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INTRODUCTION

We recall the model problem of diffusion






−div
(

A
(

x
ǫ

)

∇uǫ

)

= f in Ω

uǫ = 0 on ∂Ω

where Ω is a smooth bounded open set of R
N , f ∈ L2(Ω) and the coefficient

tensor A(y) is Y -periodic, uniformly coercive and bounded

α|ξ|2 ≤
N

∑

i,j=1

Aij(y)ξiξj ≤ β|ξ|2, ∀ ξ ∈ R
N , a.e. y ∈ Y (β ≥ α > 0).
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Lemma (a priori estimate). If Ω is bounded, then there exists a constant

C > 0 depending only on Ω such that

‖uǫ‖H1(Ω) ≤ C‖f‖L2(Ω).

Therefore, up to a subsequence, there exists a limit u ∈ H1(Ω) such that the

sequence uǫ of solutions of the model problem converges to u weakly in H1
0 (Ω)

and strongly in L2(Ω), as ǫ goes to 0,

lim
ǫ→0

∫

Ω

|uǫ − u|2dx = 0, lim
ǫ→0

∫

Ω

∇(uǫ − u) · φ dx = 0 ∀φ ∈ L2(Ω)N .

Goal: find the equation satisfied by u.
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Proof of the a priori estimate

Variational formulation
∫

Ω

A
(

x,
x

ǫ

)

∇uǫ(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ H1
0 (Ω).

Take ϕ = uǫ and use coercivity

α‖∇uǫ‖2
L2(Ω) ≤

∫

Ω

f(x)uǫ(x)dx ≤ ‖f‖L2(Ω)‖uǫ‖L2(Ω)

Poincaré inequality in Ω

‖uǫ‖L2(Ω) ≤ C(Ω)‖∇uǫ‖L2(Ω)

Thus

‖∇uǫ‖L2(Ω) ≤
C(Ω)‖f‖L2(Ω)

α
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-I- MAXIMUM PRINCIPLE

Restricted to scalar elliptic equations ! Need some smoothness of the

coefficients.

Recall that, at least formally,

uǫ(x) ≈ u(x) + ǫu1

(

x,
x

ǫ

)

+ ǫ2u2

(

x,
x

ǫ

)

with

u1(x, y) =

N
∑

i=1

∂u

∂xi

(x)wi(y) + ũ1(x)

and

u2(x, y) =
N

∑

i,j=1

∂2u

∂xi∂xj

(x)χij(y) +
N

∑

i=1

∂ũ1

∂xi

(x)wi(y) + ũ2(x)
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Cell problem:






−divyA(y) (ei + ∇ywi(y)) = 0 in Y

y → wi(y) Y -periodic

Second order cell problem:















−divyA(y)∇yu2(x, y) = divyA(y)∇xu1 + divxA(y) (∇yu1 + ∇xu)

− divx(A
∗∇xu) in Y

y → u2(x, y) Y -periodic

which implies the form u2(x, y) =
∑N

i,j=1
∂2u

∂xi∂xj
(x)χij(y) (up to addition of

ũ1, ũ2).
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Define the remainder

rǫ(x) = uǫ(x) −
{

u(x) + ǫu1

(

x,
x

ǫ

)

+ ǫ2u2

(

x,
x

ǫ

)}

which satisfy


















−div
(

A
(x

ǫ

)

∇rǫ
)

= −ǫ [divxA(∇xu1 + ∇yu2) + divyA(∇xu2)]
(

x,
x

ǫ

)

− ǫ2 [divxA(∇xu2)]
(

x,
x

ǫ

)

in Ω

rǫ = −ǫu1

(

x,
x

ǫ

)

− ǫ2u2

(

x,
x

ǫ

)

on ∂Ω

Theorem. Assume A(y) ∈W 1,∞(Y ) and u ∈W 4,∞(Ω). Then

‖uǫ(x) − u(x)‖L∞(Ω) ≤ Cǫ

Proof. Apply the maximum principle to rǫ.
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Comparison of the exact and reconstructed solution u+ ǫu1 (K. El Ganaoui)

Correctors really matter !
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-II- Oscillating test function method (L. Tartar)

The goal is to mathematically prove the following

Theorem. The sequence uǫ(x) of solutions of the model problem converges

weakly in H1
0 (Ω) and strongly in L2(Ω), as ǫ goes to 0, to a limit u(x) which

is the unique solution of the homogenized problem.

