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Control of an elastic membrane

For f ∈ L2(Ω), the vertical displacement u of the membrane is solution of






−∆u = f + v in Ω

u = 0 on ∂Ω,

where v is a control force which is our optimization variable (for example, a

piezzo-electric actuator). We define the set of admissible controls

K =
{

v ∈ L2(ω) | vmin(x) ≤ v(x) ≤ vmax(x) in ω and v = 0 in Ω \ ω
}

.

We want to control the membrane in order to reach a prescribed displacement

u0 ∈ L2(Ω) by minimizing (c > 0)

inf
v∈K

{

J(v) =
1

2

∫

Ω

(

|u− u0|2 + c|v|2
)

dx

}

.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Existence of an optimal control

Proposition.

There exists a unique optimal control v ∈ K.

Proof. v → u is an affine function from K into H1
0 (Ω).

The integrand of J is a positive ”polynomial” of degree two in v.

v → J(v) is strongly convex on K which is convex.

Remark. The existence is often more delicate to prove, but the important

thing here is to compute a gradient J ′(v) for numerical purposes.

Important notice: the solution u of the p.d.e. depends on the control v.

G. Allaire, Ecole Polytechnique Optimal design of structures



4

✞

✝

☎

✆
Gradient and optimality condition

The safest and simplest way of computing a gradient is to evaluate the

directional derivative

j(t) = J(v + tw) ⇒ j′(0) = 〈J ′(v), w〉 =
∫

Ω

J ′(v)w dx .

By linearity, we have u(v + tw) = u(v) + tũ(w) with






−∆ũ(w) = w in Ω

ũ(w) = 0 on ∂Ω.

In other words, ũ(w) = 〈u′(v), w〉.
Since J(v) is quadratic the computation is very simple and we obtain

∫

Ω

J ′(v)w dx =

∫

Ω

(

(u(v)− u0)ũ(w) + cvw
)

dx,

Unfortunately J ′(v) is not explicit because we cannot factorize out

w in ũ(w) !

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Adjoint state

To simplify the gradient formula we use the so-called adjoint state p, defined

as the unique solution in H1
0 (Ω) of







−∆p = u− u0 in Ω

p = 0 on ∂Ω.

We multiply the equation for ũ(w) by p and conversely

equation for p× ũ(w) ⇒
∫

Ω

∇p · ∇ũ(w) dx =

∫

Ω

(u− u0)ũ(w) dx

equation for ũ(w)× p ⇒
∫

Ω

∇ũ(w) · ∇p dx =

∫

Ω

wp dx

Comparing these two equalities we deduce that
∫

Ω

(u− u0)ũ(w) dx =

∫

Ω

wp dx ⇒
∫

Ω

J ′(v)w dx =

∫

Ω

(p+ cv)w dx.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Conclusion on the adjoint state

We found an explicit formula of the gradient

J ′(v) = p+ cv.

☞ Adjoint method: computation of the gradient by solving 2 boundary value

problems (u and p).

☞ If one does not use the adjoint: for each direction w one must solve 2

boundary value problems (u and ũ(w)) to evaluate 〈J ′(v), w〉.
For example, if J ′(v) is a vector of dimension n, its n components are

obtained by solving (n+ 1) problems !

☞ Very efficient in practice: it is the best possible method.

☞ Inconvenient: if one uses a black-box software to compute u, it can be

very difficult to modify it in order to get the adjoint state p.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Further remarks on the notion of adjoint state

☞ If the state equation is not self-adjoint (the bilinear form is not

symmetric), the operator of the adjoint equation is the transposed or

adjoint of the direct operator.

☞ If the state equation is time dependent with an initial condition, then the

adjoint equation is time dependent too, but backward with a final

condition.

☞ If the state equation is non-linear, the adjoint equation is linear.

The adjoint is not just a trick ! It can be deduced from the Lagrangian of the

problem.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
General method to find the adjoint equation

We consider the state equation as a constraint and, for any

(v̂, û, p̂) ∈ L2(Ω)×H1
0 (Ω)×H1

0 (Ω), we introduce the Lagrangian of the

minimization problem

L(v̂, û, p̂) = 1

2

∫

Ω

(

|û− u0|2 + c|v̂|2
)

dx+

∫

Ω

p̂(∆û+ f + v̂) dx,

where p̂ is the Lagrange multiplier for the constraint which links the two

independent variables v̂ and û.

