ECOLE POLYTECHNIQUE

Applied Mathematics Master Program MAP 562 Optimal Design of Structures (G. Allaire)
Answers to the written exam of March 16th, 2011.

1 Parametric optimization: 12 points

1. Because of the Dirichlet boundary conditions we choose the Sobolev space $H_{0}^{1}(\Omega)$. The variational formulation is: find $u^{n} \in H_{0}^{1}(\Omega)$ such that, for any test function $q^{n} \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega}\left(u^{n} q^{n}+h \Delta t \nabla u^{n} \cdot \nabla q^{n}\right) d x=\int_{\Omega}\left(u^{n-1} q^{n}+\Delta t f^{n} q^{n}\right) d x
$$

2. The Lagrangian is the sum of the objective function and of the variational formulations for each u^{n} (with, of course, different test functions). As usual, u^{n} denotes the solution of the state equation and, in the Lagrangian, we replace it by the dummy function v^{n}. Thus it reads

$$
\begin{gathered}
\mathcal{L}\left(h,\left\{v^{n}\right\},\left\{q^{n}\right\}\right)=\sum_{n=1}^{N} \Delta t \int_{\Omega} j_{1}\left(v^{n}(x)\right) d x+\int_{\Omega} j_{2}\left(v^{N}(x)\right) d x \\
+\sum_{n=1}^{N}\left(\int_{\Omega}\left(v^{n} q^{n}+h \Delta t \nabla v^{n} \cdot \nabla q^{n}\right) d x-\int_{\Omega}\left(v^{n-1} q^{n}+\Delta t f^{n} q^{n}\right) d x\right) .
\end{gathered}
$$

3. The partial derivative of the Lagrangian with respect to v^{n} is, for $1 \leq n \leq N-1$,

$$
\left\langle\frac{\partial \mathcal{L}}{\partial v^{n}}, \psi\right\rangle=\Delta t \int_{\Omega} j_{1}^{\prime}\left(v^{n}\right) \psi d x+\int_{\Omega}\left(\psi q^{n}+h \Delta t \nabla \psi \cdot \nabla q^{n}-\psi q^{n+1}\right) d x
$$

and for $n=N$

$$
\left\langle\frac{\partial \mathcal{L}}{\partial v^{N}}, \psi\right\rangle=\Delta t \int_{\Omega} j_{1}^{\prime}\left(v^{N}\right) \psi d x+\int_{\Omega} j_{2}^{\prime}\left(v^{N}\right) \psi d x+\int_{\Omega}\left(\psi q^{N}+h \Delta t \nabla \psi \cdot \nabla q^{N}\right) d x
$$

Equating it to 0 and taking the value $v^{n}=u^{n}$ yields the variational formulation for the adjoint $p^{n} \in H_{0}^{1}(\Omega)$ such that, for any test function $\psi \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega}\left(\psi p^{n}+h \Delta t \nabla \psi \cdot \nabla p^{n}\right) d x=\int_{\Omega}\left(\psi p^{n+1}-\Delta t j_{1}^{\prime}\left(u^{n}\right) \psi\right) d x
$$

when $1 \leq n \leq N-1$, while for $n=N$ the variational formulation is: find $p^{N} \in H_{0}^{1}(\Omega)$ such that, for any test function $\psi \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega}\left(\psi p^{N}+h \Delta t \nabla \psi \cdot \nabla p^{N}\right) d x=-\int_{\Omega}\left(j_{2}^{\prime}\left(u^{N}\right)+\Delta t j_{1}^{\prime}\left(u^{N}\right) \psi\right) d x
$$

Disintegrating by parts yields the boundary value problem satisfied by p^{n}, for $1 \leq n \leq N-1$,

$$
\begin{cases}\frac{p^{n}-p^{n+1}}{\Delta t}-\operatorname{div}\left(h \nabla p^{n}\right)=-j_{1}^{\prime}\left(u^{n}\right) & \text { in } \Omega \\ p^{n}=0 & \text { on } \partial \Omega\end{cases}
$$

and for p^{N}

$$
\begin{cases}p^{N}-\Delta t \operatorname{div}\left(h \nabla p^{N}\right)=-\Delta t j_{1}^{\prime}\left(u^{N}\right)-j_{2}^{\prime}\left(u^{N}\right) & \text { in } \Omega \\ p^{N}=0 & \text { on } \partial \Omega\end{cases}
$$