Naive idea: pass to the limit in the variational formulation
∫

Ω

A
(x

ǫ

)

∇uǫ(x) · ∇ϕ(x)dx =

∫

Ω

f(x)ϕ(x)dx, ∀ϕ ∈ H1
0 (Ω).

impossible because A
(

x
ǫ

)

and ∇uǫ converge only weakly (the limit of the

product is not the product of the limits).
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Difference between strong and weak convergence

uǫ converges strongly to u in L2(Ω) ⇔ lim
ǫ→0

∫

Ω

|uǫ(x) − u(x)|2dx = 0

vǫ converges weakly to v in L2(Ω) ⇔ lim
ǫ→0

∫

Ω

(vǫ − v)φ dx = 0 ∀φ ∈ L2(Ω)

Lemma. Let G : R → R be a continuous bounded function. Then G(uǫ)

converges strongly to G(u) in L2(Ω).

This is false for weak convergence ! Counter-example: vǫ(x) = sin
(

x
ǫ

)

.
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Oscillating test function method (ctd.)

The key idea is to replace ϕ by

ϕǫ(x) = ϕ(x) + ǫ

N
∑

i=1

∂ϕ

∂xi

(x)wi

(x

ǫ

)

when A is symmetric. Then, one can pass to the limit in the variational

formulation using the cell equation satisfied by wi(y). Remark that the

difference between the gradients of ϕǫ and ϕ is not small

∇ϕǫ(x) = ∇ϕ(x) +
N

∑

i=1

∂ϕ

∂xi

(x)(∇ywi)
(x

ǫ

)

+ O(ǫ).

This idea can be used in multiscale numerical computations: replace the usual

piecewise affine finite element basis by oscillating functions.
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-III- TWO-SCALE CONVERGENCE METHOD

This is a simpler method to prove the convergence theorem.

Definition. A sequence of functions uǫ in L2(Ω) is said to two-scale converge

to a limit u0(x, y) belonging to L2(Ω × Y ) if, for any Y -periodic smooth

function ϕ(x, y), it satisfies

lim
ǫ→0

∫

Ω

uǫ(x)ϕ
(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy.

Theorem 1. From each bounded sequence uǫ in L2(Ω) one can extract a

subsequence, and there exists a limit u0(x, y) ∈ L2(Ω × Y ) such that this

subsequence two-scale converges to u0.

Theorem 2. Let uǫ be a bounded sequence in H1(Ω). Then, up to a

subsequence, uǫ two-scale converges to a limit u0(x, y) ≡ u(x) ∈ H1(Ω), and

∇uǫ two-scale converges to ∇xu(x) + ∇yu1(x, y) with u1 ∈ L2(Ω;H1
#(Y )).
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Lemma 3. For a bounded open set Ω, let B = C(Ω̄;C#(Y )) be the space of

continuous functions ϕ(x, y) on Ω̄× Y which are Y -periodic in y. Then, B is a

separable Banach space (i.e. it contains a dense countable family), is dense in

L2(Ω × Y ), and there exists C > 0 such that
∫

Ω

|ϕ
(

x,
x

ǫ

)

|2dx ≤ C‖ϕ‖2
B ,

and

lim
ǫ→0

∫

Ω

|ϕ
(

x,
x

ǫ

)

|2dx =

∫

Ω

∫

Y

|ϕ(x, y)|2dxdy,

for any ϕ(x, y) ∈ B.

Remark. The same works with B = L2(Ω;C#(Y )) and Ω not necessarily

bounded.
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Ω

Proof of Lemma 3. We mesh Ω with cubes of the type (0, ǫ)N

Ω = ∪1≤i≤n(ǫ)Y
ǫ
i with Y ǫ

i = xǫ
i + (0, ǫ)N .

