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✞

✝

☎

✆
Reminder: membrane model problem

Fixed membrane Ω ⊂ IRN , forces f ∈ L2(Ω), displacement u ∈ H1
0 (Ω)







− div (h∇u) = f in Ω,

u = 0 on ∂Ω.

inf
h∈Uad

J(h) =

∫

Ω

j(u) dx

Admissible set of thicknesses

Uad =
{

h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω,
∫

Ω
h(x) dx = h0|Ω|

}

.

Theorem 5.19. The cost function J(h) is differentiable on Uad and

J ′(h) = ∇u · ∇p

where p is the adjoint state, unique solution in H1
0 (Ω) of







− div (h∇p) = −j′(u) in Ω

p = 0 on ∂Ω.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.3.2 Numerical algorithm

✞

✝

☎

✆
Projected gradient

1. Initialization of the thickness h0 ∈ Uad (by example, a constant function

which satisfies the constraints).

2. Iterations until convergence, for n ≥ 0:

hn+1 = PUad

(

hn − µJ ′(hn)
)

,

where µ > 0 is a descent step, PUad
is the projection operator on the

closed convex set Uad and the derivative is given by

J ′(hn) = ∇un · ∇pn

with the state un and the adjoint pn (associated to the thickness hn).

To make the algorithm fully explicit, we have to precise what is the projection

operator PUad
.

G. Allaire, Ecole Polytechnique Optimal design of structures
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We characterize the projection operator PUad

(

PUad
(h)

)

(x) = max (hmin,min (hmax, h(x) + ℓ))

where ℓ is the unique Lagrange multiplier such that
∫

Ω

PUad
(h) dx = h0|Ω|.

The determination of the constant ℓ is not explicit: we must use an iterative

algorithm based on the property of the function

ℓ → F (ℓ) =

∫

Ω

max (hmin,min (hmax, h(x) + ℓ)) dx

which is strictly increasing on the interval [ℓ−, ℓ+], reciprocal image of

[hmin|Ω|, hmax|Ω|]. Thanks to this monotonicity property, we propose a simple

iterative algorithm: we first bracket the root by an interval [ℓ1, ℓ2] such that

F (ℓ1) ≤ h0|Ω| ≤ F (ℓ2),

then we proceed by dichotomy to find the root ℓ.

G. Allaire, Ecole Polytechnique Optimal design of structures
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☞ In practice, we rather use a projected gradient algorithm with a variable

step (not optimal) which guarantees the decrease of the functional

J(hn+1) < J(hn).

☞ The algorithm is rather slow. A possible acceleration is based on the

quasi-Newton algorithm.

☞ The overhead generated by the adjoint computation is very modest : one

has to build a new right-hand-side (using the state) and solve the

corresponding linear system (with the same rigidity matrix).

☞ Convergence is detected when the optimality condition is satisfied with a

threshold ǫ > 0

|hn −max (hmin,min (hmax, hn − µnJ
′(hn) + ℓn))| ≤ ǫµnhmax.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.4.3 Numerical algorithm for the compliance

When j(u) = fu, we find p = −u since j′(u) = f . This particular case is said

to be self-adjoint.

We use the dual or complementary energy

J(h) =

∫

Ω

fu dx = min
τ∈L2(Ω)N

− divτ=f in Ω

∫

Ω

h−1|τ |2dx .

We can rewrite the optimization problem as a double minimization

inf
h∈Uad

min
τ∈L2(Ω)N

− divτ=f in Ω

∫

Ω

h−1|τ |2dx ,

and the order of minimization is irrelevent.

The problem is convex and admits a minimizer.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma 5.25 (optimality conditions). For a given τ ∈ L2(Ω)N , the

problem

min
h∈Uad

∫

Ω

h−1|τ |2dx

admits a minimizer h(τ) in Uad given by

h(τ)(x) =















h∗(x) if hmin < h∗(x) < hmax

hmin if h∗(x) ≤ hmin

hmax if h∗(x) ≥ hmax

with h∗(x) =
|τ(x)|√

ℓ
,

where ℓ ∈ IR+ is the Lagrange multiplier such that

∫

Ω

h(x) dx = h0|Ω|.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Optimality criteria method

1. Initialization of the thickness h0 ∈ Uad.

2. Iterations until convergence, for n ≥ 0:

(a) Computation of the state τn, unique solution of

min
τ∈L2(Ω)N

− divτ=fin Ω

∫

Ω

h−1
n |τ |2dx ,

with the previous thickness hn.

