ECOLE POLYTECHNIQUE

Applied Mathematics Master Program

MAP 562 Optimal Design of Structures (G. Allaire)
Answers to the written exam of March 4th, 2015.

1 Parametric optimization: 14 points

1. Writing $v=\left\langle u^{\prime}(h), k\right\rangle, \Lambda=\left\langle\lambda^{\prime}(h), k\right\rangle$ and differentiating problem (1) yields

$$
\begin{cases}-\operatorname{div}(h \nabla v)-\operatorname{div}(k \nabla u)=\lambda \rho h v+\lambda \rho k u+\Lambda \rho h u & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Differentiating the normalization condition $\int_{\Omega} \rho h u^{2} d x=1$ we obtain

$$
\int_{\Omega} \rho u(2 h v+k u) d x=0
$$

2. Multiplying the above problem for v by u and integrating by parts leads to

$$
\int_{\Omega}(h \nabla v \cdot \nabla u+k \nabla u \cdot \nabla u) d x=\int_{\Omega}\left(\lambda \rho h v u+\lambda \rho k u^{2}+\Lambda \rho h u^{2}\right) d x
$$

From the equation for u we know that

$$
\int_{\Omega} h \nabla v \cdot \nabla u d x=\int_{\Omega} \lambda \rho h v u d x
$$

Therefore, from the normalization $\int_{\Omega} \rho h u^{2} d x=1$, we deduce

$$
\Lambda=\int_{\Omega} k\left(|\nabla u|^{2}-\lambda \rho u^{2}\right) d x
$$

In other words, we found $\lambda^{\prime}(h)=|\nabla u|^{2}-\lambda \rho u^{2}$ which is a function in $L^{1}(\Omega)$.
3. From the previous question and since, by assumption, $\nabla u \neq 0$ on $\partial \Omega$ and $u=0$ on $\partial \Omega$, we find $\lambda^{\prime}(h)>0$ on $\partial \Omega$ (and thus by continuity on a neighborhood of $\partial \Omega)$. Therefore, for an optimal thickness h, the lower constraint $h \geq h_{\text {min }}$ must be saturated in this region, i.e., $h=h_{\text {min }}$ near $\partial \Omega$. On the contrary, at the point where u is maximum, we have $\nabla u=0$ and $u>0$, thus $\lambda^{\prime}(h)<0$. It implies that, in the vicinity of the maximum of u, we must have $h=h_{\max }$.
4. The objective function is

$$
J(h)=\int_{\Omega} j\left(\frac{u(h)}{\|u(h)\|}\right) d x .
$$

It is clear that, since j is even, i.e., $j(-w)=j(w)$, we have for any $t \neq 0$

$$
j\left(\frac{t u(h)}{\|t u(h)\|}\right)=j\left(\frac{u(h)}{\|u(h)\|}\right)
$$

so that the objective function is independent from the normalization of the eigenfunction.
For $h \in \mathcal{U}_{a d}, \hat{\lambda} \in \mathbb{R}, \hat{u} \in H_{0}^{1}(\Omega)$ and $\hat{p} \in H_{0}^{1}(\Omega)$ we define the Lagrangian

$$
\mathcal{L}(h, \hat{\lambda}, \hat{u}, \hat{p})=\int_{\Omega} j\left(\frac{\hat{u}}{\|\hat{u}\|}\right) d x+\int_{\Omega}(h \nabla \hat{u} \cdot \nabla \hat{p}-\hat{\lambda} \rho h \hat{u} \hat{p}) d x .
$$

5. For $\hat{u} \in L^{2}(\Omega)$ we define

$$
F(\hat{u})=\int_{\Omega} j\left(\frac{\hat{u}}{\|\hat{u}\|}\right) d x .
$$

By the chain rule lemma, since the derivative of $\|\hat{u}\|$ in the direction of ϕ is $\langle\hat{u}, \phi\rangle /\|\hat{u}\|$ with the notation $\langle\hat{u}, \phi\rangle=\int_{\Omega} \hat{u} \phi d x$, we obtain

$$
\left\langle F^{\prime}(\hat{u}), \phi\right\rangle=\int_{\Omega} F^{\prime}(\hat{u}) \phi d x=\int_{\Omega} j^{\prime}\left(\frac{\hat{u}}{\|\hat{u}\|}\right)\left(\frac{\phi}{\|\hat{u}\|}-\frac{\langle\hat{u}, \phi\rangle}{\|\hat{u}\|^{3}} \hat{u}\right) d x .
$$