∫

Ω

|ϕ
(

x,
x

ǫ

)

|2dx =

n(ǫ)
∑

i=1

∫

Y ǫ
i

|ϕ
(

x,
x

ǫ

)

|2dx =

n(ǫ)
∑

i=1

∫

Y ǫ
i

|ϕ
(

xǫ
i ,
x

ǫ

)

|2dx+ o(1)

=

n(ǫ)
∑

i=1

ǫN
∫

Y

|ϕ (xǫ
i , y) |2dy + o(1) =

∫

Ω

∫

Y

|ϕ (x, y) |2dx dy + o(1)
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Proof of Theorem 1. By Schwarz inequality, we have

∣

∣

∣

∣

∫

Ω

uǫ(x)ϕ
(

x,
x

ǫ

)

dx

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

Ω

ϕ
(

x,
x

ǫ

)

dx

∣

∣

∣

∣

1

2

≤ C‖ϕ‖B.

Thus, the l.h.s. is a continuous linear form on B which can be identified to a

duality product 〈µǫ, ϕ〉B′,B for some bounded sequence of measures µǫ. Since

B is separable, by the Banach-Alaoglu theorem, one can extract a

subsequence and there exists a limit µ0 such µǫ converges to µ0 in the weak *

topology of B′ (the dual of B). On the other hand, Lemma 3 allows us to pass

to the limit in the middle term above. It yields

|〈µ0, ϕ〉B′,B| ≤ C

∣

∣

∣

∣

∫

Ω

∫

Y

|ϕ(x, y)|2dxdy
∣

∣

∣

∣

1

2

.

Therefore µ0 is actually a continuous linear form on L2(Ω × Y ), by density of

B in this space. Thus, there exists u0(x, y) ∈ L2(Ω × Y ) such that

〈µ0, ϕ〉B′,B =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy.
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Proof of Theorem 2. Since uǫ and ∇uǫ are bounded in L2(Ω), up to a

subsequence, they two-scale converge to limits u0(x, y) ∈ L2(Ω × Y ) and

ξ0(x, y) ∈ L2(Ω × Y )N . Thus

lim
ǫ→0

∫

Ω

∇uǫ(x)·~ψ
(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

ξ0(x, y)·~ψ(x, y)dxdy ∀~ψ ∈ D
(

Ω;C∞
# (Y )N

)

.

Integrating by parts the left hand side gives

ǫ

∫

Ω

∇uǫ(x) · ~ψ
(

x,
x

ǫ

)

dx = −
∫

Ω

uǫ(x)
(

divy
~ψ

(

x,
x

ǫ

)

+ ǫdivx
~ψ

(

x,
x

ǫ

))

dx.

Passing to the limit yields

0 = −
∫

Ω

∫

Y

u0(x, y)divy
~ψ(x, y)dxdy ⇒ u0(x, y) ≡ u(x) ∈ L2(Ω).

Next, we choose ~ψ such that divy
~ψ(x, y) = 0. We obtain

∫

Ω

∇uǫ(x) · ~ψ
(

x,
x

ǫ

)

dx = −
∫

Ω

uǫ(x)divx
~ψ

(

x,
x

ǫ

)

dx.
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Passing to the two-scale limit
∫

Ω

∫

Y

ξ0(x, y) · ~ψ(x, y)dxdy = −
∫

Ω

∫

Y

u(x)divx
~ψ(x, y)dxdy.

If ~ψ does not depend on y, it proves that u(x) ∈ H1(Ω). Furthermore,
∫

Ω

∫

Y

(ξ0(x, y) −∇u(x)) · ~ψ(x, y)dxdy = 0 ∀~ψ with divy
~ψ = 0.

The orthogonal of divergence-free functions are exactly the gradients. Thus,

there exists a unique function u1(x, y) in L2(Ω;H1
#(Y )/R) such that

ξ0(x, y) = ∇u(x) + ∇yu1(x, y).
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Theorem 4. Let uǫ ∈ L2(Ω) two-scale converge to u0(x, y) ∈ L2(Ω × Y ).

1. Then, uǫ converges weakly in L2(Ω) to u(x) =
∫

Y
u0(x, y)dy, and we have

lim
ǫ→0

‖uǫ‖2
L2(Ω) ≥ ‖u0‖2

L2(Ω×Y ) ≥ ‖u‖2
L2(Ω).

2. Assume further that u0(x, y) is smooth and that

lim
ǫ→0

‖uǫ‖2
L2(Ω) = ‖u0‖2

L2(Ω×Y ).

