically prove the following

Theorem. The sequence u.(x) of solutions of the model problem converges
weakly in H}(Q2) and strongly in L*(€), as € goes to 0, to a limit u(z) which

is the unique solution of the homogenized problem.

Naive idea: pass to the limit in the variational formulation

/QA (%) Vue(x) - Vo(x)dr = /Qf(a;)gp(m)da:, Vo Hy(Q).

impossible because A (%) and Vu, converge only weakly (the limit of the

product is not the product of the limits).
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[Difference between strong and weak Convergence]

ue converges strongly to w in L*(Q) < i

v, converges weakly to v in L?(Q) < i (ve —v)pdr =0 V¢ L*(Q)
Q

Lemma. Let G : R — R be a continuous bounded function. Then G(u.)
converges strongly to G(u) in L?(£).

This is false for weak convergence ! Counter-example: v, (z) = sin (£).
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[Oscillating test function method (Ctd.)]

The key idea is to replace ¢ by

Pe() +€Z(9xz ( )

when A is symmetric. Then, one can pass to the limit in the variational
formulation using the cell equation satisfied by w;(y). Remark that the
difference between the gradients of . and ¢ is not small

Vo) = Vola) + 3 2 @)(Vyw) () +0(0).

This idea can be used in multiscale numerical computations: replace the usual

piecewise affine finite element basis by oscillating functions.
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-ITI- TWO-SCALE CONVERGENCE METHOD'

This is a simpler method to prove the convergence theorem.
Definition. A sequence of functions u, in L?(Q) is said to two-scale converge
to a limit ug(x,y) belonging to L?(Q2 x Y) if, for any Y-periodic smooth

function (x,y), it satisfies

e—0

i [ @) (. %) do = /Q /Y o (2, ), ) daxdly.

Theorem 1. From each bounded sequence u. in L?(Q2) one can extract a
subsequence, and there exists a limit ug(z,y) € L*(2 x Y) such that this

subsequence two-scale converges to ug.

Theorem 2. Let u, be a bounded sequence in H'(Q2). Then, up to a
subsequence, 1, two-scale converges to a limit ug(x,y) = u(z) € H'(Q), and
Vu, two-scale converges to Vyu(x) + Vyuy (z,y) with uy € L*(Q; Hi, (Y)).
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Lemma 3. For a bounded open set €2, let B = C(2; Cx(Y)) be the space of
continuous functions ¢(x,y) on Q x Y which are Y-periodic in y. Then, B is a

separable Banach space (i.e. it contains a dense countable family), is dense in
L?(2 x Y), and there exists C > 0 such that

X
[ 1o (2 2) Pz < Cllel,
O €

iy [ o (2. ) Pao = [ [ lo(o.y)dudy,
c—0Jq € QJy

for any ¢(z,y) € B.

Remark. The same works with B = L?(Q; C4(Y)) and Q not necessarily
bounded.
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Proof of Lemma 3. We mesh Q with cubes of the type (0,¢)"

Q=UicicnYs with Y =z + (0,6)"

n(e) n(e)

folo (o) P =32 | o () P =32 [ 1 (a5, 7) P ot

n(e)
/!so 25, ) [2dy + o(1) =L/|¢<x,y>r2dxdy+o<1>
Y
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Proof of Theorem 1. By Schwarz inequality, we have

/Que(a;)gp <£IZ,%> de| < C L@(Qj,%) dx 2 < Cll¢|lB-

Thus, the l.h.s. is a continuous linear form on B which can be identified to a
duality product (ue, p)p’ B for some bounded sequence of measures p.. Since
B is separable, by the Banach-Alaoglu theorem, one can extract a
subsequence and there exists a limit pg such p. converges to po in the weak *
topology of B’ (the dual of B). On the other hand, Lemma 3 allows us to pass
to the limit in the middle term above. It yields

(o, ) 5] < C / / oz, y)Pdedy|
Y

Therefore g is actually a continuous linear form on L?(Q2 x Y'), by density of
B in this space. Thus, there exists ug(z,y) € L*(Q x Y) such that

<uo,90>Bf,BzLLuo(x,y)¢(x,y)dxdy-
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Proof of Theorem 2. Since u, and Vu, are bounded in L?(Q2), up to a

subsequence, they two-scale converge to limits ug(z,y) € L?(Q2 x Y) and
Eo(z,y) € L2(Q2 x V)N, Thus

lim/VuE :1:— dx—//fgxy Y(x,y)drdy V¢ED(Q Cr(Y )N)

e—0

Integrating by parts the left hand side gives

G/QVUE(JU) ) (q;, %) de = — /Q ue () (divyﬁ (a:, %) + edive)) (9[5, E)) dz.

