ECOLE POLYTECHNIQUE

Applied Mathematics Master Program

MAP 562 Optimal Design of Structures (G. Allaire)
Answers to the written exam of March 14th, 2012.

1 Parametric optimization: 10 points

1. The variational formulation is: find $u \in H^{1}(\Omega)$ such that, for any test function $q \in H^{1}(\Omega)$,

$$
\int_{\Omega} \nabla u \cdot \nabla q d x+\int_{\partial \Omega} k u q d s=\int_{\Omega} f q d x
$$

The Lagrangian is the sum of the objective function and of the variational formulation

$$
\mathcal{L}(h, v, q)=\int_{\Omega} j(v(x)) d x+\int_{\Omega}(\nabla v \cdot \nabla q-f q) d x+\int_{\partial \Omega} k v q d s
$$

2. The partial derivative of the Lagrangian with respect to v is

$$
\left\langle\frac{\partial \mathcal{L}}{\partial v}, \psi\right\rangle=\int_{\Omega} j^{\prime}(v) \psi d x+\int_{\Omega} \nabla \psi \cdot \nabla q d x+\int_{\partial \Omega} k \psi q d s
$$

Equating it to 0 and taking the value $v=u$ yields the variational formulation for the adjoint $p \in H^{1}(\Omega)$ where $\psi \in H^{1}(\Omega)$ is any test function. Disintegrating by parts yields the boundary value problem satisfied by p

$$
\begin{cases}-\Delta p=-j^{\prime}(u) & \text { in } \Omega \\ \frac{\partial p}{\partial n}+k p=0 & \text { on } \partial \Omega\end{cases}
$$

3. The formal derivative of $J(k)$ is given by the formula

$$
\left\langle J^{\prime}(k), \theta\right\rangle=\left\langle\frac{\partial \mathcal{L}}{\partial k}(k, u, p), \theta\right\rangle .
$$

Thus a simple computation (because the Lagrangian depends linearly on $k!$) yields

$$
\int_{\Omega} J^{\prime}(k) \theta d x=\int_{\partial \Omega} \theta u p d s
$$

or equivalently

$$
J^{\prime}(k)=u p \quad \text { on } \partial \Omega
$$

4. When $j(v)=-f v$, we find $p=u$ so $J^{\prime}(k)=u^{2} \geq 0$. Since the derivative is always non-negative, the optimality condition is satisfied for the minimal value of k, namely $k(x)=k_{\min }$ on $\partial \Omega$. Therefore, we expect this value to be the minimum of the objective function $J(k)=-\int_{\Omega} f(x) u(x) d x$.
To make the proof rigorous, we rewrite $J(k)$ as the minimum of the (primal) energy

$$
-\int_{\Omega} f(x) u(x) d x=\min _{v \in H^{1}(\Omega)} \int_{\Omega}|\nabla v|^{2} d x+\int_{\partial \Omega} k v^{2} d s-2 \int_{\Omega} f v d x .
$$

The optimal design problem is thus equivalent to a double minimization

$$
\min _{(k, v) \in \mathcal{U}_{a d} \times H^{1}(\Omega)} \int_{\Omega}|\nabla v|^{2} d x+\int_{\partial \Omega} k v^{2} d s-2 \int_{\Omega} f v d x
$$

For any fixed v, the minimal value is clearly attained by $k(x)=k_{\text {min }}$. Thus $k(x)=k_{\min }$ is a global minimizer of the optimal design problem. (It may be not unique at those points $x \in \partial \Omega$ where $u(x)=0$.)

2 Geometric optimization: 7 points

1. By the chain rule lemma, the shape derivative of $\mathcal{M}_{\Omega}(f)$ is, for any vector field $\theta \in W^{1, \infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$,

$$
\mathcal{M}_{\Omega}(f)^{\prime}(\theta)=\frac{1}{|\Omega|} \int_{\partial \Omega} f \theta \cdot n d s-\frac{1}{|\Omega|^{2}} \int_{\partial \Omega} \theta \cdot n d s \int_{\Omega} f(x) d x
$$

which simplifies as

$$
\mathcal{M}_{\Omega}(f)^{\prime}(\theta)=\frac{1}{|\Omega|} \int_{\partial \Omega}\left(f-\mathcal{M}_{\Omega}(f)\right) \theta \cdot n d s
$$