Then, we have
∥

∥

∥
uǫ(x) − u0

(

x,
x

ǫ

)
∥

∥

∥

2

L2(Ω)
→ 0.

Remark. In the last case we say that uǫ two-scale converges strongly to u0.
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Proof of Theorem 4. Take a test function depending only on x

lim
ǫ→0

∫

Ω

uǫ(x)ϕ (x) dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x)dxdy =

∫

Ω

u(x)ϕ(x) dx.

Thus, uǫ converges weakly to u in L2(Ω). Then, developing the inequality
∫

Ω

∣

∣

∣
uǫ(x) − ϕ

(

x,
x

ǫ

)
∣

∣

∣

2

dx ≥ 0

∫

Ω

|uǫ(x)|2dx− 2

∫

Ω

uǫ(x)ϕ
(

x,
x

ǫ

)

dx+

∫

Ω

|ϕ
(

x,
x

ǫ

)

|2dx ≥ 0

lim inf
ǫ→0

∫

Ω

|uǫ(x)|2dx− 2

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dx dy +

∫

Ω

∫

Y

|ϕ (x, y) |2dx dy ≥ 0

Take ϕ = u0 to get

lim
ǫ→0

‖uǫ‖2
L2(Ω) ≥ ‖u0‖2

L2(Ω×Y ).
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Proof of Theorem 4 (continued). If we assume

lim
ǫ→0

‖uǫ‖2
L2(Ω) = ‖u0‖2

L2(Ω×Y ),

the same computation yields

lim inf
ǫ→0

∫

Ω

∣

∣

∣
uǫ(x) − ϕ

(

x,
x

ǫ

)
∣

∣

∣

2

dx =

∫

Ω

∫

Y

|u0(x, y) − ϕ (x, y) |2dx dy

If u0 is smooth enough to be a test function ϕ (Carathéodory function), it

gives the desired result

∥

∥

∥
uǫ(x) − u0

(

x,
x

ǫ

)
∥

∥

∥

2

L2(Ω)
→ 0.
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Theorem 5.

1. Let uǫ be a bounded sequence in L2(Ω) such that ǫ∇uǫ is also bounded in

L2(Ω)N . Then, there exists a two-scale limit u0(x, y) ∈ L2(Ω;H1
#(Y )/R)

such that, up to a subsequence, uǫ two-scale converges to u0(x, y), and

ǫ∇uǫ to ∇yu0(x, y).

2. Let uǫ be a bounded sequence in L2(Ω)N such that divuǫ is also bounded

in L2(Ω). Then, there exists a two-scale limit u0(x, y) ∈ L2(Ω × Y )N with

divyu0 = 0 and divxu0 ∈ L2(Ω × Y ) such that, up to a subsequence, uǫ

two-scale converges to u0(x, y), and divuǫ to divxu0(x, y).
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Proof of Theorem 5 (first part). We have

lim
ǫ→0

∫

Ω

uǫ(x)ϕ
(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy

lim
ǫ→0

∫

Ω

ǫ∇uǫ(x) · ~ψ
(

x,
x

ǫ

)

dx =

∫

Ω

∫

Y

ξ0(x, y) · ~ψ(x, y)dxdy

By integration by parts
∫

Ω

ǫ∇uǫ(x) · ~ψ
(

x,
x

ǫ

)

dx = −
∫

Ω

uǫ(x)
(

divy
~ψ + ǫdivx

~ψ
) (

x,
x

ǫ

)

dx

Passing to the two-scale limit
∫

Ω

∫

Y

ξ0(x, y) · ~ψ(x, y)dxdy = −
∫

Ω

∫

Y

u0(x, y)divy
~ψ(x, y)dxdy

which implies that ξ0(x, y) = ∇yu0(x, y).
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-IV- APPLICATION TO HOMOGENIZATION

Conductivity or diffusion equation






−div
(

A
(

x, x
ǫ

)

∇uǫ

)

= f in Ω

uǫ = 0 on ∂Ω

with a coefficient tensor A(x, y) which is Y -periodic, uniformly coercive and

bounded

α|ξ|2 ≤
N

∑

i,j=1

Aij(x, y)ξiξj ≤ β|ξ|2, ∀ ξ ∈ R
N , ∀ y ∈ Y, ∀x ∈ Ω (β ≥ α > 0).