Passing to the limit yields
= —/ / uo(ac,y)divyzg(a:,y)dazdy =  ug(x,y) =u(x) € L2(Q).
QJy

Next, we choose 1 such that divy?;(x, y) = 0. We obtain

/Qvue(a:) P (:I; %) dz = — /Q e (2)divah (:I; %) dz.

INTRODUCTION TO PERIODIC HOMOGENIZATION THEORY G. Allaire



Passing to the two-scale limit

/ / Eo(x,y) x ,y)dxdy = / / dlvx?,b x,y)dzxdy.

If 1) does not depend on y, it proves that u(z) € H(). Furthermore,

/ / (&o(x,y) — Vu(z)) - Pz, y)dedy = 0 Ve with divytp = 0.
QJY

The orthogonal of divergence-free functions are exactly the gradients. Thus,
there exists a unique function u (x,y) in L?(Q; H,(Y)/R) such that

$o(x,y) = Vu(z) + Vyui(z,y).
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Theorem 4. Let u, € L*(Q) two-scale converge to ug(z,y) € L*(Q x Y).

1. Then, u, converges weakly in L*(Q) to u(z) = [, uo(z, y)dy, and we have
lim luellZ2q) > llwollZziaxyy > llullZzq):
2. Assume further that ug(z,y) is smooth and that

li_fj% HU6H2L2(Q) - HU0H2L2(Q><Y)-

Then, we have

‘ue(x)—uo (CIZ,E)‘2 — 0.

e/ llL2(q)

Remark. In the last case we say that u. two-scale converges strongly to ug.
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Proof of Theorem 4. Take a test function depending only on x

liII(l) da:-//uO T,Y)p da:dy—/ u(z) p(x) d.
€E— Q)

Thus, u. converges weakly to w in L*(€). Then, developing the inequality

/Q ue(x) — @ (x,%)rd:c >0

/]ue( )]2dx—2/ (x)w( )dx+/|g0<x —>|da:>()
limi(])af/]u6 )|*dx — 2 //uoxy xyda:dy+//|gpxy]2dazdy>()

Take ¢ = ug to get

li_f}% ||Ue||%2(sz) > HUOH%Q(QXY)'
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Proof of Theorem 4 (continued). If we assume

li_f}% ||Ue||%2(sz) - HUOH%Q(QXY)?

the same computation yields

limi(r)lf/ ue(x) — go(:v E dac—// lug(x,y) — ¢ (z,y) |*dz dy
€E— Q) €

If ug is smooth enough to be a test function ¢ (Carathéodory function), it

gives the desired result

N 112
| Ue () — ug <ZC, —)| — 0.
FAFERS
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Theorem 5.

1. Let u. be a bounded sequence in L?(Q) such that eVu, is also bounded in
L?(Q)". Then, there exists a two-scale limit uo(z,y) € L*(Q; H,(Y)/R)
such that, up to a subsequence, u. two-scale converges to ug(z,y), and

eVue to Vyuo(z,y).

. Let u. be a bounded sequence in L?(2)? such that divu, is also bounded
in L2(Q). Then, there exists a two-scale limit ug(z,y) € L*(Q x V)& with

divyup = 0 and divyug € L*(Q x Y) such that, up to a subsequence, u,

two-scale converges to ug(x,y), and divu,. to divyug(z,y).
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Proof of Theorem 5 (first part). We have

im [ (o) (.2 do = / /Y o (2, ), y)dady

e—0

lim . eVue(x) - 7,; (a:, %) dx = /Q/Y&)(x,y) : J(x,y)dazdy

e—0

By integration by parts

/QeVue(x) ) (q;, %) dr = — /Q Ue(x) (divyxg—k edivxﬁ> (x, %) dx

Passing to the two-scale limit

/ / oz, y) - U(z, y)dady = / / uo(x y)dwyw(x y)dzdy

which implies that & (z,y) = Vyuo(x,y).
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‘-IV- APPLICATION TO HOMOGENIZATION'

Conductivity or diffusion equation
—div (A (m, f) Vue) =f in Q
u. =0 on Of?

with a coefficient tensor A(x,y) which is Y-periodic, uniformly coercive and
bounded

N
a’§|2 < Z A%J(xay)gzgj < ﬁ’§|27 V¢ e RN,Vy cY,Vx € (6 > o> O)

i,J=1

A priori estimate. If €2 is bounded, then

el 51 ) < CllfllLz )
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[Two-scale convergence methodJ

First step. We deduce from the a priori estimates the precise form of the

two-scale limit of the sequence wu..

