ECOLE POLYTECHNIQUE

Applied Mathematics Master Program

MAP 562 Optimal Design of Structures (G. Allaire)
Answers to the written exam of March 20th, 2013.

1 Parametric optimization: 12 points

1. Writing $v=u-u_{0}$ the problem becomes

$$
\begin{cases}-\operatorname{div}(h \nabla v)=f+\operatorname{div}\left(h \nabla u_{0}\right) & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

The corresponding variational formulation is: find $v \in H_{0}^{1}(\Omega)$ such that, for any test function $q \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} h \nabla v \cdot \nabla q d x=\int_{\Omega} f q d x-\int_{\Omega} h \nabla u_{0} \cdot \nabla q d x
$$

Replacing v by $u-u_{0}$ we get: find $u \in \mathcal{A}$ such that

$$
\int_{\Omega} h \nabla u \cdot \nabla \phi d x=\int_{\Omega} f \phi d x \quad \forall \phi \in H_{0}^{1}(\Omega)
$$

where

$$
\mathcal{A}=\left\{\psi \in H^{1}(\Omega) \text { such that } \psi=u_{0}+\phi \text { with } \phi \in H_{0}^{1}(\Omega)\right\}
$$

2. The Lagrangian is the sum of the objective function and of the variational formulation

$$
\mathcal{L}(h, w, q)=\int_{\Omega} j(w(x)) d x+\int_{\Omega}(h \nabla w \cdot \nabla q-f q) d x
$$

where $w \in \mathcal{A}$ and $q \in H_{0}^{1}(\Omega)$. For any $\psi \in H_{0}^{1}(\Omega)$ the sum $w+\psi$ belongs to \mathcal{A}, so the partial derivative of the Lagrangian with respect to w is, for any $\psi \in H_{0}^{1}(\Omega)$,

$$
\left\langle\frac{\partial \mathcal{L}}{\partial w}, \psi\right\rangle=\int_{\Omega} j^{\prime}(w) \psi d x+\int_{\Omega} h \nabla \psi \cdot \nabla q d x
$$

Equating it to 0 and taking the value $w=u$ yields the variational formulation for the adjoint $p \in H_{0}^{1}(\Omega)$ where $\psi \in H_{0}^{1}(\Omega)$ is any test function. Disintegrating by parts yields the boundary value problem satisfied by p

$$
\begin{cases}-\operatorname{div}(h \nabla p)=-j^{\prime}(u) & \text { in } \Omega \\ p=0 & \text { on } \partial \Omega\end{cases}
$$

3. The formal derivative of $J(h)$ is given by the formula

$$
\left\langle J^{\prime}(h), \theta\right\rangle=\left\langle\frac{\partial \mathcal{L}}{\partial h}(h, u, p), \theta\right\rangle .
$$

Thus a simple computation (because the Lagrangian depends linearly on h !) yields

$$
\int_{\Omega} J^{\prime}(h) \theta d x=\int_{\partial \Omega} \theta \nabla u \cdot \nabla p d s
$$

or equivalently

$$
J^{\prime}(h)=\nabla u \cdot \nabla p \quad \text { in } \Omega .
$$

4. When $j(v)=f v$, we find that $p \neq \pm u$ because they don't satisfy the same boundary condition since $u_{0} \neq 0$.
5. For the new objective function

$$
J(h)=\int_{\Omega} j(h, u, \nabla u) d x
$$

the Lagrangian is

$$
\mathcal{L}(h, w, q)=\int_{\Omega} j(h, w, \nabla w) d x+\int_{\Omega}(h \nabla w \cdot \nabla q-f q) d x
$$

where $w \in \mathcal{A}$ and $q \in H_{0}^{1}(\Omega)$. The new adjoint p is thus a solution of the variational formulation in $H_{0}^{1}(\Omega)$

$$
\int_{\Omega}\left(\frac{\partial j}{\partial w}(h, u, \nabla u) \psi+\frac{\partial j}{\partial \zeta}(h, u, \nabla u) \cdot \nabla \psi\right) d x+\int_{\Omega} h \nabla \psi \cdot \nabla p d x=0
$$

for any test function $\psi \in H_{0}^{1}(\Omega)$. Disintegrating by parts yields the boundary value problem satisfied by p

$$
\begin{cases}-\operatorname{div}(h \nabla p)=-\frac{\partial j}{\partial w}(h, u, \nabla u)+\operatorname{div}\left(\frac{\partial j}{\partial \zeta}(h, u, \nabla u)\right) & \text { in } \Omega \\ p=0 & \text { on } \partial \Omega\end{cases}
$$

6. For the specific example

$$
J(h)=\int_{\Omega}\left(f u-\frac{1}{2} h \nabla u \cdot \nabla u\right) d x
$$

we have

$$
\frac{\partial j}{\partial w}(h, u, \nabla u)=f \quad \text { and } \quad \frac{\partial j}{\partial \zeta}(h, u, \nabla u)=h \nabla u
$$

so that the right hand side of the state equation is zero which implies $p=0$.

