Scilab Code M anual
Authors: G. Allaire, A. Karrman, G. Michailidis
Last revision: January 2012

An explanation of the basic characteristics, of $tdab code we have used here, has
already been given in [6]. However, this descriptinostly aimed to familiarize one with this
optimization method and to help somebody obtainesoptimal shapes in an easy way. We
will try here to give a more thorough explanatidrittee details of the code, which will allow
one to interfere to the original files and adjie tode to his needs.

We will analyze the original files that were used[6] and we will give any further
detail separately. As already mentioned in [6]e¢hbasic files are needed for the code to run.
The first one, called functions.sci contains a# tiecessary functions for the algorithm. The
second one takes its name from the specific shagetauctural problem to which it refers to.
For example, the bridge.sce file contains the gégmeformation, the boundary conditions
and an “appropriate” loading for the study of ai¢gbbridge. The last file, optalg.sce, contains
the optimization algorithm and makes use of the pmeavious files.

Since the functions.sci, as well as the optalgfgées use much information described
in the specific problem’s file, we prefer to sténe description with the last one. We will
present just the bridge.sce file, since elementdrgnges are needed to consider another
problem. For the sake of comprehension, we haveesgalh code in several parts.

The version bridgetop.sce should be used instediadge.sce if the user wants to use
the topological derivative in addition to the shajsivative. In this version, we have added
some more lines which we explain separately.

1) bridge.sce

Lines 1-25:

T L

/I Copyright G. Allaire, A. Karrman, October 2009

1

/I A Scilab toolbox for 2-d structural optimization

/I by the level set method.

1

// Based on the work of G. Allaire, F. Jouve, A.-Mxader,
/1 3. Comp. Phys. Vol 194/1, pp.363-393 (2004).
T

1

/I This file contains the parameters of the follogvtest case:
/l bridge

T i

Il PARAMETERS

nelx =40 ; Il number of elements court olirection
nely =40 ; /l number of elements couny mhirection
xlength = 2. ; /[working domain length

dx = xlength/nelx ; // x space step size

dy =dx; /l'y space step size

yheight = dy*nely ; // working domain height

hx=5; / number of holes in x difeat
hy =6; /l number of holes in y diieat
r=.7; /I hole size (between 0 and 1)
In these first lines, some general characterisbicshe structure are given. We define the
dimensions of the shape, as well the number of eiésnto be used, as it is obvious by the
comments next to the code. Of course, the congiderdy=dx is not obligatory, and one can
create a finer mesh in one of the two directions.

At the last three lines, an easy choice for crgasimuctures with different initial topologies is
given, which is based on an initial consideratidntiee level set function describing the
structure given in the file functions.sci. Afteradsing the number of holes in each direction,
we can modify their size by varying Increasing its value, we get larger holes inithial
topology of the shape.

The reader should not forget that our method anglly dependent on the initial topology, i.e.
it is sensitive to local minima. Thus, changing thst three parameters, one can observe
differences in the topologies of the resulting wati shapes.

Lines 27-29:

eps =.001 ; // "hole™ material density

lagV = 15. ; /I the volume Lagrange mulgpl

lagP = 0.0; /I the perimeter Lagrange rpligdtr

e2 = 4*dx"2.; /I coefficient for the regularia in front of the Laplacian

The valueepsis used in the “ersatz material” approach thatallew, in order to represent the
weak material mimicking void. It must have a vesylvalue (eps<<1) to limit its impact, but
such that we avoid the singularity of the rigiditatrix.

As we have explained earlier, thagV andlagP represent the weight multipliers of the volume
and perimeter correspondingly in the multi-objeetoyptimization. The reader should expect
that decreasing too much thegV multiplier in compliance minimization should result in a
great increase in the volume of the structures fiassible that the whole working domain gets
covered by the full-material as a result of redgcitne significance of the volume’s
contribution to the objective function.

The lagP multiplier is usually used to penalize topologiesh many holes and thus create
simpler topologies in the optimal structures. Tisisclearly a result of penalizing the total
perimeter, which is very high when the number afrexted components of the shape is big.
Both values of the last two multipliers are heugisthd should by chosen by the user after
performing some numerical tests on his specifibjam.

The coefficiente2 is used to multiply the Laplacian in the regulatian algorithm, so as to
control the regularization effect.

Lines 31-34:

nodex = linspace(0,xlength,nelx+1) ; // x spaceniades
nodey = linspace(0, yheight,nely+1) ; // y spaceniades
FEx = linspace(0,xlength,nelx) ; // x spacefioite elements
FEy = linspace(0, yheight,nely) ; /'y spacefioite elements

Here, we just create some vectors containing tloedagates of the points of the grid, which
can be used in describing a desirable initial shapthe structure to be optimized.

Lines 36-42:

Rliterinit = 50 ; // number of time steps in theingialization of the initial design
Rliter = 5 ; // number of time steps in the reiadization of further designs
Rifreq =5 ; /I frequency of re-initializationei.number of time steps in the

Il transport level set equation between two realizations

HJiterO = 30 ; // original number of transport tisteps

entire = 20 ; // total number of optimization iteoas

allow = .02 ; // fraction that the objective furastican increase

The first three variables of these lines play aificant role in the method we are using, i.e. the
level-set method. The reason for it is that theellset function describing the shape of the
structure can become very steep during the optiioizgrocess, especially near the border.
Since the accuracy of the approximation of sevgeaimetrical features of the shape, such as
the normal vector of the surface or the mean cureais crucial for our method, the steepness
of the level-set function can result in seriou®er

In our code, we start with an initial function thakes the value -1 inside the structure (full-
material) and 1 outside (weak-material). Then wedni® construct a signed-distance function
out of it. For this reason, the number of stepghef initial re-initialization should be big
enough. This generally depends also on the sipaiofnesh. We would say that the number of
the initial iterationsRliterinit should be such that the wave can transfer the sages
information to all of the structure. For the readeno wants to understand better this
procedure, we address to [8].