Clearly we find $\left\langle F^{\prime}(\hat{u}), \hat{u}\right\rangle=0$. Equivalently,

$$
\int_{\Omega} F^{\prime}(\hat{u}) \phi d x=\int_{\Omega} j^{\prime}\left(\frac{\hat{u}}{\|\hat{u}\|}\right) \frac{\phi}{\|\hat{u}\|} d x-\left(\int_{\Omega} j^{\prime}\left(\frac{\hat{u}}{\|\hat{u}\|}\right) \frac{\hat{u}}{\|\hat{u}\|^{3}} d x\right) \int_{\Omega} \hat{u} \phi d x
$$

which implies

$$
F^{\prime}(\hat{u})=\frac{1}{\|\hat{u}\|} j^{\prime}\left(\frac{\hat{u}}{\|\hat{u}\|}\right)-\left(\int_{\Omega} j^{\prime}\left(\frac{\hat{u}}{\|\hat{u}\|}\right) \frac{\hat{u}}{\|\hat{u}\|^{3}} d x\right) \hat{u} .
$$

6. The variational formulation of the adjoint equation is, by definition,

$$
\left\langle\frac{\mathcal{L}}{\partial \hat{u}}(h, \lambda, u, p), \phi\right\rangle=0 \quad \forall \phi \in H_{0}^{1}(\Omega) .
$$

We compute

$$
\left\langle\frac{\mathcal{L}}{\partial \hat{u}}(h, \lambda, u, p), \phi\right\rangle=\int_{\Omega} F^{\prime}(u) \phi d x+\int_{\Omega}(h \nabla \phi \cdot \nabla p-\lambda \rho h \phi p) d x .
$$

7. By integration by parts we find that the adjoint p is a solution of

$$
\begin{cases}-\operatorname{div}(h \nabla p)-\lambda \rho h p=-\frac{1}{\|u\|} j^{\prime}\left(\frac{u}{\|u\|}\right)+\alpha u & \text { in } \Omega \\ p=0 & \text { on } \partial \Omega\end{cases}
$$

with

$$
\alpha=\left(\int_{\Omega} j^{\prime}\left(\frac{u}{\|u\|}\right) \frac{u}{\|u\|^{3}} d x\right)
$$

We check that the right hand side is orthogonal to u since

$$
\int_{\Omega} \frac{u}{\|u\|} j^{\prime}\left(\frac{u}{\|u\|}\right) d x=\alpha \int_{\Omega} u^{2} d x=\alpha\|u\|^{2} .
$$

Clearly, if p is a solution, then $p+C u$ is another possible solution. To determine the value of the constant C we use

$$
\frac{\mathcal{L}}{\partial \hat{\lambda}}(h, \lambda, u, p)=-\int_{\Omega} \rho h u p d x=0
$$

which implies that $C=-\int_{\Omega} \rho h u p d x$.
8. The derivative satisfies

$$
\left\langle J^{\prime}(h), k\right\rangle=\left\langle\frac{\partial \mathcal{L}}{\partial h}(h, \lambda, u, p), k\right\rangle .
$$

We compute

$$
\left\langle\frac{\partial \mathcal{L}}{\partial h}(h, \lambda, u, p), k\right\rangle=\int_{\Omega}(k \nabla u \cdot \nabla p-\lambda \rho k u p) d x,
$$

which implies

$$
J^{\prime}(h)=\nabla u \cdot \nabla p-\lambda \rho u p .
$$

2 Geometric optimization: 6 points

1. To define the Lagrangian we introduce two Lagrange multipliers $q \in$ $H^{1}\left(\mathbb{R}^{N}\right)$ and $\mu \in H^{1}\left(\mathbb{R}^{N}\right)$, which, together with $v \in H^{1}\left(\mathbb{R}^{N}\right)$, are the arguments of \mathcal{L}

$$
\mathcal{L}(\Omega, v, q, \mu)=\int_{\Omega} j(v) d x+\int_{\Omega}(\Delta v+f) q d x+\int_{\partial \Omega}(v-g) \mu d s .
$$