As usual we have

$$
\left\langle J^{\prime}(h), \theta\right\rangle=\left\langle\frac{\partial \mathcal{L}}{\partial h}(h, u, p), \theta\right\rangle,
$$

which implies that

$$
\left\langle J^{\prime}(h), \theta\right\rangle=\int_{\Omega} \frac{\partial j}{\partial h}(h, u, \nabla u) \theta d x+\int_{\Omega} \theta \nabla u \cdot \nabla p d x
$$

Since $p=0$ we deduce

$$
\left\langle J^{\prime}(h), \theta\right\rangle=-\frac{1}{2} \int_{\Omega} \theta \nabla u \cdot \nabla u d x
$$

which is the "usual" formula for the derivative of compliance minimization problem.
To minimize the objective function we should choose to increase the thickness since $-\frac{1}{2} \nabla u \cdot \nabla u \leq 0$.
Eventually, when $u_{0}=0$, we recover the standard case of compliance minimization with homogeneous Dirichlet boundary condition. We simply defined in an equivalent way the compliance

$$
J(h)=\int_{\Omega}\left(f u-\frac{1}{2} h \nabla u \cdot \nabla u\right) d x=\frac{1}{2} \int_{\Omega} f u d x .
$$

2 Geometric optimization: 8 points

1. For Dirichlet boundary conditions we introduce two Lagrange multipliers: q for the p.d.e. and λ for the boundary condition. For any functions $v, q, \lambda \in H^{1}\left(\mathbb{R}^{N}\right)$ we define the Lagrangian

$$
\mathcal{L}(\Omega, v, q, \lambda)=\frac{1}{2} \int_{\Omega}\left|v-u_{0}\right|^{2} d x+\int_{\Omega}(V \cdot \nabla v-\nu \Delta v-f) q d x+\int_{\partial \Omega} v \lambda d s .
$$

Clearly we have

$$
\max _{q, \lambda} \mathcal{L}(\Omega, v, q, \lambda)= \begin{cases}\frac{1}{2} \int_{\Omega}\left|u-u_{0}\right|^{2} d x & \text { if } v=u \text { is the state } \\ +\infty & \text { otherwise }\end{cases}
$$

2. Two successive integrations by parts yield

$$
\begin{gathered}
\mathcal{L}(\Omega, v, q, \lambda)=\frac{1}{2} \int_{\Omega}\left|v-u_{0}\right|^{2} d x+\int_{\Omega}(-V \cdot \nabla q-\nu \Delta q) v d x-\int_{\Omega} f q d x \\
+\int_{\partial \Omega}\left(V \cdot n v-\nu \partial_{n} v\right) q d s+\int_{\partial \Omega} \nu \partial_{n} q v d s+\int_{\partial \Omega} v \lambda d s
\end{gathered}
$$

To get the adjoint problem we differentiate the Lagrangian with respect to v and set this partial derivative equal to 0

$$
\begin{aligned}
& \left\langle\frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q, \lambda), \phi\right\rangle=\int_{\Omega}\left(v-u_{0}\right) \phi d x+\int_{\Omega}(-V \cdot \nabla q-\nu \Delta q) \phi d x \\
& \quad+\int_{\partial \Omega}\left(V \cdot n \phi-\nu \partial_{n} \phi\right) q d s+\int_{\partial \Omega} \nu \partial_{n} q \phi d s+\int_{\partial \Omega} \phi \lambda d s
\end{aligned}
$$

We first take a test function ϕ with compact support in Ω, so we deduce that the optimal value of q, the adjoint p, satisfies

$$
-V \cdot \nabla p-\nu \Delta p=-\left(u-u_{0}\right) \quad \text { in } \Omega .
$$

Next, we take $\phi=0$ on $\partial \Omega$ but $\partial_{n} \phi$ can be any function on $\partial \Omega$. It yields $p=0$ on $\partial \Omega$. Finally, taking a general test function such that its trace ϕ on $\partial \Omega$ is any function, we get the optimal value of λ

$$
\lambda=-\nu \partial_{n} p \quad \text { on } \partial \Omega .
$$

The adjoint problem is thus

$$
\begin{cases}-V \cdot \nabla p-\nu \Delta p=-\left(u-u_{0}\right) & \text { in } \Omega, \\ p=0 & \text { on } \partial \Omega .\end{cases}
$$

The differential operator of the adjoint equation is different from the one of the state equation: the sign of the velocity is changed in the convective term.
3. Formally we know that the shape derivative is given by

$$
J^{\prime}(\Omega)(\theta)=\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, u, p, \lambda)(\theta) .
$$

We compute

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, v, q, \lambda)(\theta)=\frac{1}{2} \int_{\partial \Omega}\left|v-u_{0}\right|^{2} \theta \cdot n d s \\
+\int_{\partial \Omega}(V \cdot \nabla v-\nu \Delta v-f) q \theta \cdot n d s+\int_{\partial \Omega}\left(H v \lambda+\frac{\partial}{\partial n}(v \lambda)\right) d s
\end{gathered}
$$

where H is the mean curvature. Replacing v by u, q by p and λ by its optimal value ($-V \cdot n p-\nu \partial_{n} p$), and noticing that $u=p=0$ on $\partial \Omega$, we deduce

$$
J^{\prime}(\Omega)(\theta)=\frac{1}{2} \int_{\partial \Omega}\left|u_{0}\right|^{2} \theta \cdot n d s-\nu \int_{\partial \Omega} \frac{\partial u}{\partial n} \frac{\partial p}{\partial n} \theta \cdot n d s
$$