To compute p^{n}, for $1 \leq n \leq N-1$, we need to know p^{n+1} and, on the other hand, p^{N} depends solely on u^{N}. Thus, the adjoints p^{n} have to be computed backward in time, namely in decreasing order from $n=N$ up to $n=1$.
4. The formal derivative of $J_{\Delta t}(h)$ is given by the formula

$$
\left\langle J_{\Delta t}^{\prime}(h), k\right\rangle=\left\langle\frac{\partial \mathcal{L}}{\partial h}\left(h,\left\{u^{n}\right\},\left\{p^{n}\right\}\right), k\right\rangle
$$

Thus a simple computation (because the Lagrangian depends linearly on $h!$) yields

$$
\int_{\Omega} J_{\Delta t}^{\prime}(h) k d x=\sum_{n=1}^{N} \int_{\Omega} k \Delta t \nabla u^{n} \cdot \nabla p^{n} d x
$$

or equivalently

$$
J_{\Delta t}^{\prime}(h)=\sum_{n=1}^{N} \Delta t \nabla u^{n} \cdot \nabla p^{n}
$$

5. The boundary value problem for $p^{n}, 1 \leq n \leq N-1$, is obviously a time discretization of the evolution equation

$$
\begin{cases}-\frac{\partial p}{\partial t}-\operatorname{div}(h \nabla p)=-j_{1}^{\prime}(u) & \text { in }(0, T) \times \Omega \\ p=0 & \text { on }(0, T) \times \partial \Omega\end{cases}
$$

Note the minus sign in front of the time derivative! This parabolic equation must be complemented by an "initial" condition. However, in
the present case it is a final condition at time $t=T$. Indeed, formally when Δt goes to 0 , the limit of the equation for p^{N} is just

$$
p(T, x)=-j_{2}^{\prime}(u(T, x)) \quad \text { in } \Omega
$$

Thus the evolution equation for p has to be solved backward in time. It is a well-posed problem because by changing the time variable and introducing $\tilde{p}(t, x)=p(T-t, x)$ we obtain the standard (and wellposed) parabolic equation

$$
\begin{cases}\frac{\partial \tilde{p}}{\partial t}-\operatorname{div}(h \nabla \tilde{p})=-j_{1}^{\prime}(u(T-t)) & \text { in }(0, T) \times \Omega \\ \tilde{p}=0 & \text { on }(0, T) \times \partial \Omega \\ \tilde{p}(0, x)=-j_{2}^{\prime}(u(T, x)) & \text { in } \Omega,\end{cases}
$$

where the sign in front of the time derivative is the "right" one.
Clearly, the previous derivative of $J_{\Delta t}(h)$ is a discretization of the following time integral

$$
\int_{0}^{T} \nabla u(t, x) \cdot \nabla p(t, x) d t
$$

Remark. The statement of the present question was very cautious by saying that " p n has possibly to be multiplied by a suitable coefficient". No such coefficient was necessary for the above definition of the Lagragian but remember that the variational formulation of u^{n} could have been multiplied by any coefficient (typically by $1 / \Delta t$) without changing the definition of u^{n} but, of course, implying a change in the Lagrangian and in the definition of $p^{n} \ldots$
6. The state u appears in the right hand side of the equation for the adjoint p. In the present time-dependent case, the difficulty is that p has to be computed backward, i.e., starting from the final time T and going back to the initial time 0 . This is not a serious problem since, by the above change of variables $\tilde{p}(t, x)=p(T-t, x)$, the equation for p is well-posed, except for the fact that the state u has to be stored on the entire time interval $(0, T)$ before it can be put (backward) in the right hand side of the equation for p. If the number of time steps N is large, this storage process requires an enormous memory capacity and is the main computational bottle-neck for large applications.

2 Topology optimization: 8 points

1. Following a computation of the course (see Lemma 7.9 in the lecture notes) we compute the solutions of the cell problem

$$
\begin{cases}-\operatorname{div}_{y}\left(a_{\chi}(y)\left(e_{i}+\nabla_{y} w_{i}(y)\right)\right)=0 & \text { in } Y=(0,1)^{N} \\ y \rightarrow w_{i}(y) & Y \text {-periodic }\end{cases}
$$

with $a_{\chi}(y)=\alpha_{1} \chi_{1}\left(y_{1}\right)+\alpha_{2} \chi_{2}\left(y_{1}\right)+\alpha_{3} \chi_{3}\left(y_{1}\right)$. Since the coefficient a_{χ} depends only on the first component of the space variable y_{1}, the solutions are simply $w_{i} \equiv 0$, for $2 \leq i \leq N$, and $w_{1}(y) \equiv w\left(y_{1}\right)$, the $1-\mathrm{d}$ solution for $i=1$. Then, using the following formula for the homogenized tensor A^{*}

