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1 Parametric optimization: 12 points

1. Because of the Dirichlet boundary conditions we choose the Sobolev
space H1

0 (Ω). The variational formulation is: find un ∈ H1
0 (Ω) such

that, for any test function qn ∈ H1
0 (Ω),

∫

Ω
(unqn + h∆t∇un · ∇qn) dx =

∫

Ω

(

un−1qn + ∆tfnqn
)

dx.

2. The Lagrangian is the sum of the objective function and of the vari-
ational formulations for each un (with, of course, different test func-
tions). As usual, un denotes the solution of the state equation and,
in the Lagrangian, we replace it by the dummy function vn. Thus it
reads

L(h, {vn}, {qn}) =

N
∑

n=1

∆t

∫

Ω
j1(v

n(x)) dx +

∫

Ω
j2(v

N (x)) dx

+

N
∑

n=1

(
∫

Ω
(vnqn + h∆t∇vn · ∇qn) dx−

∫

Ω

(

vn−1qn + ∆tfnqn
)

dx

)

.

3. The partial derivative of the Lagrangian with respect to vn is, for
1 ≤ n ≤ N − 1,

〈
∂L

∂vn
, ψ〉 = ∆t

∫

Ω
j′1(v

n)ψdx+

∫

Ω

(

ψqn + h∆t∇ψ · ∇qn − ψqn+1
)

dx

and for n = N

〈
∂L

∂vN
, ψ〉 = ∆t

∫

Ω
j′1(v

N )ψdx+

∫

Ω
j′2(v

N )ψdx+

∫

Ω

(

ψqN + h∆t∇ψ · ∇qN
)

dx.

Equating it to 0 and taking the value vn = un yields the variational
formulation for the adjoint pn ∈ H1

0 (Ω) such that, for any test function
ψ ∈ H1

0 (Ω),

∫

Ω
(ψpn + h∆t∇ψ · ∇pn) dx =

∫

Ω

(

ψpn+1 − ∆tj′1(u
n)ψ

)

dx

1



when 1 ≤ n ≤ N − 1, while for n = N the variational formulation is:
find pN ∈ H1

0 (Ω) such that, for any test function ψ ∈ H1
0 (Ω),

∫

Ω

(

ψpN + h∆t∇ψ · ∇pN
)

dx = −

∫

Ω

(

j′2(u
N ) + ∆tj′1(u

N )ψ
)

dx.

Disintegrating by parts yields the boundary value problem satisfied by
pn, for 1 ≤ n ≤ N − 1,

{

pn−pn+1

∆t
− div (h∇pn) = −j′1(u

n) in Ω,
pn = 0 on ∂Ω,

and for pN

{

pN − ∆tdiv
(

h∇pN
)

= −∆tj′1(u
N ) − j′2(u

N ) in Ω,
pN = 0 on ∂Ω.

To compute pn, for 1 ≤ n ≤ N − 1, we need to know pn+1 and, on
the other hand, pN depends solely on uN . Thus, the adjoints pn have
to be computed backward in time, namely in decreasing order from
n = N up to n = 1.

4. The formal derivative of J∆t(h) is given by the formula

〈J ′
∆t(h), k〉 = 〈

∂L

∂h
(h, {un}, {pn}), k〉.

Thus a simple computation (because the Lagrangian depends linearly
on h !) yields

∫

Ω
J ′

∆t(h) k dx =
N
∑

n=1

∫

Ω
k∆t∇un · ∇pndx

or equivalently

J ′
∆t(h) =

N
∑

n=1

∆t∇un · ∇pn.

5. The boundary value problem for pn, 1 ≤ n ≤ N − 1, is obviously a
time discretization of the evolution equation

{

−∂p
∂t

− div (h∇p) = −j′1(u) in (0, T ) × Ω,
p = 0 on (0, T ) × ∂Ω.

Note the minus sign in front of the time derivative ! This parabolic
equation must be complemented by an “initial” condition. However, in
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the present case it is a final condition at time t = T . Indeed, formally
when ∆t goes to 0, the limit of the equation for pN is just

p(T, x) = −j′2

(

u(T, x)
)

in Ω.

Thus the evolution equation for p has to be solved backward in time.
It is a well-posed problem because by changing the time variable and
introducing p̃(t, x) = p(T − t, x) we obtain the standard (and well-
posed) parabolic equation











∂p̃
∂t

− div (h∇p̃) = −j′1(u(T − t)) in (0, T ) × Ω,
p̃ = 0 on (0, T ) × ∂Ω,

p̃(0, x) = −j′2

(

u(T, x)
)

in Ω,

where the sign in front of the time derivative is the “right” one.

Clearly, the previous derivative of J∆t(h) is a discretization of the
following time integral

∫ T

0
∇u(t, x) · ∇p(t, x) dt.

