ECOLE POLYTECHNIQUE Applied Mathematics Master Program MAP 562 Optimal Design of Structures (G. Allaire) Answers to the written exam of March 19th, 2014.

1 Parametric optimization: 10 points

1. Writing $v = \langle u'(h), k \rangle$ and differentiating problem (1) yields

$$\begin{cases} -\operatorname{div} (h\nabla v) = \operatorname{div} (k\nabla u) & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega \end{cases}$$

2. Writing $w = \langle v'(h), \tilde{k} \rangle$ and differentiating the previous problem leads to

$$\begin{cases} -\operatorname{div}\left(h\nabla w\right) = \operatorname{div}\left(\tilde{k}\nabla v\right) + \operatorname{div}\left(k\nabla\tilde{v}\right) & \text{in }\Omega,\\ w = 0 & \text{on }\partial\Omega, \end{cases}$$

where $\tilde{v} = \langle u'(h), \tilde{k} \rangle$. Since v depends linearly on k and \tilde{v} depends linearly on \tilde{k} throught the same linear operator, the right hand side of the above equation is symmetric in (k, \tilde{k}) , and so is w.

3. The first order derivative is

$$\langle J'(h), k \rangle = \int_{\Omega} f v \, dx$$

and the second order derivative is

$$\langle J''(h), (k, \tilde{k}) \rangle = \int_{\Omega} f w \, dx.$$

4. To eliminate w in the formula for J'' we first multiply the equation for u by w and integrate by parts

$$\int_{\Omega} h \nabla u \cdot \nabla w \, dx = \int_{\Omega} f \, w \, dx$$

Second, we multiply the equation for w by u and integrate by parts

$$\int_{\Omega} h\nabla w \cdot \nabla u \, dx = -\int_{\Omega} k\nabla \tilde{v} \cdot \nabla u \, dx - \int_{\Omega} \tilde{k}\nabla v \cdot \nabla u \, dx$$

Then, by comparison we get

$$\langle J''(h), (k, \tilde{k}) \rangle = \int_{\Omega} h \nabla u \cdot \nabla w \, dx = -\int_{\Omega} k \nabla \tilde{v} \cdot \nabla u \, dx - \int_{\Omega} \tilde{k} \nabla v \cdot \nabla u \, dx.$$

This last formula is symmetric in (k, \tilde{k}) by the same reasons as in question 2.

5. We multiply the equation for v by v to get

$$\int_{\Omega} h \nabla v \cdot \nabla v \, dx = -\int_{\Omega} k \nabla v \cdot \nabla u \, dx.$$

When $\tilde{k} = k$, we deduce from the above that

$$\langle J''(h), (k,k) \rangle = -2 \int_{\Omega} k \nabla v \cdot \nabla u \, dx = 2 \int_{\Omega} h \nabla v \cdot \nabla v \, dx \ge 0.$$

It implies that the objective function $h \to J(h)$ is convex. In particular, it implies that any local minimizer is actually a global minimizer.

2 Geometric optimization: 10 points

 Since the boundary conditions are fixed (only the subdomain Ω is varying), we can use the standard variational formulation of problem (3) to build the Lagrangian. Introduce the space

$$V = \{ \phi \in H^1(D) \text{ such that } \phi = 0 \text{ on } \Gamma_D \}.$$

Thus, for any functions $v, q \in V$ and any subset $\Omega \subset D$, we define the Lagrangian

$$\mathcal{L}(\Omega, v, q) = \frac{1}{2} \int_{\Gamma_N} |v - u_0|^2 \, ds + \int_D (\nabla v \cdot \nabla q + \chi_\Omega v q) \, dx - \int_{\Gamma_N} g q \, ds.$$

2. To get the adjoint problem we differentiate the Lagrangian with respect to v and set this partial derivative equal to 0. For any $\phi \in V$ we have

$$\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \rangle = \int_{\Gamma_N} (v - u_0) \phi \, ds + \int_D (\nabla \phi \cdot \nabla q + \chi_\Omega \phi q) \, dx.$$

By integration by parts, since $\phi = 0$ on Γ_D , we deduce

$$\left\langle \frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi \right\rangle = \int_{\Gamma_N} (v - u_0 + \frac{\partial q}{\partial n}) \phi \, ds + \int_D (-\Delta q + \chi_\Omega q) \phi \, dx.$$

We first take a test function ϕ with compact support in Ω , so we deduce that the optimal value of q, the adjoint p, satisfies

$$-\Delta p + \chi_{\Omega} p = 0 \quad \text{in } D.$$

Then we take $\phi \neq 0$ on Γ_N so that

$$\frac{\partial p}{\partial n} = -(u - u_0) \quad \text{on } \Gamma_N.$$

Eventually, since $p \in V$ we have p = 0 on Γ_D . The adjoint problem is thus

$$\begin{cases} -\Delta p + \chi_{\Omega} p = 0 & \text{in } D, \\ p = 0 & \text{on } \Gamma_D \\ \frac{\partial p}{\partial n} = -(u - u_0) & \text{on } \Gamma_N, \end{cases}$$

3. Formally we know that the shape derivative is given by

$$J'(\Omega)(\theta) = \frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, u, p)(\theta).$$

The only term which depends on Ω in $\mathcal{L}(\Omega, v, q)$ is

$$\int_D \chi_\Omega v q \, dx = \int_\Omega v q \, dx.$$

We compute its derivative

$$\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, v, q)(\theta) = \int_{\partial \Omega} v q \, \theta \cdot n \, ds.$$

Therefore

$$J'(\Omega)(\theta) = \int_{\partial\Omega} up \,\theta \cdot n \, ds.$$

4. We multiply the equation for u by $u^- = \min(u, 0)$ to get

$$\int_{D} (\nabla u \cdot \nabla u^{-} + \chi_{\Omega} u u^{-}) \, dx = \int_{\Gamma_N} g u^{-} \, ds.$$

Since $u^- = 0$ if u > 0, we deduce

$$\int_D (|\nabla u^-|^2 + \chi_\Omega |u^-|^2) \, dx = \int_{\Gamma_N} g u^- \, ds.$$

The left hand side is non negative while the right hand side is non positive because $g \ge 0$ and $u^- \le 0$. Therefore all terms are zero which implies that $u^- = 0$ everywhere in D. In other words, we have proved that $u \ge 0$ in D.

5. If $g \ge 0$, then $u \ge 0$. If $u \ge u_0$, then a similar argument as in the previous question shows that $p \le 0$. Therefore, if $\theta \cdot n \ge 0$, we deduce

$$J'(\Omega)(\theta) = \int_{\partial\Omega} up \,\theta \cdot n \, ds \le 0.$$

In other words the objective function decreases if the subdomain Ω is enlarged.

Of course, if $u \leq u_0$, then $p \geq 0$ and $J'(\Omega)(\theta) \leq 0$ for $\theta \cdot n \leq 0$ which means that the objective function decreases if the subdomain Ω is reduced.