$$
A_{i j}^{*}=\int_{Y} a_{\chi}(y)\left(e_{i}+\nabla_{y} w_{i}(y)\right) \cdot\left(e_{i}+\nabla_{y} w_{i}(y)\right) d y
$$

a simple computation (see again Lemma 7.9 in the lecture notes) yields that

$$
A^{*}=\left(\begin{array}{cccc}
\lambda_{\theta}^{-} & & & 0 \\
& \lambda_{\theta}^{+} & & \\
& & \ddots & \\
0 & & & \lambda_{\theta}^{+}
\end{array}\right)
$$

where $\lambda_{\theta}^{-}=\left(\sum_{i=1}^{3} \frac{\theta_{i}}{\alpha_{i}}\right)^{-1}$ is the harmonic mean and $\lambda_{\theta}^{+}=\sum_{i=1}^{3} \theta_{i} \alpha_{i}$ is the arithmetic mean of the phases conductivities.
2. Allowing only rotations of the previous simple laminate, i.e.,

$$
A^{*}(x)=R(x) A^{*}\left(\theta_{1}(x), \theta_{2}(x), \theta_{3}(x)\right) R^{T}(x),
$$

the relaxed state equation is just the homogenized equation

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla u\right)=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

and the relaxed objective function does not change its expression

$$
\tilde{J}(\theta, R)=-\int_{\Omega} f(x) u(x) d x .
$$

3. By the energy minimization principle, the relaxed objective function can be written

$$
\tilde{J}(\theta, R)=\min _{v \in H_{0}^{1}(\Omega)} \int_{\Omega}\left(A^{*}(x) \nabla v \cdot \nabla v-2 f v\right) d x
$$

Taking into account that

$$
A^{*}(x) \nabla v \cdot \nabla v=A^{*}\left(\theta_{1}(x), \theta_{2}(x), \theta_{3}(x)\right)\left(R^{T}(x) \nabla v(x)\right) \cdot\left(R^{T}(x) \nabla v(x)\right),
$$

the minimization with respect to the rotation matrix $R(x)$ must align (pointwise) the lamination direction and the gradient of v so that only the smallest eigenvalue of $A^{*}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ plays a role. In other words

$$
\min _{R(x)} A^{*}(x) \nabla v \cdot \nabla v=\lambda_{\theta(x)}^{-}|\nabla v|^{2} .
$$

Thus the relaxed formulation is equivalent to

$$
\inf _{\theta \in \mathcal{U}_{a d}^{*}, v \in H_{0}^{1}(\Omega)}\left\{J^{*}(\theta, v)=\int_{\Omega}\left(\lambda_{\theta}^{-}|\nabla v|^{2}-2 f v\right) d x\right\}
$$

where the set of admissible densities is

$$
\mathcal{U}_{a d}^{*}=\left\{\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right), 0 \leq \theta_{i} \leq 1, \sum_{i=1}^{3} \theta_{i}=1, \int_{\Omega} \theta_{i}(x) d x=c_{i}|\Omega|\right\}
$$

4. By Lemma 5.8 in the lecture notes the function

$$
(h, \xi) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \longrightarrow F(h, \xi)=h^{-1}|\xi|^{2}
$$

is convex. By composition with a linear function, we deduce that the function

$$
(\theta, \xi) \in\left(\mathbb{R}^{+}\right)^{3} \times \mathbb{R}^{N} \longrightarrow G(\theta, \xi)=\left(\sum_{i=1}^{3} \frac{\theta_{i}}{\alpha_{i}}\right)^{-1}|\xi|^{2}
$$

is convex too. Indeed, an easy but tedious computation shows that the Hessian matrices satisfy

$$
\nabla \nabla G(\theta, \xi) \lambda \cdot \lambda=\nabla \nabla F(h, \xi) \mu \cdot \mu \geq 0
$$

for any $\lambda \in \mathbb{R}^{3+N}$ and $\mu \in \mathbb{R}^{1+N}$ such that $\mu_{1}=\sum_{i=1}^{3} \lambda_{i} \alpha_{i}$ and $\mu_{i}=\lambda_{i+2}$ for $i \geq 2$. Furthermore $G(\theta, \xi)$ is infinite at infinity on the admissible set $\mathcal{U}_{a d}^{*}$ which features only linear equality and inequality constraints (which are clearly qualified). Thus, by Theorem 3.7 of the lecture notes, the relaxed formulation admits at least one optimal solution.