Integrating by parts yields

L(v̂, û, p̂) = 1

2

∫

Ω

(

|û− u0|2 + c|v̂|2
)

dx+

∫

Ω

(−∇p̂ · ∇û+ fp̂+ v̂p̂) dx.

Proposition. The optimality conditions are equivalent to the stationnarity of

the Lagrangian, i.e.,
∂L
∂v

=
∂L
∂u

=
∂L
∂p

= 0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Proof

• ∂L
∂p

= 0 ⇒ by definition, we recover the equation satisfied by the state u.

• ∂L
∂u

= 0 ⇒ equation satisfied by the adjoint state p. Indeed,

ℓu(t) = L(v̂, û+ tφ, p̂) ⇒ ℓ′u(0) = 〈∂L
∂u

, φ〉 =
∫

Ω

((û− u0)φ−∇p̂ · ∇φ) dx

which is the variational formulation of the adjoint equation.

• ∂L
∂v

= 0 ⇒ formula for J ′(v). Indeed,

ℓv(t) = L(v̂ + tw, û, p̂) ⇒ ℓ′v(0) = 〈∂L
∂v

, w〉 =
∫

Ω

(cv̂ + p̂)w dx

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Simple formula for the derivative

In the preceding proof we obtained

J ′(v) =
∂L
∂v

(v, u, p)

with the state u and the adjoint p (both depending on v).

It is not a surprise ! Indeed,

J(v) = L(v, u, p̂) ∀p̂

because u is the state. Thus, if u(v) is differentiable, we get

〈J ′(v), w〉 = 〈∂L
∂v

(v, u, p̂), w〉+ 〈∂L
∂u

(v, u, p̂),
∂u

∂v
(w)〉

We then take p̂ = p, the adjoint, to obtain

〈J ′(v), w〉 = 〈∂L
∂v

(v, u, p), w〉

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Another interpretation of the adjoint state

The adjoint state p is the Lagrange multiplier for the constraint of the state

equation. But it is also a sensitivity function.

Define the Lagrangian

L(v̂, û, p̂, f) = 1

2

∫

Ω

(

|û− u0|2 + c|v̂|2
)

dx+

∫

Ω

(−∇p̂ · ∇û+ fp̂+ v̂p̂) dx.

We study the sensitivity of the minimum with respect to variations of f .

We denote by v(f), u(f) and p(f) the optimal values, depending on f . We

assume that they are differentiable with respect to f . Then

∇f

(

J(v(f))
)

= p(f).

p gives the derivative (without further computation) of the minimun with

respect to f !

Indeed J(v(f)) = L(v(f), u(f), p(f), f) and ∂L
∂v

= ∂L
∂u

= ∂L
∂p

= 0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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CHAPTER V

PARAMETRIC (OR SIZING)
OPTIMIZATION
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Optimization of a membrane thickness

Membrane occupying a bounded domain Ω in IRN . Forces f ∈ L2(Ω),

displacement u ∈ H1
0 (Ω) which is solution of







− div (h∇u) = f in Ω,

u = 0 on ∂Ω.

It is called parametric (or sizing) optimization because the computational

domain Ω is fixed. The thickness h(x) is just a parameter.

Admissible set of thicknesses h, defined by

Uad =

{

h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω,

∫

Ω

h(x) dx = h0|Ω|
}

.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Parametric shape optimization problem:

inf
h∈Uad

J(h) =

∫

Ω

j(u) dx

where u depends on h through the state equation, and j is a C1 function from

IR to IR such that |j(u)| ≤ C(u2 + 1) and |j′(u)| ≤ C(|u|+ 1).

Examples:

☞ Compliance or work done by the load (a measure of rigidity)

j(u) = fu

☞ Least square criteria to reach a target displacement u0 ∈ L2(Ω)

j(u) = |u− u0|2

G. Allaire, Ecole Polytechnique Optimal design of structures
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Continuity of the cost function

Proposition 5.1. The application

h → J(h) =

∫

Ω

j(u) dx

is continuous from Uad into IR.