As we foresaid, even if the initial approximatiom the signed-distance function to the
boundary of the shape is satisfying, numerical agpee shows that the level-set function
goes far from keep being a signed-distance functmnthe new boundary after some
optimization iterations. Therefore, we uBéfreq to define after how many iterations of the
Hamilton-Jacobi advection equation the level-satfion should be re-initialized arRliter to
define the number of steps for the re-initializatid his last number should be such that the re-
initialization is satisfying at least close to tharder.

We propose that the reader performs some numetesas with various values for these
variables and checks their effectiveness on hiblpno, by plotting the level-set function.
Also, the reader should take great care when lolsl@m demands that he works very close to
the signed-distance function. Then, we propose Rhfiteq=1 and that he uses a big enough
number ofRliter to have a good approximation, since the re-imz#ion procedure is not in
general numerically expensive.

With HJiterO we choose the step we take in the gradient methogeneral, the time steft
coming from the CFL condition is very small in coanigon to the optimization step that
reduces the objective function. Since the advectiquation is solved explicitly and so it is
numerically cheap, we prefer to take much more thae step at each optimization iteration,
since the latter involves the solution of a linsgstem with the FEM.

The variableentire just defines the number of iterations for the mation algorithm, since
we prefer not to use a stopping criterion, whichas clear in shape optimization.

The variableallow is considered for numerical reasons. In fact, mcaky, a topological
change cannot be as small as we want, but insegaehds on our grid. Therefore, it is possible
for example that a topological change indicatedhgygradient method is larger that it should
be to reduce the objective. Thus, we allow suchlsn@eases of the objective, expecting that
after the topological change takes place, the ghgorwill search for a better minimum point.

Lines 44-48:

/I FINITE ELEMENT MATRICES

KE = Ik(); // the stiffness matrix

K = sparse([],[],[2*(nelx+1)*(nely+1), 2*(nelx+1)T{ely+1)]); // the global stiffness matrix
F = sparse([],[].[2*(nely+1)*(nelx+1),2]); // the atrix of applied forces

U = sparse([],[].[2*(nely+1)*(nelx+1),2]); // theector displacement matrix

/[FINITE DIFFERENCES MATRIX
K1 = sparse([],[].[(nelx+1)*(nely+1),(nelx+1)*(nekl)]) ; //We define the matrix of the
velocity regularization

Here we just define the matrices for the FEM, adl a® for the finite differences used for
regularizing the advection velocity. Tlgparse definition in Scilab results in a great gain in
computational time and memory and the user shaagdtuvhenever possible.

Lines 50-64:

I SETTING OF THE ELASTICITY PROBLEM

/l THE FORCE

/I Each row corresponds to a different force.

/I The first two values are the fraction along ¥hand y axes of the working

/l domain (the origin is the top left corner)herthird value is binary indicating
/I whether the force is horizontal (0) or verti€g. The fourth value gives

/Il the strength of the force and its directioadative for leftward or downward
/I forces; positive for rightward or upward fosge

forceMatrix =[.511-1];

forceCount = size(forceMatrix,1) ; // We coung thumber of applied forces
for force = 1 : forceCount

F(c(forceMatrix(force,1:3)),force) = forceMatfiorce,4) ;
end

The way forces are described is very clearly dbsedrin the comments above. We suggest that
the user takes care so that the region where #uslare applied, as well as some part of the
boundary where we impose Dirichlet conditions igezed with the full-material.

Lines 66-70:

/I FIXED BOUNDARIES WITH DIRICHLET CONDITIONS
fixeddofs = [c([0 1 1]) c([0 1 Q]) c([1 1 1])]/f We fix x and y degrees of freedoms for
nodes

alldofs = [1:2*(nely+1)*(nelx+1)];
freedofs = setdiff(alldofs,fixeddofs);

In this part we define the parts of the boundaryerehthe structure is clamped (Dirichlet
conditions). We do this with the use of tbdéunction. The first and the second arguments in
the bracket give the fractions along the x andgsakat correspond to the location of the point

to clamp. The third argument takes the value 0 oddpending on whether we fix the
horizontal or the vertical degree of freedom. Sothe lines above the first call of the
function fixes the vertical displacement of the deleft node, the second call fixes the
horizontal displacement of the same node and ting tlall fixes the vertical displacement of
the down-right node of the working domain.

At this point, we prefer to analyze a little bit rmdhe definition of the axes in our code. The
user shall be very careful with it when trying tbeirfere to the code.

The location of the forces, the location of thenp®where we impose boundary conditions and
other features that are directly related to therdinates of the nodes, follow the way these
coordinates are defined. So, since the coordinatethe grid’s nodes were defined in an
increasing order through the matricesedex, nodey (lines 31-32), the axes for all these
features should be the ones shown in Figure 1r@dder should not be confused with features
defined in another sense, such as for exampleitéetion of the forces, which is different than
the positive direction defined in Figure 1.

(0,0) (dx,0) (2*dx,0) (nelx*dx,0)
L] L] (] . . Y
(0,dy)
.

(0,2%dy)
L]

<<

(0,nely*dy) (nelx*dx,nely*dy)
°

Figure 1: Definition of axes for the node coordesat

The numbering of the degrees of freedom is predantEigure 2.

x_Ly_1x_2y_2 .. x_{(nelx+1)(nely+1)), y_((nelx+1)"(nely+1))]
Y
| 4

(x_1,y_1)
(x_2y_2)

l

(x_(nely+1), (x_((nelx+1)*(nely+1)),
y_{nely+1)) y_((nebx+1)*(nely+1)))

ya

Figure 2: Numbering of degrees of freedom ([6]).