(b) Update of the thickness :

hn+1 = h(τn),

where h(τ) is the minimizer defined by the optimality condition. The

Lagrange multiplier is computed by dichotomy.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Remark that minimizing in τ is equivalent to solving the equation






− div (hn∇un) = f in Ω

un = 0 on ∂Ω,

and we recover τn by the formula

τn = hn∇un.

This algorithm can be interpreted as an alternate minimization in τ and h of

the objective function. In particular, we deduce that the objective function

always decreases through the iterations

J(hn+1) =

∫

Ω

h−1
n+1|τn+1|2dx ≤

∫

Ω

h−1
n+1|τn|2dx ≤

∫

Ω

h−1
n |τn|2dx = J(hn).

This algorithm can also be interpreted as an optimality criteria method.

G. Allaire, Ecole Polytechnique Optimal design of structures
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5.6 Thickness optimization of an elastic plate

Ω

h



























− divσ = f in Ω

σ = 2µh e(u) + λh tr(e(u)) Id in Ω

u = 0 on ΓD

σn = g on ΓN

with the strain tensor e(u) = 1
2

(

∇u+ (∇u)t
)

.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Set of admissible thicknesses:

Uad =

{

h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω,

∫

Ω

h(x) dx = h0|Ω|
}

.

The compliance optimization can be written

inf
h∈Uad

J(h) =

∫

Ω

f · u dx+

∫

ΓN

g · u ds.

The theoretical results are the same.

We apply the optimality criteria method.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Boundary conditions and mesh for an elastic plate

FreeFem++ computations ; scripts available on the web page

http://www.cmap.polytechnique.fr/~allaire/cours X annee3.html

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Thickness at iterations 1, 5, 10, 30 (uniform initialization).

hmin = 0.1, hmax = 1.0, h0 = 0.5 (increasing thickness from white to black)

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Comparing the initial and final deformed shapes

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Convergence history
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✞

✝

☎

✆
Numerical instabilities (checkerboards)

☞ Finite elements P2 for u and P0 for h ⇒ OK

☞ Finite elements P1 for u and P0 for h ⇒ unstable !

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Numerical counter-example of non-existence of an optimal shape (in elasticity)

We look for the design which horizontally is less deformed and vertically more

deformed.

Γ

Γ

Γ

Γ

−

+

D N

boundary conditions target displacement
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✞

✝

☎

✆
Optimal shapes for meshes with 448, 947, 3992, 7186 triangles

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
No convergence under mesh refinement !

More and more details appear when the mesh size is decreased.

The value of the objective function decreases with the mesh size.

Nombre d’iterations
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5.6.4 Regularization

Triple motivation:

☞ To avoid instabilities when using P1 finite elements for u and P0 for h

(less expensive than P2-P0).

☞ To obtain an algorithm which converges by mesh refinement.

☞ To adhere to the “regularized” framework of section 5.2.3 (with existence

of optimal solutions).

G. Allaire, Ecole Polytechnique Optimal design of structures
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Main idea: we change the scalar product

〈J ′(h), k〉 =
∫

Ω

k∇u · ∇p dx ∀ k ∈ Uad.

Previously we identified Uad to a subspace of L2(Ω), thus

〈J ′(h), k〉 =
∫

Ω

J ′(h) k dx ⇒ J ′(h) = ∇u · ∇p .

Now, we identify a “regularized” admissible set Ureg
ad to a subspace H1(Ω),

thus

〈J ′(h), k〉 =
∫

Ω

(∇J ′(h) · ∇k + J ′(h)k) dx ,

and we deduce a new formula for the gradient










−∆J ′(h) + J ′(h) = ∇u · ∇p in Ω,

∂J ′(h)

∂n
= 0 on ∂Ω.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Regularized optimal shape

Finite elements P1-P0. Compliance minimization. Alternate directions

algorithm.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Convergence by mesh refinement

Same case as the “numerical counter-examples” (meshes 448, 947, 3992, 7186).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Conclusion

☞ Regularization works !

☞ It costs a bit more (solving an additional Laplacian to compute the

gradient).

☞ Difficulty in choosing the regularization parameter ǫ > 0 (which can be

interpreted as a lengthscale)

−ǫ2∆J ′(h) + J ′(h) = ∇u · ∇p in Ω

☞ It has a tendency to smooth the geometric details.