Proof. By composition of the 2 continuous functions below.

Lemma 5.2. The map û →
∫

Ω
j(û) dx is continuous from L2(Ω) into IR.

Proof. By using the Lebesgue dominated convergence theorem.

Lemma 5.3. The map h → u is continuous from Uad into H1
0 (Ω).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Proof of Lemma 5.3.

Let hn ∈ Uad be a sequence such that ‖hn − h∞‖L∞(Ω) → 0. Let un be the

unique solution in H1
0 (Ω) of the membrane equation with the associated

thickness hn






− div (hn∇un) = f in Ω

un = 0 on ∂Ω,

⇔
∫

Ω

hn∇un · ∇φ dx =

∫

Ω

fφ dx ∀φ ∈ H1
0 (Ω).

We substract the variational formulation for um to that for un

∫

Ω

hn∇(un − um) · ∇φ dx =

∫

Ω

(hm − hn)∇um · ∇φ dx ∀φ ∈ H1
0 (Ω).

Choosing φ = un − um we deduce

‖∇(un − um)‖L2(Ω) ≤
C

h2
min

‖f‖L2(Ω)‖hm − hn‖L∞(Ω),

which proves that un is a Cauchy sequence in H1
0 (Ω) and thus converges.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.2 Existence theories

☞ None of the theorems studied in the chapter on optimization applies in

general !

☞ Usually there exists no optimal shape !

☞ It is an important issue because this non-existence phenomenon has

dramatic consequences for the numerical computations.

☞ Possible remedies: the definition of the set Uad of admissible designs has

to be modified to obtain existence.

1. Discretization: finite dimensional admissible set.

2. Regularization: compact admissible set.

3. A “miracle”: compliance minimization is a convex problem.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Generic non-existence of optimal shapes

☞ There are precise mathematical counter-examples (a bit complicated).

☞ It shows up numerically: non convergence, instabilities...

Intuitive counter-example (which can be rigorously justified) with 2 state

equations:

1 2

One seeks a membrane which is

1. strong for the horizontal loading 1,

2. weak for the vertical loading 2.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Definition of the counter-example







− div (h∇u1) = 0 in Ω,

h∇u1 · n = e1 · n on ∂Ω,







− div (h∇u2) = 0 in Ω,

h∇u2 · n = e2 · n on ∂Ω,

inf
h∈Uad

J(h) =

∫

∂Ω

e1 · nu1 ds−
∫

∂Ω

e2 · nu2 ds

We minimize the compliance in the e1 direction and we maximize it in the e2

direction.

The same membrane is subjected to the 2 loadings.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Hand-waving argument

If h is uniform ⇒ isotropic material ⇒ same mechanical behavior in all

directions, thus not optimal.

h

h

max

min

It is better to build horizontal layers of alternating small and large thicknesses:

⇒ laminated structure which is horizontally strong and vertically weak.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Hand-waving argument (continued)

✘ Verticaly, the lines of forces must cross the layers of minimal thickness:

the structure is thus weak.

✘ Horizontaly, the lines of forces follow the layers of maximal thickness: the

structure is thus strong.

✘ However, since the boundary conditions are uniform, the membrane is

horizontally stronger if the layers are finer because the lines of forces are

deviating from the horizontal to a lesser extent.

If h oscillates at a small scale, we obtain an anisotropic composite material.

To reach the minimum the oscillation scale must go to 0.

Therefore, there does not exist an optimal design !

G. Allaire, Ecole Polytechnique Optimal design of structures



22

✄

✂

�

✁5.2.2 Existence for a discretized model

Let (ωi)1≤i≤n be a partition of Ω such that

Ω =

n
⋃

i=1

ωi, ωi

⋂

ωj = ∅ for i 6= j.

We introduce the subspace Un
ad of Uad defined by

Un
ad = {h ∈ Uad , h(x) = hi in ωi, 1 ≤ i ≤ n} .