Lines 72-77:

/I PASSIVE ELEMENTS
Il For this part we can make sure that certadasin the working domain
Il are either always part of the structure oragisvnot part of the structure.
function FEthetaOut = passive(FEthetaln)

FEthetaOut = FEthetaln ;
endfunction

In these lines we use a function that keeps sopraegits of the working domain with the full-
material’s density. The reason is that in some lprab this is physically imposed, as for
example the pavement of the bridge should alwayst,er any configuration of a bridge’s
shape!

Lines 80-82:

/I INITIALIZATION
phi0O = meshO(hx, hy,r) ;
phiO(($-floor(.08*nely)):$,:) =-.1;

Finally, in these lines we call thmeshO function that gives the initial function
describing the shape, under the characteristidsave attributed to it.

1) bridgetop.sce

Lines added:

allow_top = .1 ; // fraction that the objective @tion can increase in topological derivation
ntop = 6 ; //number of advection steps betweentbopological gradient steps
percentage_in = 0.05; // percentage of the cukreloime to be removed in the first topological
/I gradient step
percentage = 0.02; // percentage of the curreninvelto be removed in each topological
/I gradient step

A thorough explanation for the choice of these paters can be found in [13]. We will also
give a short description here for the sake of cetepless.

We have defined a different allowance for the togaal sensitivity step, namedlow_top, as
suggested in [13], which is significantly higheaththe one used in the shape sensitivity step.
This is mainly due to the inability to take numaltig a “small step” in the topological
derivative algorithm, that is to create very snialles. To create a hole we have to change the
sign of at least one node of the mesh and thergf@eatep cannot be arbitrarily small, unless
the mesh is very dense.

Then, since we have decided to couple the shapégantbgical derivatives, we have to choose
a frequency for the execution of the topologicapstallechtop.

The per centage parameter defines the percentage of the currdatneto be removed in every
topological gradient step. In the same sense, we hsed the parametper centage in just for

the first step. It is sometimes useful to set Haiksie bigger that the one pércentage when we
start with a full-domain initialization (no initiajuess of the shape). This happens because
numerically it may be difficult to remove a smatllume when the topological gradient at the
nodes takes values that are very close between them

i) functions.sci

We continue with the file containing the functiohst we use in the optimization algorithm.
We have chosen not to give a detailed descripticadl @f them, since they are described in a
very satisfying way in the comments, but also bseahe user has to use them as “black box”
and it is not recommended to interfere into theor. this reason, we avoid describing e
and FEtop function for the finite element analysis and tkefunction for the forming of the
stiffness matrix, which in fact are a translation Scilab of Ole Sigmund’s code in [11].
Moreover, we avoid detailing theefunction, which as we have already seen fixesdigrees

of freedom of grid points and we give a short desion of theFEdensity function, without
presenting the code, which will help the readereustnd why some regions of the domain
appear in different grayscale than others.

FEdensity

The concept under which we attribute a density evatueach element is the following: First,
we check the values of the level-set function atfthur grid points forming an element. If all
of the values are negative, that means that aldigies are contained in the structure and so the
full-material density is given to the element. Aatiagly, if all the values are positive, that
means that no point is included, so we have to theeveak-material’'s density to the element.
If nothing of these happens, then we have to goreesintermediate value of density. So, we
split the rectangular element into four trianglesl ave give to the common point of the
triangles, as value of the level-set function, drerage of the values of the four points. Then,
we examine each triangle separately under the $ogie The final element’s density is the
average of the contribution of each triangle.

mesh0

/I INITIALIZE THE STRUCTURE

/I This function will just distribute holes

[/l uniformly throughout our mesh. hx is the number

/I of horizontal holes while hy is number of vealic

/I holes. ris a variable that lets you change the

I size of the holes; a default size would bel5;

/ would give you very small holes and .9 wouldegiv

/[you very large holes. (0<r<1)

function [phi0O] = mesh0(hx,hy,r)
if isdef('ntop’) then
phi0O = -ones(nely+1,nelx+1) ; // Full-domaintialisation
else
phi0O = zeros(nely+1,nelx+1) ; // First createeampty matrix
/lIn order to make our holes, we use a 3d foncti
/lthat maps x and y coordinates to z = cos(9tgp
//land then we flatten holes to .1 and the sfinect
/llpart to -.1
phiO = -cos((hy+1)*(nodey*%pi)/yheight)*cos((hk)*(nodex*%pi)/xlength)+r-1 ;
phi0 = .2*ceil(max(phi0,0))-.1 ;
end

endfunction

The way the initialization takes place is descriliedhe comments in complete detail. We
would like to mention that the level-set functienn fact a matrix, and it is formed in the same
sense that the grid is formed, i.e. it follows thenbering of thenodex andnodey vectors. So,
the coordinate system for the level-set functioshiswn in Figure 3.

(1,0) (2,0)
(0.0) | 1 P X

(0,1)7

(012)7

v
Y

Figure 3: Coordinate system for the level-set fiomct

Thus, if the user wants to create his own initatian, then he should replace the line:

“phi0 = -cos((hy+1)*(nodey*%pi)/yheight)*cos((hxy nodex*%pi)/xlength)+r-1 ;" by his
own representation. Below, we give some examplea feetter understanding of what we have
mentioned.

Example 1Circular hole with center (x,y) = (1,1) and radius 0.4.
fori = 1l:nely+1
for j = 1:nelx+1
phiO(i,j) = -(nodex(j)-1)*2-(nodey(i

1)"2+0.4"2 ;
end
end

Initialization

Figure 4: Circular hole with equatio(x-1)" +(y-1)°= 0.4,

Example 2 Circular hole with center (x,y) = (1.5,0.5) aratlius r = 0.2.

fori = 1l:nely+1
for j = 1:nelx+1

phiO(i,j) = -(nodex(j)-1.5)"2-(nodey(i)-
0.5)"2+0.2"2 ;
end
end

Initialization

Figure 5: Circular

hole with equation: .