G. Allaire, Ecole Polytechnique Optimal design of structures
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CHAPTER VI

GEOMETRIC OPTIMIZATION (First Part)

G. Allaire, Ecole Polytechnique Optimal design of structures
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Geometric optimization of a membrane

A membrane is occupying a variable domain Ω in IRN with boundary

∂Ω = Γ ∪ ΓN ∪ ΓD,

where Γ 6= ∅ is the variable part of the boundary, ΓD 6= ∅ is a fixed part of the

boundary where the membrane is clamped, and ΓN 6= ∅ is another fixed part

of the boundary where the loads g ∈ L2(ΓN ) are applied.



























−∆u = 0 in Ω

u = 0 on ΓD

∂u
∂n

= g on ΓN

∂u
∂n

= 0 on Γ

(No bulk forces to simplify)

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Boundary variation in geometric optimization
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✞

✝

☎

✆
Shape optimization of a membrane

Geometric shape optimization problem

inf
Ω∈Uad

J(Ω)

We must defined the set of admissible shapes Uad. That is the main difficulty.

Examples:

☞ Compliance or work done by the load (rigidity measure)

J(Ω) =

∫

ΓN

gu ds

☞ Least square criterion for a target displacement u0 ∈ L2(Ω)

J(Ω) =

∫

Ω

|u− u0|2dx

where u depends on Ω through the state equation.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.2 Existence results

In full generality, there does not exist any optimal shape !

☞ Existence under a geometric constraint.

☞ Existence under a topological constraint.

☞ Existence under a regularity constraint.

☞ Counter-example in the absence of these conditions.

related questions:

☞ How to pose the problem ? How to parametrize shapes ?

☞ Calculus of variations for shapes.

☞ Mathematical framework for establishing numerical algorithms.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.2.1 Counter-example of non-existence

β

α

Let D =]0; 1[×]0;L[ be a rectangle in IR2. We fill D with a mixture of two

materials, homogeneous isotropic, characterized by an elasticity coefficient β

for the strong material, and α for the weak material (almost like void) with

β >> α > 0. We denote by χ(x) = 0, 1 the characteristic function of the

weak phase α, and we define

aχ(x) = αχ(x) + β(1− χ(x)).

(Other possible interpretation: variable thickness which can take only two values.)

G. Allaire, Ecole Polytechnique Optimal design of structures
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State equation:






− div (aχ∇uχ) = 0 in D

aχ∇uχ · n = e1 · n on ∂D

Uniform horizontal loading.

Objective function: compliance

J(χ) =

∫

∂D

(e1 · n)uχds

Admissible set: no geometric or smoothness constraint, i.e.

χ ∈ L∞(D; {0, 1}). There is however a volume constraint

Uad =

{

χ ∈ L∞ (D; {0, 1}) such that
1

|D|

∫

D

χ(x) dx = θ

}

,

otherwise the strong phase would always be prefered !

The shape optimization problem is:

inf
χ∈Uad

J(χ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Non-existence

Proposition 6.2. If 0 < θ < 1, there does not exist an optimal shape in the

set Uad.

Remark. Cause of non-existence = lack of geometric or smoothness

constraint on the shape boundary.

J(χ )
3 > J(χ )

6

Many small holes are better than just a few bigger holes !

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Mechanical intuition

1/k

1−θ

θ

= α

= β

Minimizing sequence k → +∞: k rigid fibers, aligned in the principal stress

e1, and uniformly distributed. To achieve a uniform boundary condition, the

fibers must be finer and finer and alternate more and more weak and strong

ones.

This is the main idea of a minimizing sequence which never achieves the

minimum.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
6.2.2 Existence under a geometric condition

Let D be a given working domain. We define

Uad =







Ω ⊂ D such that
(i) Ω satisfies the uniform cone property

(ii) ΓD

⋃

ΓN ⊂ ∂Ω and |Ω| = V0







where V0 is a fixed volume.

Theorem 6.6 (D. Chenais). The shape optimization problem

inf
Ω∈Uad

J(Ω)

admits at least one minimizer.

Remark. Condition (i) implies a bound on the boundary curvature radius

and prevents the creation of small holes.

G. Allaire, Ecole Polytechnique Optimal design of structures
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✄

✂

�

✁Definition of a cone

Let θ ∈]0, π/2[ be an angle, h > 0 a height, and ξ ∈ IRN a unit direction. A

cone of angle θ, height h and direction ξ is the open set

C(θ, h, ξ) =
{

x ∈ IRN such that x · ξ > ‖x‖ cos θ et ‖x‖ < h
}

.