Any function h(x) ∈ Un
ad is uniquely characterized by a vector

(hi)1≤i≤n ∈ IRn: Un
ad is thus identified to a subspace of IRn.

We are now back to the finite dimensional case. It is much easier !

G. Allaire, Ecole Polytechnique Optimal design of structures
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Theorem 5.9 (finite dimension). The optimization problem

inf
h∈Un

ad

J(h)

admits at least one minimizer.

Proof. Since Un
ad is a compact subspace of IRn and J(h) is a continuous

function on Un
ad (see Proposition 5.1), we can apply Theorem 3.3 which gives

the existence of a minimizer of J in Un
ad.

Remark. What happens when n → ∞ ? Numerically, local or global

minimizers ? Conclusion: theorem of limited interest.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
5.2.3 Existence with a regularity constraint

Consider the space C1(Ω) which is a Banach space for the norm

‖φ‖
C1(Ω) = max

x∈Ω
(|φ(x)|+ |∇φ(x)|) .

Take a given constant R > 0, and introduce the subspace Ureg
ad

Ureg
ad =

{

h ∈ Uad ∩ C1(Ω) , ‖h‖
C1(Ω) ≤ R

}

.

Interpretation: “feasability” constraint because, in practice, the thickness

cannot rapidly vary.

Theorem 5.12. The optimization problem

inf
h∈U

reg

ad

J(h)

admits at least one minimizer.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. Consider a minimizing sequence (hn)n≥1

lim
n→∞

J(hn) =

(

inf
h∈U

reg

ad

J(h)

)

.

By definition, the sequence hn is bounded (uniformly in n) in the space

C1(Ω). We then apply a variant of Rellich theorem which states that one can

extract a subsequence (still denoted by hn for simplicity) which converges in

C0(Ω) towards a limit function h∞ (furthermore h∞ ∈ C1(Ω)). We already

know that the map h → J(h) is continuous from Uad into IR, thus

lim
n→∞

J(hn) = J(h∞),

which proves that h∞ is a global minimizer of J in Ureg
ad .

G. Allaire, Ecole Polytechnique Optimal design of structures
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Theorem of limited practical interest.

☞ How to choose the upper bound R in the definition of Ureg
ad ?

☞ Usually, no convergence when R goes to infinity.

☞ Numerically, global or local minimizers ?

☞ Numerically, the following regularity constraint is prefered

‖h‖H1(Ω) ≤ R.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.3.1 Computation of a continuous gradient







− div (h∇u) = f in Ω

u = 0 on ∂Ω.

U = {h ∈ L∞(Ω) , ∃h0 > 0 such that h(x) ≥ h0 in Ω} .

Lemma 5.15. The application h → u(h), which gives the solution

u(h) ∈ H1
0 (Ω) for h ∈ U , is differentiable and its directional derivative at h in

the direction k ∈ L∞(Ω) is given by

〈u′(h), k〉 = v,

where v is the unique solution in H1
0 (Ω) of







− div (h∇v) = div (k∇u) in Ω

v = 0 on ∂Ω.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. Formaly, one simply differentiates the equation with respect to h.

However, to be mathematically rigorous one should rather work at the level of

the variational formulation (see the textbook).

To compute the directional derivative, we define h(t) = h+ tk for t > 0. Let

u(t) be the solution for the thickness h(t). Deriving with respect to t leads to






− div (h(t)∇u′(t)) = div (h′(t)∇u(t)) in Ω

u′(t) = 0 on ∂Ω,

and, since h′(0) = k, we deduce u′(0) = v.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma 5.17. For h ∈ U , let u(h) be the state in H1
0 (Ω) and

J(h) =

∫

Ω

j
(

u(h)
)

dx ,

where j is a C1 function from IR into IR such that |j(u)| ≤ C(u2 + 1) and

|j′(u)| ≤ C(|u|+ 1) for any u ∈ IR. The application J(h), from U into IR, is

differentiable and its directional derivative at h in the direction k ∈ L∞(Ω) is

given by

〈J ′(h), k〉 =
∫

Ω

j′
(

u(h)
)

v dx ,

where v = 〈u′(h), k〉 is the unique solution in H1
0 (Ω) of







− div (h∇v) = div (k∇u) in Ω

v = 0 on ∂Ω.