(x-1.5°+(y-0.5"= 0.2,

shift2n

/I SPACE SHIFT FUNCTION
/' Using Neumann, or Neumann for the directionaldggnt boundary conditions,
/I we just shift
/[our matrix over one index in a certain direction
/[in order to take derivatives.
function phishift = shift2zn(direction,phi,conditish
/[SHIFTS LEVEL SET FUNCTION WITH NEUMANN OR NEUMNN FOR THE
GRADIENT CONDITIONS
select direction
case 'w' then Il SHIFT WEST
[m,n] = size(phi) ;
phishift(1:m,1:n-1) = phi(1:m,2:n) ;
select conditions
case 'n' then
phishift(1:m,n) = phi(1:m,n) ;// NEUMANN CONDITIONS
case 'ng' then
phishift(1:m,n) = 2*phi(1:m,pRi(1:m,n-1) ; // NEUMANN FOR THE
DIRECTIONAL GRADIENT CONDITIONS
end
case 'e' then [l SHIFT EAST
[m,n] = size(phi) ;
phishift(1:m,2:n) = phi(1:m,1:n-1) ;

select conditions
case 'n' then
phishift(1:m,1) = phi(1:m,1) ;// NEUMANN CONDITIONS
case 'ng' then
phishift(1:m,1) = 2*phi(1:m,pRri(1:m,2) ; // NEUMANN FOR THE
DIRECTIONAL GRADIENT CONDITIONS
end
case 'n' then /l SHIFT NORTH
[m,n] = size(phi) ;
phishift(1:m-1,1:n) = phi(2:m,1:n) ;
select conditions
case 'n' then
phishift(m,1:n) = phi(m,1:n) ; / NEUMANN CONDITIONS
case 'ng' then
phishift(m,1:n) = 2*phi(m,1:phi(m-1,1:n) ; // NEUMANN FOR THE
DIRECTIONAL GRADIENT CONDITIONS
end
case 's' then /l SHIFT SOUTH
[m,n] = size(phi) ;
phishift(2:m,1:n) = phi(1:m-1,1:n) ;
select conditions
case 'n' then
phishift(1,1:n) = phi(1,1:n) ; / NEUMANN CONDITIONS
case 'ng' then
phishift(1,1:n) = 2*phi(1,1:n)-gRi1:n) ; /I NEUMANN FOR THE
DIRECTIONAL GRADIENT CONDITIONS
end
else
error('SHIFT N,S,E, OR W?")
end
endfunction

We suggest that the user takes great attentidmgdunction, especially the one that wants to
interfere to the codes or create his own ones. Tumstion is indeed used to form finite
differences to any direction, so that after we easily create forward or backward schemes for
approximating derivativeaNe need to mention that the numbering of the arrays follows

the coordinate system described earlier, considering the upper-left corner astheorigin.
Considering Neumann conditions for the level-seicfion, all we have to do is to define the
direction towards which we want to move the diseratlues of the level-set function and keep
the same values for the “void” part.

In the following Figures, we try to explain in diétée numbering of arrays and the procedure
of moving the values of phi (level-set function) ttee west and we give the form of the
translated function. It is easy then to understi#wad the directions west, east, north and south
correspond to the directions of the real world &wage no relation to any other coordinate
system defined in the code.

Another possible choice for the boundary conditis$o take Neumann conditions for the
directional derivative. This seems to be a moranaatchoice, since it alleviates the artificial
effect on boundaries that are perpendicular tdthendary of the working domain.

In this work we have chosen to use Neumann comditfor the reinitialization algorithm and
Neumann for the directional gradient for all thstre

w(i,1) w(1,2)
[3 L]
w(2,1)
[3
w(i-1,j-1)
L]
w(ij-1)
[]
w(i+1,j-1)
[]
w(nely,1)
-
winely+1,1) w(nely+1,2)
- L]

w(i-1,3) w(i-1,j+1)
L] L]
w(ij) w(ij+1)
[] []
w(i+1,j) wii+1,j+1)
[] []

w(1,nelx) w(l,nelx+1)
. [

w(2,nelx+1)
.

w(nely,nelx+1)
.

w(nely+1,nelx) winely+1,nelx+1)
L] L]

Figure 6: Numbering of arrays.

Neumann BC

wi(1,nelx+1)
.

— y(lnelx+1)

y(2,nelx+1)
- — y(2nelx+1)

w(1,1) w(1,2) w(1,nelx)
. . L]
w(g,l)
w(i-1,j-1) w(i-1,1) Yli-1j+1)
- - .
w(ij-1) w(ig) W(ij+1)
L] L] L]
y(i+1,j-1) w(i+14) w(i+1,j+1)
L] L] L]
w(nely,1)
»

winely+1,1) winely+1,2)
L} L}

w(nely,nelx+1)
.

winely+ 1,nelx) y(nely+ 1,nelx+ 1)
. .

— y(nely,nelx+1)

— yinely+1,nelx+1)

Figure 7: Moving the values of the level-set fuaotio the west.

w(1.2) w(lL,3)
» [
w(2,2)
L]
w(i-1,9)
-
w(ig)
.
w(i+1.7)
.
w(nely,2)
N
wnely+1,2) y(nely+1,3)
» L

w(i-1,j+1) w(i-1,1+2)
- L}

w(ij+1) w(i,j+2)
* .

w(i+1,j+1) w(i+1,)+2)
. [

p(nely+1,nebx+1) w(nely+1,nelx+1)
-* L]

w(1l,nelx+1) w(l,nelx+1)
. -

w(Z,nelx+1)
L]

w(nely,nelx+1)
-

Figure 8: Moved to the west level-set function.

perimeter

/l THE PERIMETER
/I In order to roughly calculate the perimeter
/[we find the norm of the gradient of the sign
/I of phi and integrate it, then divide by 2:
function totperim = perimeter(phi)

I/l To smooth sign(phi):

epsperim = min(dx,dy)/20 ;

sx = phi./sqrt(phi.*2+epsperim”2) ;

sxn = shift2n('n’,sx,'ng’) ;
sxs = shift2n('s',sx,'ng’) ;
sxe = shift2n('e’,sx,'ng’) ;
sxw = shift2n('w',sx,'ng’) ;

/l We now calculate d(phi)/dx and d(phi)/dy:
dsxx = (sxw-sxe)/(2*dXx) ;
dsxy = (sxn-sxs)/(2*dy) ;

dV = dx*dy ;
/I And then integrate:

totperim = .5*sum(sqrt(dsxx.*2+dsxy."2))*dV ;
endfunction

For the calculation of the perimeter, we use thdlofiong approximation:

perimeter :aj; dszidmdx, where J,, =%|Dsgn(z/l(x))| is the dirac mass function

of the boundandQ .

