ECOLE POLYTECHNIQUE

Applied Mathematics Master Program

MAP 562 Optimal Design of Structures (G. Allaire)
Answers to the written exam of March 19th, 2014.

1 Parametric optimization: 10 points

1. Writing $v=\left\langle u^{\prime}(h), k\right\rangle$ and differentiating problem (1) yields

$$
\begin{cases}-\operatorname{div}(h \nabla v)=\operatorname{div}(k \nabla u) & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

2. Writing $w=\left\langle v^{\prime}(h), \tilde{k}\right\rangle$ and differentiating the previous problem leads to

$$
\begin{cases}-\operatorname{div}(h \nabla w)=\operatorname{div}(\tilde{k} \nabla v)+\operatorname{div}(k \nabla \tilde{v}) & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega\end{cases}
$$

where $\tilde{v}=\left\langle u^{\prime}(h), \tilde{k}\right\rangle$. Since v depends linearly on k and \tilde{v} depends linearly on \tilde{k} throught the same linear operator, the right hand side of the above equation is symmetric in (k, \tilde{k}), and so is w.
3. The first order derivative is

$$
\left\langle J^{\prime}(h), k\right\rangle=\int_{\Omega} f v d x
$$

and the second order derivative is

$$
\left\langle J^{\prime \prime}(h),(k, \tilde{k})\right\rangle=\int_{\Omega} f w d x
$$

4. To eliminate w in the formula for $J^{\prime \prime}$ we first multiply the equation for u by w and integrate by parts

$$
\int_{\Omega} h \nabla u \cdot \nabla w d x=\int_{\Omega} f w d x .
$$

Second, we multiply the equation for w by u and integrate by parts

$$
\int_{\Omega} h \nabla w \cdot \nabla u d x=-\int_{\Omega} k \nabla \tilde{v} \cdot \nabla u d x-\int_{\Omega} \tilde{k} \nabla v \cdot \nabla u d x .
$$

Then, by comparison we get

$$
\left\langle J^{\prime \prime}(h),(k, \tilde{k})\right\rangle=\int_{\Omega} h \nabla u \cdot \nabla w d x=-\int_{\Omega} k \nabla \tilde{v} \cdot \nabla u d x-\int_{\Omega} \tilde{k} \nabla v \cdot \nabla u d x
$$

This last formula is symmetric in (k, \tilde{k}) by the same reasons as in question 2.
5. We multiply the equation for v by v to get

$$
\int_{\Omega} h \nabla v \cdot \nabla v d x=-\int_{\Omega} k \nabla v \cdot \nabla u d x
$$

When $\tilde{k}=k$, we deduce from the above that

$$
\left\langle J^{\prime \prime}(h),(k, k)\right\rangle=-2 \int_{\Omega} k \nabla v \cdot \nabla u d x=2 \int_{\Omega} h \nabla v \cdot \nabla v d x \geq 0
$$

It implies that the objective function $h \rightarrow J(h)$ is convex. In particular, it implies that any local minimizer is actually a global minimizer.

2 Geometric optimization: 10 points

1. Since the boundary conditions are fixed (only the subdomain Ω is varying), we can use the standard variational formulation of problem (3) to build the Lagrangian. Introduce the space

$$
V=\left\{\phi \in H^{1}(D) \text { such that } \phi=0 \text { on } \Gamma_{D}\right\}
$$

Thus, for any functions $v, q \in V$ and any subset $\Omega \subset D$, we define the Lagrangian

$$
\mathcal{L}(\Omega, v, q)=\frac{1}{2} \int_{\Gamma_{N}}\left|v-u_{0}\right|^{2} d s+\int_{D}\left(\nabla v \cdot \nabla q+\chi_{\Omega} v q\right) d x-\int_{\Gamma_{N}} g q d s
$$

2. To get the adjoint problem we differentiate the Lagrangian with respect to v and set this partial derivative equal to 0 . For any $\phi \in V$ we have

$$
\left\langle\frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi\right\rangle=\int_{\Gamma_{N}}\left(v-u_{0}\right) \phi d s+\int_{D}\left(\nabla \phi \cdot \nabla q+\chi_{\Omega} \phi q\right) d x .
$$

By integration by parts, since $\phi=0$ on Γ_{D}, we deduce

$$
\left\langle\frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q), \phi\right\rangle=\int_{\Gamma_{N}}\left(v-u_{0}+\frac{\partial q}{\partial n}\right) \phi d s+\int_{D}\left(-\Delta q+\chi_{\Omega} q\right) \phi d x
$$

We first take a test function ϕ with compact support in Ω, so we deduce that the optimal value of q, the adjoint p, satisfies

$$
-\Delta p+\chi \Omega p=0 \quad \text { in } D
$$

Then we take $\phi \neq 0$ on Γ_{N} so that

$$
\frac{\partial p}{\partial n}=-\left(u-u_{0}\right) \quad \text { on } \Gamma_{N} .
$$

Eventually, since $p \in V$ we have $p=0$ on Γ_{D}. The adjoint problem is thus

$$
\begin{cases}-\Delta p+\chi_{\Omega} p=0 & \text { in } D \\ p=0 & \text { on } \Gamma_{D} \\ \frac{\partial p}{\partial n}=-\left(u-u_{0}\right) & \text { on } \Gamma_{N}\end{cases}
$$

3. Formally we know that the shape derivative is given by

$$
J^{\prime}(\Omega)(\theta)=\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, u, p)(\theta)
$$

The only term which depends on Ω in $\mathcal{L}(\Omega, v, q)$ is

$$
\int_{D} \chi_{\Omega} v q d x=\int_{\Omega} v q d x
$$

We compute its derivative

$$
\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, v, q)(\theta)=\int_{\partial \Omega} v q \theta \cdot n d s
$$

Therefore

$$
J^{\prime}(\Omega)(\theta)=\int_{\partial \Omega} u p \theta \cdot n d s
$$

4. We multiply the equation for u by $u^{-}=\min (u, 0)$ to get

$$
\int_{D}\left(\nabla u \cdot \nabla u^{-}+\chi_{\Omega} u u^{-}\right) d x=\int_{\Gamma_{N}} g u^{-} d s
$$

Since $u^{-}=0$ if $u>0$, we deduce

$$
\int_{D}\left(\left|\nabla u^{-}\right|^{2}+\chi_{\Omega}\left|u^{-}\right|^{2}\right) d x=\int_{\Gamma_{N}} g u^{-} d s
$$

The left hand side is non negative while the right hand side is non positive because $g \geq 0$ and $u^{-} \leq 0$. Therefore all terms are zero which implies that $u^{-}=0$ everywhere in D. In other words, we have proved that $u \geq 0$ in D.
5. If $g \geq 0$, then $u \geq 0$. If $u \geq u_{0}$, then a similar argument as in the previous question shows that $p \leq 0$. Therefore, if $\theta \cdot n \geq 0$, we deduce

$$
J^{\prime}(\Omega)(\theta)=\int_{\partial \Omega} u p \theta \cdot n d s \leq 0
$$

In other words the objective function decreases if the subdomain Ω is enlarged.
Of course, if $u \leq u_{0}$, then $p \geq 0$ and $J^{\prime}(\Omega)(\theta) \leq 0$ for $\theta \cdot n \leq 0$ which means that the objective function decreases if the subdomain Ω is reduced.

