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1 Parametric optimization: 10 points

1. The variational formulation is: find u ∈ H1(Ω) such that, for any test
function q ∈ H1(Ω),

∫

Ω
∇u · ∇q dx+

∫

∂Ω
kuq ds =

∫

Ω
fq dx.

The Lagrangian is the sum of the objective function and of the varia-
tional formulation

L(h, v, q) =

∫

Ω
j(v(x)) dx +

∫

Ω
(∇v · ∇q − fq)dx+

∫

∂Ω
kvq ds.

2. The partial derivative of the Lagrangian with respect to v is

〈
∂L

∂v
, ψ〉 =

∫

Ω
j′(v)ψdx +

∫

Ω
∇ψ · ∇q dx+

∫

∂Ω
kψq ds.

Equating it to 0 and taking the value v = u yields the variational
formulation for the adjoint p ∈ H1(Ω) where ψ ∈ H1(Ω) is any test
function. Disintegrating by parts yields the boundary value problem
satisfied by p

{

−∆p = −j′(u) in Ω,
∂p
∂n

+ k p = 0 on ∂Ω.

3. The formal derivative of J(k) is given by the formula

〈J ′(k), θ〉 = 〈
∂L

∂k
(k, u, p), θ〉.

Thus a simple computation (because the Lagrangian depends linearly
on k !) yields

∫

Ω
J ′(k) θ dx =

∫

∂Ω
θup ds,

or equivalently
J ′(k) = u p on ∂Ω.
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4. When j(v) = −fv, we find p = u so J ′(k) = u2 ≥ 0. Since the
derivative is always non-negative, the optimality condition is satisfied
for the minimal value of k, namely k(x) = kmin on ∂Ω. Therefore,
we expect this value to be the minimum of the objective function
J(k) = −

∫

Ω f(x)u(x) dx.

To make the proof rigorous, we rewrite J(k) as the minimum of the
(primal) energy

−

∫

Ω
f(x)u(x) dx = min

v∈H1(Ω)

∫

Ω
|∇v|2dx+

∫

∂Ω
kv2 ds− 2

∫

Ω
fv dx.

The optimal design problem is thus equivalent to a double minimiza-
tion

min
(k,v)∈Uad×H1(Ω)

∫

Ω
|∇v|2dx+

∫

∂Ω
kv2 ds− 2

∫

Ω
fv dx.

For any fixed v, the minimal value is clearly attained by k(x) = kmin.
Thus k(x) = kmin is a global minimizer of the optimal design problem.
(It may be not unique at those points x ∈ ∂Ω where u(x) = 0.)

2 Geometric optimization: 7 points

1. By the chain rule lemma, the shape derivative of MΩ(f) is, for any
vector field θ ∈W 1,∞(R2;R2),

MΩ(f)
′(θ) =

1

|Ω|

∫

∂Ω
f θ · n ds−

1

|Ω|2

∫

∂Ω
θ · n ds

∫

Ω
f(x) dx,

which simplifies as

MΩ(f)
′(θ) =

1

|Ω|

∫

∂Ω
(f −MΩ(f)) θ · n ds.

Clearly, the derivative is zero (for any θ) if and only if f = MΩ(f) on
∂Ω.

2. We rewrite the function J(Ω) as

J(Ω) =
1

|Ω|

∫

Ω
f2(x) dx− (MΩ(f))

2
.

We deduce from the previous question that

J ′(Ω)(θ) =
1

|Ω|

∫

∂Ω

(

f2 −MΩ(f
2)
)

θ·n ds−2MΩ(f)
1

|Ω|

∫

∂Ω
(f −MΩ(f)) θ·n ds.

Recombining terms yields

J ′(Ω)(θ) =
1

|Ω|

∫

∂Ω

(

(f −MΩ(f))
2 + (MΩ(f))

2 −MΩ(f
2)
)

θ · n ds.
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By Cauchy-Schwartz inequality we have (MΩ(f))
2 ≤ MΩ(f

2) and
the inequality is strict if f is not constant on Ω. Therefore, if f is not
constant and f = MΩ(f) on ∂Ω, we deduce that J ′(Ω)(θ) < 0 if the
domain increases, namely when θ · n > 0 on ∂Ω. Thus, if Ω is such
that J(Ω) ≤ ǫ, for a small enough θ satisfying θ ·n > 0 on ∂Ω, we still
have J((Id + θ)Ω) ≤ ǫ while the volume increases, |(Id + θ)Ω| > |Ω|.
In other words, (Id + θ)Ω is a better admissible design.

3. If the constraint is inactive, i.e., J(Ω) < ǫ, for a maximizer Ω with finite
volume, then we can slightly increase its volume while keeping the
constraint satisfied, therefore contradicting the assumption that Ω was
a maximizer. Thus, for a finite-volume maximizer, the constraint must
be active, i.e., J(Ω) = ǫ. In such a case, there existe a non-negative
Lagrange multiplier λ ≥ 0 such that, for any θ ∈W 1,∞(R2;R2),

λ

|Ω|

∫

∂Ω

(

(f −MΩ(f))
2 + (MΩ(f))

2 −MΩ(f
2)
)

θ·n ds+

∫

∂Ω
θ·n ds = 0.

In other words, the optimality condition is

λ

|Ω|

(

(f −MΩ(f))
2 + (MΩ(f))

2 −MΩ(f
2)
)

+ 1 = 0 on ∂Ω.

3 Homogenization: 3 points

In space dimension N = 2, for an isotropic homogenized tensor A∗ = a∗Id,
the Hashin-Shtrikman upper bound reduces to

2

β − a∗
≤

1

β − λ−θ
+

1

β − λ+θ

with λ−θ =
(

θ
α
+ 1−θ

β

)−1
and λ+θ = θα+ (1− θ)β. Taking α = 0 yields

2

β − a∗
≤

1

β
+

1

θβ
.

A simple calculation gives the result a∗ ≤ 1−θ
1+θ

β.
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