A priori estimate. If Ω is bounded, then

‖uǫ‖H1(Ω) ≤ C‖f‖L2(Ω).
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Two-scale convergence method

First step. We deduce from the a priori estimates the precise form of the

two-scale limit of the sequence uǫ.

By application of Theorem 2, there exist two functions, u(x) ∈ H1
0 (Ω) and

u1(x, y) ∈ L2(Ω;H1
#(Y )/R), such that, up to a subsequence, uǫ two-scale

converges to u(x), and ∇uǫ two-scale converges to ∇xu(x) + ∇yu1(x, y).

In view of these limits, uǫ is expected to behave as u(x) + ǫu1

(

x, x
ǫ

)

.
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Two-scale convergence method

Second step. We multiply the p.d.e. by a test function similar to the limit of

uǫ, namely ϕ(x) + ǫϕ1

(

x, x
ǫ

)

, where ϕ(x) ∈ D(Ω) and

ϕ1(x, y) ∈ D(Ω;C∞
# (Y )). This yields

∫

Ω

A
(

x,
x

ǫ

)

∇uǫ ·
(

∇ϕ(x) + ∇yϕ1

(

x,
x

ǫ

)

+ ǫ∇xϕ1

(

x,
x

ǫ

))

dx

=

∫

Ω

f(x)
(

ϕ(x) + ǫϕ1

(

x,
x

ǫ

))

dx.

Regarding At
(

x, x
ǫ

) (

∇ϕ(x) + ∇yϕ1

(

x, x
ǫ

))

as a test function for the

two-scale convergence, we pass to the two-scale limit
∫

Ω

∫

Y

A(x, y) (∇u(x) + ∇yu1(x, y))·(∇ϕ(x) + ∇yϕ1(x, y)) dxdy =

∫

Ω

f(x)ϕ(x)dx.
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Two-scale convergence method

Third step. We read off a variational formulation for (u, u1). Take (ϕ, ϕ1) in

the Hilbert space H1
0 (Ω) × L2

(

Ω;H1
#(Y )/R

)

endowed with the norm

√

(‖∇u(x)‖2
L2(Ω) + ‖∇yu1(x, y)‖2

L2(Ω×Y ))

The assumptions of the Lax-Milgram lemma are easily checked. The main

point is the coercivity of the bilinear form defined by the left hand side
∫

Ω

∫

Y

A(x, y) (∇ϕ(x) + ∇yϕ1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y)) dxdy ≥

α

∫

Ω

∫

Y

|∇ϕ(x)+∇yϕ1(x, y)|2dxdy = α

∫

Ω

|∇ϕ(x)|2dx+α
∫

Ω

∫

Y

|∇yϕ1(x, y)|2dxdy.
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∫

Ω

∫

Y

A(x, y) (∇u(x) + ∇yu1(x, y))·(∇ϕ(x) + ∇yϕ1(x, y)) dxdy =

∫

Ω

f(x)ϕ(x)dx.

By application of the Lax-Milgram lemma, there exists a unique solution

(u, u1) ∈ H1
0 (Ω) × L2

(

Ω;H1
#(Y )/R

)

. Consequently, the entire sequences uǫ

and ∇uǫ converge to u(x) and ∇u(x) + ∇yu1(x, y).

An easy integration by parts shows that the associated p.d.e.’s are the

so-called “two-scale homogenized problem”,


























−divy (A(x, y) (∇u(x) + ∇yu1(x, y))) = 0 in Ω × Y

−divx

(∫

Y
A(x, y) (∇u(x) + ∇yu1(x, y)) dy

)

= f(x) in Ω

y → u1(x, y) Y -periodic

u = 0 on ∂Ω.
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�

�

�

�
Two-scale convergence method

Fourth (and optional) step. Eliminate the y variable and the u1 unknown

u1(x, y) =
N

∑

i=1

∂u

∂xi

(x)wi(x, y),

where wi(x, y) are the unique solutions in H1
#(Y )/R of the cell problems







−divy (A(x, y) (~ei + ∇ywi(x, y))) = 0 in Y

y → wi(x, y) Y -periodic,

at each point x ∈ Ω, and






−divx (A∗(x)∇u(x)) = f(x) in Ω

u = 0 on ∂Ω,

with A∗
ij(x) =

∫

Y
A(x, y) (~ei + ∇ywi(x, y)) · (~ej + ∇ywj(x, y)) dy.
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�

�

�

�Conclusion

We have just proved.