Proof. By simple composition of differentiable applications.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Adjoint state

We introduce an adjoint state p defined as the unique solution in H1
0 (Ω) of







− div (h∇p) = −j′(u) in Ω

p = 0 on ∂Ω.

Theorem 5.19. The cost function J(h) is differentiable on U and

J ′(h) = ∇u · ∇p .

If h ∈ Uad is a local minimizer of J in Uad, it satisfies the necessary optimality

condition
∫

Ω

∇u · ∇p (k − h) dx ≥ 0

for any k ∈ Uad.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proof. To make explicit J ′(h) from Lemma 5.17, we must eliminate

v = 〈u′(h), k〉. We use the adjoint state for that: multiplying the equation for

v by p and that for p by v, we integrate by parts
∫

Ω

h∇p · ∇v dx = −
∫

Ω

j′(u)v dx

∫

Ω

h∇v · ∇p dx = −
∫

Ω

k∇u · ∇p dx

Comparing these two equalities we deduce

〈J ′(h), k〉 =
∫

Ω

j′(u)v dx =

∫

Ω

k∇u · ∇p dx,

for any k ∈ L∞(Ω). Since ∇u · ∇p belongs to L1(Ω), we check that J ′(h) is

continuous on L∞(Ω).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
How to find the adjoint state

For independent variables (ĥ, û, p̂) ∈ L∞(Ω)×H1
0 (Ω)×H1

0 (Ω), we introduce

the Lagrangian

L(ĥ, û, p̂) =
∫

Ω

j(û) dx+

∫

Ω

p̂
(

− div
(

ĥ∇û
)

− f
)

dx,

where p̂ is a Lagrange multiplier (a function) for the constraint which

connects u to h. By integration by parts we get

L(ĥ, û, p̂) =
∫

Ω

j(û) dx+

∫

Ω

(

ĥ∇p̂ · ∇û− fp̂
)

dx,

The partial derivative of L with respect to u in the direction φ ∈ H1
0 (Ω) is

〈∂L
∂u

(ĥ, û, p̂), φ〉 =
∫

Ω

j′(û)φ dx+

∫

Ω

(

ĥ∇p̂ · ∇φ
)

dx,

which, when it vanishes, is nothing else than the variational formulation of the

adjoint equation.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
A simple formula for the derivative

The Lagrangian yields the following formula

J ′(h) =
∂L
∂h

(h, u, p)

with the state u and the adjoint p.

This is not a surprise ! Indeed,

J(h) = L(h, u, p̂) ∀p̂

because u is the state. Thus, if u(h) is differentiable, we get

〈J ′(h), k〉 = 〈∂L
∂h

(h, u, p̂), k〉+ 〈∂L
∂u

(h, u, p̂),
∂u

∂h
(k)〉

Then, taking p̂ = p, the adjoint, we obtain

〈J ′(h), k〉 = 〈∂L
∂h

(h, u, p), k〉

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.4 The self-adjoint case: the compliance

When j(u) = fu, we find p = −u since j′(u) = f . This particular case is said

to be self-adjoint.

We use the dual or complementary energy
∫

Ω

fu dx = min
τ∈L2(Ω)N

− divτ=f in Ω

∫

Ω

h−1|τ |2dx .

We can rewrite the optimization problem as a double minimization

inf
h∈Uad

min
τ∈L2(Ω)N

− divτ=f in Ω

∫

Ω

h−1|τ |2dx ,

and the order of minimization is irrelevent.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁5.4.1 An existence result

We rewrite the problem under the form

inf
(h,τ)∈Uad×H

∫

Ω

h−1|τ |2dx .

with H = {τ ∈ L2(Ω)N , − divτ = f in Ω}.
Lemma 5.8. The function φ(a, σ) = a−1|σ|2, defined from IR+ × IRN into IR,

is convex and satisfies

φ(a, σ) = φ(a0, σ0) + φ′(a0, σ0) · (a− a0, σ − σ0) + φ(a, σ − a

a0
σ0),

where the derivative is given by

φ′(a0, σ0) · (b, τ) = − b

a20
|σ0|2 +

2

a0
σ0 · τ.