¢(x)
+(epsperim)*’

where the value of epsperim=min(dx,dy)/20 is chosems to spread the jump in the

sign function over 2 cells in average. In the code, have caIIe(Sgn(l//(X)) =X,

Then, we shift this function to all directions, aneg form the central differences
approximations of the derivatives of sx in the dit@n x [dsxx) and y ¢sxy). So, we

have formed the components Dsgn(z//(x)) and the perimeter is easily calculated
by the approximation we gave above.

We use an approximation of the sign functi sgn \/1,0

curv

/l THE CURVATURE

/I The shape gradient of the perimeter is the

/I mean curvature which we compute by

Il div(grad(phi)/|grad(phi)|)

/[l where phi is the level set function.

function H = curv(phi)
/l When finding the normal vector, we need
/I to divide by the norm of the gradient of phi;
I/l we use this small value to make sure that
// the gradient of phi never goes to O:
epscurv = min(dx,dy)/20 ;

/I Here are the first derivatives for finding
/Il the gradient of phi:

phin = shift2n('n’,phi,'ng’) ;

phis = shift2n('s’,phi,'ng’) ;

phie = shift2n(‘e',phi,'ng’) ;

phiw = shiftzn('w',phi,'ng’) ;

dphix = (phiw-phie)/(2*dx) ;
dphiy = (phin-phis)/(2*dy) ;

/I Here is |grad(phi)| and then the x and y
/I components of the normal vector field:
mag = sqrt(dphix.*2+dphiy.*2+epscurv/*2) ;
nx = dphix./mag ; ny = dphiy./mag ;

// Now to find the divergence, just take the

/Il partials with repsect to x and y of the

/I x and y components of our normal vector field
Il (respectively) and then add these together

// to get our end mean curvature, which is a

// function across our working domain.

nxe = shift2n('e’',nx,'ng’) ;

nxw = shift2zn('w',nx,'ng’) ;

nyn = shift2n('n’,ny,'ng’) ;
nys = shift2n('s',ny,'ng’) ;

divnx = (nxw-nxe)/(2*dXx) ;
divny = (nyn-nys)/(2*dy) ;

H = divhx+divny ;
endfunction

Here we compute the mean curvature H, which in i&-the same with the min or max

curvature. It is compute aH = div(nj, where , is the unit vector normal to the boundary

0Q . SinceN = in terms of the level-set function, we first toy form the ¢ . We shift

Uy
B¢
the level-set function to every direction and wenpate the central difference approximations
of the derivatives in each direction. The user toabe careful with the fact that forming the
normal vector requires that the differences arenak the direction of the axes in Figure 3,
else it is possible to form the tangent vectorher—L1¢ vector. The small parameter added to
the magnitude certifies that we do not divide veémo.

Finally, we follow exactly the same approach witle ttomponents of the normal vector to
form its divergence.

volume

/I THE VOLUME OF THE STRUCTURE
/l To find the total volume of our structure, watju
/] integrate the density*dV:
function totvol = volume(FEtheta)
dV = dx*dy ;
totvol = sum(FEtheta)*dV ;
endfunction

Since we have assigned a value of density to daaheat, the total volume, which is given by
v =j,o(x) dx' is nothing else but the sum of the density valmedtiplied by the element’s
D

volume.

compliance

/[COMPUTE THE COMPLIANCE
/I The compliance is the main part of our objecfivection.
/'t is the integral of the elastic energy densggual to
/Il the total work done by the applied forces.
function totcomp = compliance(FEAeueu)
totcomp = sum(FEAeueu) ;
endfunction

The compliance is the work done by the loads. Wenkthat this equals the work of

the internal forces compliance :! g@ds=£Ae(u) e(u)dx' So, we just have to

sum the values of the elastic energy density.

regularize

This function is used to regularize the velocigldifor the advection of the level-set
function, by substituting the?lwith the H inner product for the derivative. The user
is not supposed to interfere with this functiont Ime can control the extend of
regularization via the2 parameter given in the specific problem's file.

solvelviset

This function is used for the advection of the lesat function under a velocity normal to the
boundary computed via the shape sensitivity methotl2]. The user is not supposed to
interfere into this function and the same yieldstfe functionaminmod andg that are used in
it.

We do not give here a description of the code usinte the whole theory behind it can be
found in detail in [10] and in the references cared there. Also, the functiomeshO0 which

is used for the re-initialization, is exactly ofetlsame type with the advection equation and
follows the same sense.

In general, we would say that the algorithm usewingh schemes for approximating the
advection part of the equation and central diffeesnfor the diffusive part. The logic is the
same as with hyperbolic conservation laws and msnsarized in the fact that “the numerical
domain of dependence should contain the matherhdbcaain of dependence” ([10]). In other
words, we have to check in which direction the waveves to and advect the numerical
information in the same direction. As for the ddifee part, it is natural that the information
should be transmitted to both directions.

solvelviset top

This function is used for the update of the lewatlfanction during a topological gradient step.

The choice we have made is in accordance with [ba},is we remove a certain percentage of
the volume of the current shape. The areas remaxedhose where the topological gradient
takes its lowest values.