Clearly, the derivative is zero (for any θ) if and only if $f=\mathcal{M}_{\Omega}(f)$ on $\partial \Omega$.
2. We rewrite the function $J(\Omega)$ as

$$
J(\Omega)=\frac{1}{|\Omega|} \int_{\Omega} f^{2}(x) d x-\left(\mathcal{M}_{\Omega}(f)\right)^{2} .
$$

We deduce from the previous question that

$$
J^{\prime}(\Omega)(\theta)=\frac{1}{|\Omega|} \int_{\partial \Omega}\left(f^{2}-\mathcal{M}_{\Omega}\left(f^{2}\right)\right) \theta \cdot n d s-2 \mathcal{M}_{\Omega}(f) \frac{1}{|\Omega|} \int_{\partial \Omega}\left(f-\mathcal{M}_{\Omega}(f)\right) \theta \cdot n d s
$$

Recombining terms yields

$$
J^{\prime}(\Omega)(\theta)=\frac{1}{|\Omega|} \int_{\partial \Omega}\left(\left(f-\mathcal{M}_{\Omega}(f)\right)^{2}+\left(\mathcal{M}_{\Omega}(f)\right)^{2}-\mathcal{M}_{\Omega}\left(f^{2}\right)\right) \theta \cdot n d s
$$

By Cauchy-Schwartz inequality we have $\left(\mathcal{M}_{\Omega}(f)\right)^{2} \leq \mathcal{M}_{\Omega}\left(f^{2}\right)$ and the inequality is strict if f is not constant on Ω. Therefore, if f is not constant and $f=\mathcal{M}_{\Omega}(f)$ on $\partial \Omega$, we deduce that $J^{\prime}(\Omega)(\theta)<0$ if the domain increases, namely when $\theta \cdot n>0$ on $\partial \Omega$. Thus, if Ω is such that $J(\Omega) \leq \epsilon$, for a small enough θ satisfying $\theta \cdot n>0$ on $\partial \Omega$, we still have $J((\operatorname{Id}+\theta) \Omega) \leq \epsilon$ while the volume increases, $|(\operatorname{Id}+\theta) \Omega|>|\Omega|$. In other words, $(\operatorname{Id}+\theta) \Omega$ is a better admissible design.
3. If the constraint is inactive, i.e., $J(\Omega)<\epsilon$, for a maximizer Ω with finite volume, then we can slightly increase its volume while keeping the constraint satisfied, therefore contradicting the assumption that Ω was a maximizer. Thus, for a finite-volume maximizer, the constraint must be active, i.e., $J(\Omega)=\epsilon$. In such a case, there existe a non-negative Lagrange multiplier $\lambda \geq 0$ such that, for any $\theta \in W^{1, \infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$,

$$
\frac{\lambda}{|\Omega|} \int_{\partial \Omega}\left(\left(f-\mathcal{M}_{\Omega}(f)\right)^{2}+\left(\mathcal{M}_{\Omega}(f)\right)^{2}-\mathcal{M}_{\Omega}\left(f^{2}\right)\right) \theta \cdot n d s+\int_{\partial \Omega} \theta \cdot n d s=0
$$

In other words, the optimality condition is

$$
\frac{\lambda}{|\Omega|}\left(\left(f-\mathcal{M}_{\Omega}(f)\right)^{2}+\left(\mathcal{M}_{\Omega}(f)\right)^{2}-\mathcal{M}_{\Omega}\left(f^{2}\right)\right)+1=0 \quad \text { on } \partial \Omega
$$

3 Homogenization: 3 points

In space dimension $N=2$, for an isotropic homogenized tensor $A^{*}=a^{*} \mathrm{Id}$, the Hashin-Shtrikman upper bound reduces to

$$
\frac{2}{\beta-a^{*}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{1}{\beta-\lambda_{\theta}^{+}}
$$

with $\lambda_{\theta}^{-}=\left(\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}\right)^{-1}$ and $\lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta$. Taking $\alpha=0$ yields

$$
\frac{2}{\beta-a^{*}} \leq \frac{1}{\beta}+\frac{1}{\theta \beta}
$$

A simple calculation gives the result $a^{*} \leq \frac{1-\theta}{1+\theta} \beta$.