Theorem 5.23. There exists a minimizer to the shape optimization problem.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
5.4.2 Optimality conditions

Lemma 5.25. Take τ ∈ L2(Ω)N . The problem

min
h∈Uad

∫

Ω

h−1|τ |2dx

admits a minimizer h(τ) in Uad given by

h(τ)(x) =















h∗(x) if hmin < h∗(x) < hmax

hmin if h∗(x) ≤ hmin

hmax if h∗(x) ≥ hmax

with h∗(x) =
|τ(x)|√

ℓ
,

where ℓ ∈ IR+ is the Lagrange multiplier such that

∫

Ω

h(x) dx = h0|Ω|.

Proof. The function h →
∫

Ω
h−1|τ |2dx is convex from Uad into IR and we

easily compute its derivative.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.5 Discrete approach

Is the problem simpler after discretization ?

Applying a finite element method, the equation becomes a linear system of

order n

K(h)y(h) = b

where K(h) is the rigidity matrix of the membrane (which depends on h), b

the right hand side of the forces f , y(h) the vector of the coordinates of the

solution u in the finite element basis (of dimension n). We also discretize h

Udisc
ad =

{

h ∈ IRn , hmax ≥ hi ≥ hmin > 0,

n
∑

i=1

cihi = h0|Ω|
}

,

where
∑n

i=1 cihi is an approximation of
∫

Ω
h(x)dx.
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Approximating the cost function, the discrete problem is

inf
h∈Udisc

ad

{

Jdisc(h) = jdisc(y(h))
}

,

where jdisc is a smooth approximation of j from IRn into IR. In the case of the

compliance

jdisc(y(h)) = b · y(h) = K(h)−1b · b.
In the case of a least square criteria for a target displacement

jdisc(y(h)) = B(y(h)− y0) · (y(h)− y0).

Practical question: how to compute the gradient Jdisc(h) ?

Applications: optimality conditions, numerical method of minimization.
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✄

✂

�

✁A naive idea

Explicit formula: y(h) = K(h)−1b, thus

(

Jdisc
)′
(h) = y′(h)

(

jdisc
)′
(y(h)) with y′(h) = −K(h)−1K(h)′K(h)−1b.

Notations: f ′(h) = (∂f(h)/∂hi)1≤i≤n.

Inoperative because one must solve n+ 1 linear systems with the matrix K(h)

to obtain all components of y′(h). Recall that K(h) is a very large matrix (of

size n) and its inverse is never explicitly computed.

As a consequence, we do not use the explicit formula y(h) = K(h)−1b. We

rather use an adjoint method.
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✞

✝

☎

✆
Adjoint state

We define the adjoint state p ∈ IRn solution of

K(h)p(h) = −
(

jdisc
)′
(y(h)).

Taking the scalar product of K(h)y′(h) = −K′(h)y(h) with p(h) and that of

K(h)p(h) = −
(

jdisc
)′
(y(h)) with y′(h), we obtain, for each component i,

K(h)p(h) · ∂y

∂hi

(h) = −∂K

∂hi

(h)y(h) · p(h) = −
(

jdisc
)′
(y(h)) · ∂y

∂hi

(h),

from which we deduce

(

Jdisc
)′
(h) = K′(h)y(h) · p(h) =

(

∂K

∂hi

(h)y(h) · p(h)
)

1≤i≤n

.

In practice, this is the very formula that we use for evaluating the gradient
(

Jdisc
)′
(h) since it requires only two solutions of linear systems.
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✄

✂

�

✁Conclusion

There is no simplification in using a discrete approach rather than a

continuous one.

Some authors prefer to discretize first, optimize afterwards. It guarantees a

perfect compatibility between the gradient and the cost function, but it

requires a deep knowledge of the numerical solver (almost impossible if one

has not written himself the source code !).

Here, we follow another philosophy: first optimize in a continuous framework,

then discretize. It is much simpler ! No precision is lost if the finite element

spaces are adequately chosen.
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