Theorem. The sequence of solution uǫ converges weakly to u in H1
0 (Ω) and

the sequence ∇uǫ two-scale converges to ∇xu(x) + ∇yu1(x, y) where u is the

solution of the homogenized problem and u1(x, y) =
∑N

i=1
∂u
∂xi

(x)wi(x, y).

Remark. uǫ converges strongly to u in L2(Ω) but its gradient does not

converge strongly !
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�

�

�

�
Corrector and strong two-scale convergence

Proposition. Assume that A(x, y) ∈ C(Ω;L∞
# (Y )). Then u1(x, y) is indeed a

corrector in the sense that

lim
ǫ→0

∫

Ω

∣

∣

∣
∇uǫ(x) −∇u(x) −∇yu1

(

x,
x

ǫ

)
∣

∣

∣

2

dx = 0

Key ingredient: strong two-scale convergence. If vǫ ∈ L2(Ω) two-scale

converge to a smooth v0(x, y) and

lim
ǫ→0

‖vǫ‖2
L2(Ω) = ‖v0‖2

L2(Ω×Y ),

then

lim
ǫ→0

∥

∥

∥
vǫ(x) − v0

(

x,
x

ǫ

)
∥

∥

∥

2

L2(Ω)
= 0.
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�

�

�

�Proof

We develop
∫

Ω

A
(

x,
x

ǫ

) (

∇uǫ −∇u−∇yu1

(

x,
x

ǫ

))

·
(

∇uǫ −∇u−∇yu1

(

x,
x

ǫ

))

dx =

∫

Ω

A
(

x,
x

ǫ

) (

∇u(x) + ∇yu1

(

x,
x

ǫ

))

·
(

∇u(x) + ∇yu1

(

x,
x

ǫ

))

dx

−2

∫

Ω

Asym
(

x,
x

ǫ

)

∇uǫ ·
(

∇u(x) + ∇yu1

(

x,
x

ǫ

))

dx

+

∫

Ω

A
(

x,
x

ǫ

)

∇uǫ · ∇uǫdx

The last term is equal to

∫

Ω

fuǫdx→
∫

Ω

fudx.
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�

�

�

�
Proof (ctd.)

Passing to the limit

lim
ǫ→0

α

∫

Ω

∣

∣

∣
∇uǫ(x) −∇u(x) −∇yu1

(

x,
x

ǫ

)
∣

∣

∣

2

dx ≤

lim
ǫ→0

∫

Ω

A
(

x,
x

ǫ

) (

∇uǫ −∇u−∇yu1

(

x,
x

ǫ

))

·
(

∇uǫ −∇u−∇yu1

(

x,
x

ǫ

))

dx =

∫

Ω

fudx

−2

∫

Ω

∫

Y

Asym(x, y) (∇u(x) + ∇yu1(x, y)) · (∇u(x) + ∇yu1(x, y)) dxdy

+

∫

Ω

∫

Y

A(x, y) (∇u(x) + ∇yu1(x, y)) · (∇u(x) + ∇yu1(x, y)) dxdy

= 0

because of the variational formulation of the two-scale limit problem !
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�

�

�

�Error estimate

Proposition. Assume that A(x, y) ∈ C(Ω;L∞
# (Y )) and u ∈W 2,∞(Ω). Then

∥

∥

∥
uǫ(x) − u(x) − ǫu1

(

x,
x

ǫ

)
∥

∥

∥

H1(Ω)
≤ C

√
ǫ
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-V- GENERAL THEORY (H-convergence)

Let Ω be a bounded open set in R
N , and let 0 < α ≤ β. We introduce the set

M(α, β,Ω) of all possible matrices A(x) such that, a.e. in Ω

α|ξ|2 ≤ A(x)ξ · ξ and β|ξ|2 ≤ A−1(x)ξ · ξ ∀ξ ∈ R
N .