By application of Theorem 2, there exist two functions, u(x) € Hj () and
ui(x,y) € L*(; Hy(Y)/R), such that, up to a subsequence, u, two-scale

converges to u(x), and Vu, two-scale converges to V,u(x) + V,ui(z,y).

In view of these limits, u. is expected to behave as u(x) + euq (a:, %)
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[Two—scale convergence method]

Second step. We multiply the p.d.e. by a test function similar to the limit of
ue, namely o(x) + ep1 (2, £), where p(z) € D(Q2) and
p1(z,y) € D(;CE(Y)). This yields

/QA (m, %) Vue - (Vgo(ac) + V1 (m, %) + eV (:1:, %)) dr

= /g)f(a:) <g0(a:) + €pq (a:, %)) dx.

Regarding A° (az, %) (Vgo(a:) + Vy 01 (az, %)) as a test function for the
two-scale convergence, we pass to the two-scale limit

| [ Ay (Vu(@) + Vs, 5)(Vela) + Vyer(a) dody = [ fla)pla)ds
QJY Q
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[Two-scale convergence methodJ

Third step. We read off a variational formulation for (u,u1). Take (¢, ¢1) in
the Hilbert space H}(92) x L? (Q; H#(Y)/]R) endowed with the norm

VUVU@) 3200, + V5@ 9) 32 0.0v)

The assumptions of the Lax-Milgram lemma are easily checked. The main
point is the coercivity of the bilinear form defined by the left hand side

//Y A(z,y) (Vo(x) + Vyor (3,1) - (Vo(x) + Vi (2, ) dady >

a// |Vgp(x)+vygol(ac,y)]2dxdy:oz/ ]Vgo(x)]%x%—oz// IV, 01(x,y)|Pdxdy.
QJy Q QJy
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/Q /Y A, y) (Vulz) + Vs (2,9)(Volx) + Vo1 (2, ) dody /Q F(2)o()da

By application of the Lax-Milgram lemma, there exists a unique solution
(u,ur) € HF () x L? (Q; H#(Y)/R) Consequently, the entire sequences .
and Vu, converge to u(z) and Vu(z) + Vyui(x,y).

An easy integration by parts shows that the associated p.d.e.’s are the

so-called “two-scale homogenized problem”,

y

—divy (A(z,y) (Vu(z) + Vyui(z,y))) =0 in QxY
~div, (fy Ale,y) (Vu(z) + Vyus(e,9)) dy) = f(z) in ©

y — u1(x,y) Y -periodic
u=20 on 0.

\
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[Two-scale convergence method]

Fourth (and optional) step. Eliminate the y variable and the u; unknown

z)w;(z,y),

where w;(z,y) are the unique solutions in H(Y')/R of the cell problems
—divy (A(z,y) (€ + V,ywi(x,y))) =0 inY
y — wi(x,y) Y -periodic,

at each point x € (2, and

—divy (A*(z)Vu(x)) = f(z) in Q
u=20 on 0},

= [, A(z,y) (€ + Vywi(z,y)) - (€ + Vyw;(z,y)) dy.
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(Conclusion)

We have just proved.

Theorem. The sequence of solution u. converges weakly to w in Hj () and
the sequence Vu, two-scale converges to Vyu(z) + Vyui(x,y) where u is the

solution of the homogenized problem and uy(z,y) = Zfll %(w)wi(a:, Y).

Remark. u. converges strongly to u in L?(Q) but its gradient does not

converge strongly !
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[Corrector and strong two-scale convergence]

Proposition. Assume that A(z,y) € C(Q; L3 (Y)). Then uy(z,y) is indeed a

corrector in the sense that

X

/Q ‘Vue(ac) — Vu(z) — Vyuy (ac, E)‘ dr =0

Key ingredient: strong two-scale convergence. If v, € L?() two-scale

converge to a smooth vg(x,y) and

li_{% H’UeH%2(Q) — ||UOHZL2(Q><Y)7

2
lim ||ve(z) — vg (:1:, £)| = 0.

e—0 €
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(Proof)

We develop

/QA (a;, %) (Vue — Vu — Vyuy (5’77 %)) ' (VU»E — Vu — Vyu (a;, %
)) (Vut) + Yy (,2)) do

Vu(z) + Vyuq (a:, f)) dx

€
+ /Q A (a;, Z) Vu, - Vudx

The last term is equal to / fucdr — / fudzx.
Q Q
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[Proof (ctd.)]