Remark. The statement of the present question was very cautious
by saying that “pn has possibly to be multiplied by a suitable coeffi-
cient”. No such coefficient was necessary for the above definition of the
Lagragian but remember that the variational formulation of un could
have been multiplied by any coefficient (typically by 1/∆t) without
changing the definition of un but, of course, implying a change in the
Lagrangian and in the definition of pn...

6. The state u appears in the right hand side of the equation for the
adjoint p. In the present time-dependent case, the difficulty is that p
has to be computed backward, i.e., starting from the final time T and
going back to the initial time 0. This is not a serious problem since, by
the above change of variables p̃(t, x) = p(T − t, x), the equation for p
is well-posed, except for the fact that the state u has to be stored on
the entire time interval (0, T ) before it can be put (backward) in the
right hand side of the equation for p. If the number of time steps N is
large, this storage process requires an enormous memory capacity and
is the main computational bottle-neck for large applications.

2 Topology optimization: 8 points

1. Following a computation of the course (see Lemma 7.9 in the lecture
notes) we compute the solutions of the cell problem

{

−divy

(

aχ(y) (ei + ∇ywi(y))
)

= 0 in Y = (0, 1)N

y → wi(y) Y -periodic
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with aχ(y) = α1χ1(y1) + α2χ2(y1) + α3χ3(y1). Since the coefficient
aχ depends only on the first component of the space variable y1, the
solutions are simply wi ≡ 0, for 2 ≤ i ≤ N , and w1(y) ≡ w(y1),
the 1-d solution for i = 1. Then, using the following formula for the
homogenized tensor A∗

A∗
ij =

∫

Y

aχ(y) (ei + ∇ywi(y)) · (ei + ∇ywi(y)) dy,

a simple computation (see again Lemma 7.9 in the lecture notes) yields
that

A∗ =











λ−θ 0
λ+

θ
. . .

0 λ+
θ











,

where λ−θ =
(

∑3
i=1

θi

αi

)−1
is the harmonic mean and λ+

θ =
∑3

i=1 θiαi

is the arithmetic mean of the phases conductivities.

2. Allowing only rotations of the previous simple laminate, i.e.,

A∗(x) = R(x)A∗ (θ1(x), θ2(x), θ3(x)) R
T (x),

the relaxed state equation is just the homogenized equation

{

−div (A∗∇u) = f in Ω,
u = 0 on ∂Ω,

and the relaxed objective function does not change its expression

J̃(θ,R) = −

∫

Ω
f(x)u(x) dx.

3. By the energy minimization principle, the relaxed objective function
can be written

J̃(θ,R) = min
v∈H1

0
(Ω)

∫

Ω
(A∗(x)∇v · ∇v − 2fv) dx.

Taking into account that

A∗(x)∇v·∇v = A∗ (θ1(x), θ2(x), θ3(x))
(

RT (x)∇v(x)
)

·
(

RT (x)∇v(x)
)

,

the minimization with respect to the rotation matrix R(x) must align
(pointwise) the lamination direction and the gradient of v so that only
the smallest eigenvalue of A∗ (θ1, θ2, θ3) plays a role. In other words

min
R(x)

A∗(x)∇v · ∇v = λ−
θ(x)|∇v|

2.
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Thus the relaxed formulation is equivalent to

inf
θ∈U∗

ad
,v∈H1

0
(Ω)

{

J∗(θ, v) =

∫

Ω

(

λ−θ |∇v|
2 − 2fv

)

dx

}

,

where the set of admissible densities is

U∗
ad =

{

θ = (θ1, θ2, θ3), 0 ≤ θi ≤ 1,

3
∑

i=1

θi = 1,

∫

Ω
θi(x)dx = ci|Ω|

}

.

4. By Lemma 5.8 in the lecture notes the function

(h, ξ) ∈ R
+ × R

N −→ F (h, ξ) = h−1|ξ|2

is convex. By composition with a linear function, we deduce that the
function

(θ, ξ) ∈ (R+)3 × R
N −→ G(θ, ξ) =

(

3
∑

i=1

θi

αi

)−1

|ξ|2

is convex too. Indeed, an easy but tedious computation shows that
the Hessian matrices satisfy

∇∇G(θ, ξ)λ · λ = ∇∇F (h, ξ)µ · µ ≥ 0

for any λ ∈ R
3+N and µ ∈ R

1+N such that µ1 =
∑3

i=1 λiαi and
µi = λi+2 for i ≥ 2. Furthermore G(θ, ξ) is infinite at infinity on the
admissible set U∗

ad which features only linear equality and inequality
constraints (which are clearly qualified). Thus, by Theorem 3.7 of
the lecture notes, the relaxed formulation admits at least one optimal
solution.
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