So, what we try in fact to do in this function sdetermine which points should change sign
so that the target volume is removed. This is dibimeugh a dichotomy algorithm. The user

should note that the finer the mesh, the better dlgorithm is expected to perform, since a
finer mesh enables for the creation of small hadesl a lower value of the parameter

per centage can be chosen.

Iii) optalg.sce

Lines 21-44:

/I Check if the variable 'ntop’ for topological drent is defined.
if isdef('ntop’) then

ntop = ntop;
else

ntop = 0O;
end

// REINITIALIZATION
phi0O0 = mesh00(phi0,Rliterinit) ;

/I Set phi to the reinitialized state:
phi = phi00 ;

// Plot the initialization:

scf(0);

clf()

xset('colormap’,graycolormap(10))

title('Initialization")
grayplot(FEx,-FEy,-passive(FEdensity(phi))',axegfa?) ;

filename='Initialization’;
xs2jpg(0,filename);

printf(\nOptimization started\n’) ;
stacksize('max’) ; // We want to make sure thahaxee enough memory available

was defined at bridge.sce, so that it becomesigimed-distance function to the zero level-set

of phi0. Then, we set the level-set function phiado the re-initialized one.

After, we just plot the density of the initial sleajm the graph with the title “Initialization” and

we export the plot to a jpg file.

We would like here to mention something that caradet of questions to the user. We need to
understand that we do not plot the structure itdelf instead the density of the material at the
elements, which comes from interpolation procedigscribed in functions.sci. This means,
that the boundary of the shape can be very smbathin the plot always the grayscaled image

will appear.

Lines46-77:

Il FE ANALYSIS

/I Define the elements' densities based on phi.

FEtheta = FEdensity(phi,eps) ;

/I Set unchanging densities depending on the \peldsinction.
/[This 'passive’ zone is defined in the paramfdeeof the

/I considered test case.

FEtheta = passive(FEtheta) ;

if ntop==0 then
/I shape derivative
/I The output of the finite element analysishis elastic energy density:
/Il lvlAeueu is that field defined on nodes (itised as the velocity in
/Il transport level set equation), FEAeueu isstime field defined on
/Il elements (it is used to compute the compliance
[IvIAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U) ;
else
[FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K,F,U);
// topological derivative
/Il In this case, FEAeueu denotes the topologjcadient,
/l while FEAeueucomp contains the energy derdgfijned on elements.
end
/I Define the velocity field:
if ntop==0 then
/I shape gradient
V = IvlAeueu/(dx*dy) - lagV;
/l regularization of the velocity field
V = regularize(phi,V,e2,K1,lagP);
else
// topological gradient
V = FEAeueu - lagV,
end

This part is well described in the comments ab&Ve.use thd-Edensity function to assign a
density value to each element, according to theevalf the level-set function at its nodes.
Then we update these values by keeping steady pamef it via thepassive function and
finally we perform the FE analysis. In the caset th@p=0, that is if we use only the shape
sensitivity method, having obtained the valueshef ¢nergy density at each node, we define
the values of the vector field, normal to the bamydwith which we will advect the level-set
function and finally we regularize the advectionoegty. In case we use the topological
sensitivity, we have chosen to perform a topoldgiytadient step at the first iteration, usually

because in such a case we start with a full-dorinéialization.

Lines 80-90:

/I CALCULATE THE OBJECTIVE FUNCTION
if ntop==0 then
totcomp = compliance(FEAeueu);
else
totcomp = compliance(FEAeueucomp) ;
end
totvol = volume(FEtheta) ;
objective = lagV*totvol+lagP*perimeter(phi)+totcomp

/' We track the objective function after each ofetion iteration using 'objectivePlot’

objectivePlot = objective ;

In these lines we compute the objective functiomwf multi-objective optimization problem
and save its value in the vectjectivePlot, which will be used for plotting the convergence
history.

Lines 93-115:

/l OPTIMIZATION LOOP

i =1 ;/l The current optimization iteration
HJa =1 ;// The level set solution "attempt"
HJiter = HJiterO ; // The initial number of timeeps for solving the transport level set
eguation

e3 =1; // Coefficient used to reduce, if neccegghe advection time step below the
/l'limit imposed by the cfl condition

allow_adv = allow;

while i<=entire

if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
/I Test shape using the topological derivative:

if (i==1) then
phiTest = solvelviset_top(phi,V,percentagg-ittheta);
else
phiTest = solvelviset_top(phi,V,percentagetieia);
end
else

/I Solve the transport level set equation usiregvelocity V:
dt = 0.5*e¢3*min(dx,dy)/max(abs(V)) ;
phiTest = solvelviset(phi,V,dt,HJiter,lagP) ;

end

It is time to start the optimization algorithm. Ostopping criterion has to do with the total
number of optimization iterations, which is juseé teimplest consideration. More sophisticated
criteria can of course be imposed.

In case the gradient comes from a shape sensiagyysis, the time stett is defined under a
CFL condition described in [22], while other coresigtions can also be made.

We update the level-set functigei that describes our current shape to get a new-seve
function phiTest. The reason for this notation is that we still ddmow if this new shape
described byhiTest has led to a reduction of the objective and tloeesive have to check this
before adopting this new shape.

Lines 117-145:

I/l FE ANALYSIS

// Define material density based on phi
FEthetaTest = FEdensity(phiTest,eps) ;

/I Set passive element densities to ‘eps'
FEthetaTest = passive(FEthetaTest) ;

// Perform the finite element analysis and coraput
/l the elastic energy density:

if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
[FEAeueuTest,FEAeueucompTest] = FEtop(FEthetgKE,K,F,U);
else
[IVIAeueuTest,FEAeueuTest] = FE(FEthetaTestiKE,U);
end

/I CALCULATE THE OBJECTIVE FUNCTION
if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
totcompTest = compliance(FEAeueucompTest) ;
else
totcompTest = compliance(FEAeueuTest) ;
end
totvolTest = volume(FEthetaTest) ;
objectiveTest = lagV*totvolTest+lagP*perimeter(pbst)+totcompTest ;
// Plot the test shape:
scf(0)
clf()
xset(‘colormap’,graycolormap(10)) ;
title('Test shape’)
grayplot(FEXx,-FEy,-FEthetaTest',axesflag = 2) ;
printf(\niteration %d of %d, HJ attempt %d, t&di%d, objective = %f, objectiveTest =
%f, volume = %f\n’,...
I,entire,HJa,HJiter,objective,objectiveTestjtdT est) ;

We perform a finite element analysis and compuergndensities, depending on whether we
have done a shape or a topological sensitivityyaisal We use these results to calculate the
objective function of the test shape.