Passing to the limit

N\ |12
lim oz/ |Vu6(ac) — Vu(z) — Vyuy (x, —)| dr <
0 €

e—0

z, f) (Vue — Vu— Vyu (:p %)) - (Vue — Vu— Vyu (:p z

€ €

/Q fudz

=2 [ [ A ) (V@) + Yy (@.9)) - (Vu(o) + Yy (a.9)) dody

because of the variational formulation of the two-scale limit problem !
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(Error estimate]

‘ ue(r) — u(x) — euy (a:, % HHl(Q) < Cy/e
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-V- GENERAL THEORY (H-convergence)

Let © be a bounded open set in R, and let 0 < a < 3. We introduce the set
M(a, 3,Q) of all possible matrices A(z) such that, a.e. in €2

alf]? < A(z)¢-€ and  BIEP < ATH(@)E-E VEERY,

We consider a sequence A (x) in M(a, 3,€2), indexed by €, going to 0, which
is not associated to any specific lengthscale or statistical property of the
elastic medium. In other words, no special assumptions (like periodicity or

stationarity) are placed on the sequence A..
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For f(x) € L?(Q), there exists a unique solution u. € Hj () of
—div (Ae(z)Vue) = f(z) in Q
u. =0 on Of2.

Definition. The sequence A.(x) € M(a, (3,€2) is said to H-converge to a
limit A*(z), as € goes to 0, if, for any f € L?*(Q), the sequence u, sastisfies

ue — u weakly in Hj (Q)

AVu, — A*Vu weakly in L2(Q)",
where u is the solution of the homogenized equation associated to A*

—div (A*(x)Vu) = f(x) in Q
u=20 on Of).
Remark that, by definition, the homogenized tensor A* is independent of the

source term f. We shall see that it is also independent of the boundary
condition and of the domain.
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Theorem (compactness). For any sequence A, in M(a, 3, €2), there exist a

subsequence (still denoted by €) and a homogenized limit A*, belonging to
M(a, 8,), such that A, H-converges to A*.

Proposition (locality of H-convergence). Let A°(x) and B¢(x) be two
sequences in M (a, 3,€2), which H-converge to A*(z) and B*(x), respectively.
Let w be an open subset compactly embedded in (2, i.e., w C Q. If

A¢(x) = B(z) in w, then A*(x) = B*(x) in w.

Proposition (energy convergence). Let A¢(z) be a sequence in M(a, 3, ()
that H-converges to A*(z). For any f € L?*(Q), the sequence u,. satisfies

AVu, - Vu, = A*Vu - Vu in L'(Q)

/ AVu,. - Vucdr — / A*Vu - Vudz,
Q Q
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[G-convergence]

When restricted to symmetric matrices, H convergence simplifies and is called

(G-convergence.

Proposition (G-convergence). Let A¢(x) be a sequence of symmetric
matrices in M(a, 3,€2) that H-converges to A*(x). Then A* is symmetric too.
Furthermore, H-convergence is equivalent to so-called G-convergence which is
defined by: for any f € L?(Q2), ue — u weakly in H}(Q2) where u is the
solution of the homogenized equation.

Remark. The convergence of the flux A°Vu, is not required in

G-convergence and is rather an automatic property (due to the symmetry).

Bibliography. H-convergence was introduced by Murat and Tartar.
GG-convergence was older and due to De Giorgi and Spagnolo.
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-VI- BOUNDARY LAYERS'

x
ue(z) ~ u(x) + eus (az, —)
€
but u; does not satisty the Dirichlet boundary condition.

We correct it by introducing a boundary layer solution of

—div (A (2)Vul) =0 inQ

ul = —uy (ac, f) on OS2

€

which cannot be computed explicitly except in special cases. In particular

1
ot =0 ( 7 )

Proposition. Assume that u € W2°°(£). Then

X

ue(z) —u(z) — euq (x, =) — eu?(2)
| (. c) — et

€
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Consider a rectangular domain €2. In such a case we can approximate the
boundary layer as follows.

Introduce the semi-infinite band G (in the direction yy)

(

—divy (A(y)Vywi(y)) =0 in G

wl = —w; on I'

L Yy — w,ﬁ-’l(y’, yN) Y -periodic

Approximate the boundary layer (on just one side) by
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