We consider a sequence Aǫ(x) in M(α, β,Ω), indexed by ǫ, going to 0, which

is not associated to any specific lengthscale or statistical property of the

elastic medium. In other words, no special assumptions (like periodicity or

stationarity) are placed on the sequence Aǫ.
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For f(x) ∈ L2(Ω), there exists a unique solution uǫ ∈ H1
0 (Ω) of







−div (Aǫ(x)∇uǫ) = f(x) in Ω

uǫ = 0 on ∂Ω.

Definition. The sequence Aǫ(x) ∈ M(α, β,Ω) is said to H-converge to a

limit A∗(x), as ǫ goes to 0, if, for any f ∈ L2(Ω), the sequence uǫ sastisfies






uǫ ⇀ u weakly in H1
0 (Ω)

Aǫ∇uǫ ⇀ A∗∇u weakly in L2(Ω)N ,

where u is the solution of the homogenized equation associated to A∗







−div (A∗(x)∇u) = f(x) in Ω

u = 0 on ∂Ω.

Remark that, by definition, the homogenized tensor A∗ is independent of the

source term f . We shall see that it is also independent of the boundary

condition and of the domain.
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Theorem (compactness). For any sequence Aǫ in M(α, β,Ω), there exist a

subsequence (still denoted by ǫ) and a homogenized limit A∗, belonging to

M(α, β,Ω), such that Aǫ H-converges to A∗.

Proposition (locality of H-convergence). Let Aǫ(x) and Bǫ(x) be two

sequences in M(α, β,Ω), which H-converge to A∗(x) and B∗(x), respectively.

Let ω be an open subset compactly embedded in Ω, i.e., ω ⊂ Ω. If

Aǫ(x) = Bǫ(x) in ω, then A∗(x) = B∗(x) in ω.

Proposition (energy convergence). Let Aǫ(x) be a sequence in M(α, β,Ω)

that H-converges to A∗(x). For any f ∈ L2(Ω), the sequence uǫ satisfies

Aǫ∇uǫ · ∇uǫ ⇀ A∗∇u · ∇u in L1(Ω)

and
∫

Ω

Aǫ∇uǫ · ∇uǫdx→
∫

Ω

A∗∇u · ∇udx,
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�

�
G-convergence

When restricted to symmetric matrices, H convergence simplifies and is called

G-convergence.

Proposition (G-convergence). Let Aǫ(x) be a sequence of symmetric

matrices in M(α, β,Ω) that H-converges to A∗(x). Then A∗ is symmetric too.

Furthermore, H-convergence is equivalent to so-called G-convergence which is

defined by: for any f ∈ L2(Ω), uǫ ⇀ u weakly in H1
0 (Ω) where u is the

solution of the homogenized equation.

Remark. The convergence of the flux Aǫ∇uǫ is not required in

G-convergence and is rather an automatic property (due to the symmetry).

Bibliography. H-convergence was introduced by Murat and Tartar.

G-convergence was older and due to De Giorgi and Spagnolo.
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-VI- BOUNDARY LAYERS

uǫ(x) ≈ u(x) + ǫu1

(

x,
x

ǫ

)

but u1 does not satisfy the Dirichlet boundary condition.

We correct it by introducing a boundary layer solution of






−div
(

A
(

x
ǫ

)

∇ubl
ǫ

)

= 0 in Ω

ubl
ǫ = −u1

(

x, x
ǫ

)

on ∂Ω

which cannot be computed explicitly except in special cases. In particular

‖ubl
ǫ ‖H1(Ω) = O

(

1√
ǫ

)

Proposition. Assume that u ∈W 2,∞(Ω). Then
∥

∥

∥
uǫ(x) − u(x) − ǫu1

(

x,
x

ǫ

)

− ǫubl
ǫ (x)

∥

∥

∥

H1(Ω)
≤ Cǫ
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Consider a rectangular domain Ω. In such a case we can approximate the

boundary layer as follows.

Introduce the semi-infinite band G (in the direction yN )

Γ















−divy

(

A(y)∇yw
bl
i (y)

)

= 0 in G

wbl
i = −wi on Γ

y′ → wbl
i (y′, yN ) Y -periodic

Approximate the boundary layer (on just one side) by

ubl
ǫ (x) ≈ ∂u

∂xN

(x)wbl
N

(x

ǫ

)
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