Lines 147-156:

// OBJECTIVE FUNCTION MUST DECREASE (up to sonoderance ‘allow’)
if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
allow = allow_top;
else
allow = allow_ady;
end
if i>=(entire*3/4) then
allow = 0; // After some iterations, we swioff the 'allow' parameter,
/l'in order to converge.
ntop = 0;
end

As we have said before, we allow the objective fiomcto increase significantly more in the
case of topological sensitivity, due to numeriaéficllties to create “small” holes.
Moreover, after some iterations, expecting thatntiagor topological changes have already
happened, we switch off this variable and the togickl gradient steps, else it is natural to
observe oscillations of the shape, or even an aseref the objective function over many
iterations.

Lines 147-156:

if objectiveTest <= objective*(1+allow) then
/I The current design is OK: move on to thetniexation,
/l using the test versions as our new variataegork with
i=i+1; // Move on to the next optimization iéion
phi = phiTest ;
FEtheta = FEthetaTest ;
objective = objectiveTest ;
if modulo(i,ntop)==0 | modulo(i-1,ntop)==0 H2 then
if modulo(i,ntop)==0 then
[FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K);
V = FEAeueu - lagV;
else
[IVIAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U);
V = IvlAeueu/(dx*dy) - lagV;
V = regularize(phi,V,e2,K1,lagP);
end
else
IvIAeueu = IvlAeueuTest ;
FEAeueu =FEAeueuTest ;
V = IvlAeueu/(dx*dy) - lagV;
V = regularize(phi,V,e2,K1,lagP);
end
HJiter = min(10,max(floor(HJiter*1.1),HJiter$1,)
objectivePlot($+1) = objective ;
// Plot the new shape:
clf()
xset(‘colormap’,graycolormap(10)) ;
title('Evolving shape’)
grayplot(FEx,-FEy,-FEtheta',axesflag = 2) ;

HJa = 1; // Reset the Ivl-set "attempt” valeab
e3 =1,

In case the objective function has decreased, wepathe test shape and we need to calculate
the new velocity.

There are three cases: Either in the next step iep&rform a topological sensitivity step

(modulo(i,ntop)==0), or the last step was thetfstep or a topological sensitivity step

(modulo(i-1,ntop)==0) and therefore we need to pota the velocity for the shape sensitivity
step, or last we both had and will continue witshape sensitivity step, therefore we have
already all necessary information.

Lines 194-216:

else
i=i+1;
if modulo(i,ntop)==0 | modulo(i-1,ntop)==0 then
if modulo(i,ntop)==0 then
[FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K);
V = FEAeueu - lagV;
else
[IVIAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U);
V = IvlAeueu/(dx*dy) - lagV;
V = regularize(phi,V,e2,K1,lagP);
end
else
I/l The current design is bad: try again, time with fewer
/l time steps for the transport level setatiqun
HJiter = floor(HJiter/2) ;
if HJiter == 0 then

Hliter=1;
e3 =e3/2;
end

HJa =HJa + 1 ; // Increment the Ivl-setéatpt” variable
end
end
end

In case the objective function has not decreasesl,again examine several cases. If a
topological gradient step is to follow, we compthe corresponding gradient. We do same
thing if we pass from a topological gradient tohape gradient step. Finally, in case the last
and the current iteration are both using the shagesitivity analysis, the rejection of the

objective function means either that we have mdeednuch or that we have been lying on a

local minimum. Therefore, we just reduce the adeacstep.

Lines 218-234:

/l Plot the final shape:

clf()

xset('colormap’,graycolormap(10)) ;

title('"Final shape’)
grayplot(FEx,-FEy,-FEtheta',axesflag = 2) ;
scf(0);

filename='Finaldesign’;

xs2jpg(0,filename);

printf(\n Export of Final Design\n’) ;

/l Plot the objective function:

clf()

xtitle('Convergence history','Iteration’,'Objectifesnction’)
plot((1:length(objectivePlot)) - 1,0bjectivePlot) ;
printf(\nOptimization finished\n') ;

Finally, we plot the final design and the conveiggehistory.

Exact Volume Constraint

In case one wants to keep the total volume consharihg the optimization process, then one
needs to update the Lagrange multiplier for theiwa at each step. The user should remember
that lagV does not appear in the objective anymmuejt does in the velocity for the advection
of the level-set.

In the case when the volume has reduced, one sliegiease lagV, while if the volume has
increased, one should increase lagV. Unfortunatelg, possible that in the beginning of the
algorithm this procedure is very costly. The reas®rthat for each increase of lagV the
algorithm solves the advection equation and simeeinitial choice of lagV is arbitrary in
general, this can be repeated too many times dimiling the proper value of lagV.
Fortunately, this is not the case close to convergewhere almost all topological changes
have taken place. Moreover, we suggest that thealmses a fine enough mesh for such an
algorithm, since a coarse mesh makes small topzdbghanges become significant. Even with
a fine mesh, we needed many iterations for theodisected parts to completely disappear.

In the following, we give an explanation of the étion we have used for the volume
constraint.