2. To get the adjoint problem we differentiate the Lagrangian with respect to v and set this partial derivative equal to 0 . Before that we perform two successive integration by parts

$$
\mathcal{L}(\Omega, v, q, \mu)=\int_{\Omega} j(v) d x+\int_{\Omega}(f q-\nabla q \cdot \nabla v) d x+\int_{\partial \Omega}\left(\frac{\partial v}{\partial n} q+(v-g) \mu\right) d s
$$

$$
\mathcal{L}(\Omega, v, q, \mu)=\int_{\Omega} j(v) d x+\int_{\Omega}(f q+\Delta q v) d x+\int_{\partial \Omega}\left(\frac{\partial v}{\partial n} q-\frac{\partial q}{\partial n} v+(v-g) \mu\right) d s
$$

For any $\phi \in H^{1}\left(\mathbb{R}^{N}\right)$ we have

$$
\begin{gather*}
\left\langle\frac{\partial \mathcal{L}}{\partial v}(\Omega, v, q, \mu), \phi\right\rangle=\int_{\Omega} j^{\prime}(v) \phi d x+\int_{\Omega} \Delta q \phi d x \tag{1}\\
\quad+\int_{\partial \Omega}\left(\frac{\partial \phi}{\partial n} q-\frac{\partial q}{\partial n} \phi+\phi \mu\right) d s
\end{gather*}
$$

We first take a test function ϕ with compact support in Ω, so we deduce that the optimal value of q, the adjoint p, satisfies

$$
-\Delta p=j^{\prime}(u) \quad \text { in } \Omega
$$

Then we take $\phi=0$ on $\partial \Omega$ but with no restriction on the value of $\frac{\partial \phi}{\partial n}$ on $\partial \Omega$, so that

$$
p=0 \quad \text { on } \partial \Omega
$$

This yields the adjoint problem

$$
\begin{cases}-\Delta p=j^{\prime}(u) & \text { in } \Omega, \\ p=0 & \text { on } \partial \Omega .\end{cases}
$$

Eventually, varying the trace of ϕ on $\partial \Omega$ gives the optimal value of the Lagrange multiplier

$$
\lambda=\frac{\partial p}{\partial n} \text { on } \partial \Omega .
$$

3. Formally we know that the shape derivative is given by

$$
J^{\prime}(\Omega)(\theta)=\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, u, p)(\theta) .
$$

We compute the partial derivative

$$
\frac{\partial \mathcal{L}}{\partial \Omega}(\Omega, v, q, \mu)(\theta)=\int_{\partial \Omega}(j(v)+f q-\nabla q \cdot \nabla v) \theta \cdot n d s+\int_{\partial \Omega}\left(\frac{\partial h}{\partial n}+H h\right) \theta \cdot n d s
$$

with $h=\frac{\partial v}{\partial n} q+(v-g) \mu$. Taking into account $p=0$ and $u=g$ on $\partial \Omega$, we deduce

$$
J^{\prime}(\Omega)(\theta)=\int_{\partial \Omega}(j(u)-\nabla p \cdot \nabla u) \theta \cdot n d s+\int_{\partial \Omega}\left(\frac{\partial u}{\partial n} \frac{\partial p}{\partial n}+\mu \frac{\partial(u-g)}{\partial n}\right) \theta \cdot n d s .
$$

Since $\lambda=\frac{\partial p}{\partial n}$ on $\partial \Omega$ and $\nabla_{t} p=0$ on $\partial \Omega$, it leads to

$$
J^{\prime}(\Omega)(\theta)=\int_{\partial \Omega}\left(j(u)+\frac{\partial p}{\partial n} \frac{\partial(u-g)}{\partial n}\right) \theta \cdot n d s .
$$