/[UPDATE OF THE LAGRANGE MULTIPLIER FOR THE VOLUME
/l we update lagV so that the volume remains stiabdach iteration

function [phiTest,lagVTest,VTest,dtTest] = lagVupel@hi,V,dt,HJiter,totvolinit,lagV,eps)

phiTest = solvelviset(phi,V,dt,HJiter) ;
FEthetaTest = FEdensity(phiTest,eps) ;
FEthetaTest = passive(FEthetaTest) ;
totvolTest = volume(FEthetaTest) ;
lagVTest = lagV,

energy = V+lagV,
totvolTestl=totvolTest;

We start by advecting the current level-set funciihi, under the current lagV and so under
the current V and dt. We name the advected leueftsetion “phiTest”. We compute the
volume of the new shape, “totvolTest”, and we nam#otvolTestl”. The update of the
velocity V will depend just on the lagV. So, fomglifying the computations, since the energy
term of V remains constant, we prefer to sepataad name it “energy”.

if totvolTestl<totvolinit then
while totvolTest<totvolinit
lagVmax = lagVTest;
lagVTest = lagVTest-0.1;
VTest = energy-lagVTest;
dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ;
phiTest = solvelvlset(phi,VTest,dtTest,HJiter)
FEthetaTest = FEdensity(phiTest,eps) ;
FEthetaTest = passive(FEthetaTest) ;
totvolTest = volume(FEthetaTest) ;
lagVmin = lagVTest;
end
end

If the volume has decreased, then we have to deedegV. So, every value that we will try
will be lower than the one we have used and thegefice name the current value “lagvVmax”.
Then we decrease it by subtracting an arbitraryevaind compute the new velocity “VTest”,
which of course results in a new time step “dtTe#fé solve the advection equation under the
new quantities and compute the volume. We namenthwsvalue of lagV as “lagvVmin”.

We continue this procedure until we have found laez@f lagVmin such that the volume has
exceeded the initial one. This means that now, axe hwo values “lagVmax” and “lagVmin”
and the desired value of lagV, i.e. the one thapkdhe volume constant, lies between them.

if totvolTest1>totvolinit then
while totvolTest>totvolinit
lagVmin = lagVTest;
lagVTest = lagVTest+0.1;
VTest = energy-lagVTest;
dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ;
phiTest = solvelviset(phi,VTest,dtTest,HJiter)
FEthetaTest = FEdensity(phiTest,eps) ;
FEthetaTest = passive(FEthetaTest) ;
totvolTest = volume(FEthetaTest) ;
lagVmax = lagVTest;
end
end

We follow exactly the same logic in case the volumas increased to obtain the two values
“lagVmax” and “lagvVmin”.

if totvolTestl == totvolinit then
lagvVmin = lagVTest;
lagVmax = lagVTest;

end

Obviously, if the volume has not changed, the talues “lagvmin” and “lagVmax” coincide.

/IDichotomy on the value of the Lagrange multiplier
while ((abs(1.-totvolTest/totvolinit))>.01)
lagVTest = (lagVmin+lagVmax)/2. ;
VTest = energy-lagVTest;
dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ;
phiTest = solvelviset(phi,VTest,dtTest,HJiter
FEthetaTest = FEdensity(phiTest,eps) ;
FEthetaTest = passive(FEthetaTest) ;
totvolTest = volume(FEthetaTest) ;
if totvolTest < totvolinit then
lagVmax = lagVTest;
end
if totvolTest > totvolinit then
lagVmin = lagVTest;
end
end

Finally, we try to choose the value for lagV doed change the volume more than 1%. Of
course, this value is arbitrary, but we suggest ¢tim@ does not pick a too small value, since
numerical problems will probably make the algorittoo slow. So, we take the average value
of “lagvVmax” and “lagVmin” and we check its impadt.the volume is lower than we desire,
we set “lagVmax” equal to this average value artiefopposite happens, we do the same with
“lagvVmin”. We continue until our criterion is sdfiisd.

phiTest = phiTest ;
lagVTest = lagVTest;
VTest = energy-lagVTest ;
dtTest = dtTest ;

endfunction
Having determined the appropriate value of lagV #mel corresponding level-set function,
velocity and time step, we set them as the outpthefunction and continue the optimization
algorithm.

References

[1] Allaire G, Conception optimale de structuresathematiques and applications,
vol 58, Heidelberg:Springer;2006.

[2] Allaire G, Jouve F, Toader A-M, Structural aptzation using sensitivity
analysis and a level set method. J Comp. Phys.;2004.:363-93.

[3] Allaire G, Jouve F, Toader A-M, A level set etl for shape optimization. CR
Acad Sci Paris Ser | 2002;334:1125-30.

[4] Allaire G, Pantz O, Structural optimization wiEreeFem++.
[5] Dousset C., Allaire G. Calcul de formes optieglRapport de Stage, (2005).

[6] Karrman A., Allaire G., Structural optimizatiarsing sensitivity analysis and a
level-set method, in Scilab and Matlab, (2009).

[7] Murat F., Simon S., Etudes de problemes d’optialesign. Lecture Notes in
Computer Science 41, Springer Verlag, Berlin, 19/564-62.

[8] Osher S., Fedkiw R., Level set methods and dyoamplicit surfaces, Applied
Mathematical Sciences, 153, Springer-Verlag, NewkY2003).

[9] Scilab, a scientific software developed by IMRIand ENPC, freely
downloadable at
http://www.scilab.org

[10] Sethian J.A., Level-Set Methods and fast miaghmethods: evolving
interfaces in computational geometry, fluid mechanicomputer vision and
material science, Cambridge University Press (1999)

[11] Sigmund O., A 99 line topology optimizationdmin Matlab, Struct. Multidisc.
Optim., Vol.21, pp.120-127 (2001).

[12] Sokolowski J, Zolesio JP, Introduction to s@aptimization: shape sensitivity
analysis. Springer series in computational mathiesyatvol.10, Berlin: Springer;
1992.

[13] Allaire G., De Gournay F., Jouve F., ToadeMMA-Structural Optimization
using topological and shape sensitivity via a lesatl method, Control and Cyb.,
34:59-80, 2005.