For y ∈ IRN , the cone of vertex y is defined by

y + C(θ, h, ξ) = {y + x such that x ∈ C(θ, h, ξ)} .

ξ

h

θ

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Uniform cone property

Let θ be an angle, h > 0 a height, and r > 0 a radius. An open set Ω is said to

“satisfy the uniform cone property” if, for any x ∈ ∂Ω, there exists a unit

vector ξx such that

∀ y ∈ B(x, r) ∩ Ω y + C(θ, h, ξx) ⊂ Ω.

Ω

x

B(x,r)

y
x+C

y+C

Ω

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
6.2.3 Existence under a topological condition (in dimension N = 2)

A working domain D ⊂ IR2 is fixed. For any shape Ω ⊂ D we define its holes

number, or more precisely, the number of connected components of its

complementary

#cc(D \ Ω).
For a given integer k and a volume V0, we define

Uad =







Ω ⊂ D such that
(i) #cc(D \ Ω) ≤ k

(ii) ΓD

⋃

ΓN ⊂ ∂Ω and |Ω| = V0







Theorem 6.9 (V. Sverak, A. Chambolle). The shape optimization

problem

inf
Ω∈Uad

J(Ω)

admits at least one minimizer.

Remark. Condition (i) prevents the creation of too many holes.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.2.4 Existence under a regularity condition

Mathematical framework for shape deformation based on diffeomorphisms

applied to a reference domain Ω0 (useful to compute a gradient too).

A space of diffeomorphisms (or smooth one-to-one map) in IRN

T =
{

T such that (T − Id) and (T−1 − Id) ∈ W 1,∞(IRN ; IRN )
}

.

(They are perturbations of the identity Id: x → x.)

Definition of W 1,∞(IRN ; IRN ). Space of Lipschitzian vectors fields:

φ :







IRN → IRN

x → φ(x)

‖φ‖W 1,∞(IRN ;IRN ) = sup
x∈IRN

(|φ(x)|IRN + |∇φ(x)|IRN×N ) < ∞

Remark: φ is continuous but its gradient is jut bounded. Actually, one can

replace W 1,∞(IRN ; IRN ) by C1
b (IR

N ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Space of admissible shapes

Let Ω0 be a reference smooth open set.

C(Ω0) = {Ω such that there exists T ∈ T ,Ω = T (Ω0)} .

☞ Each shape Ω is parametrized by a diffeomorphism T (not unique !).

☞ All admissible shapes have the same topology.

☞ We define a pseudo-distance on D(Ω0)

d(Ω1,Ω2) = inf
T∈T |T (Ω1)=Ω2

(

‖T − Id‖+ ‖T−1 − Id‖
)

W 1,∞(IRN ;IRN )
.

☞ If Ω0 is bounded, it is possible to use C1(IRN ; IRN ) instead of

W 1,∞(IRN ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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✞

✝

☎

✆
Existence theory

Space of admissible shapes

Uad =
{

Ω ∈ C(Ω0) such that ΓD

⋃

ΓN ⊂ ∂Ω and |Ω| = V0

}

.

For a fixed constant R > 0, we introduce the smooth subspace

Ureg
ad = {Ω ∈ Uad such that d(Ω,Ω0) ≤ R, } .

Interpretation: in practice, it is a “feasability” constraint.

Theorem 6.11. The shape optimization problem

inf
Ω∈Ureg

ad

J(Ω)

admits at least one optimal solution.

Remark. All shapes share the same topology in Uad. Furthermore, the shape

boundaries in Ureg
ad cannot oscillate too much.

G. Allaire, Ecole Polytechnique Optimal design of structures
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6.3 Shape differentiation

Goal: to compute a derivative of J(Ω) by using the parametrization based on

diffeomorphisms T .

We restrict ourselves to diffeomorphisms of the type

T = Id + θ with θ ∈ W 1,∞(IRN ; IRN )

Idea: we differentiate θ → J
(

( Id + θ)Ω0

)

at 0.

Remark. This approach generalizes the Hadamard method of boundary

shape variations along the normal: Ω0 → Ωt for t ≥ 0

∂Ωt =
{

xt ∈ IRN | ∃x0 ∈ ∂Ω0 | xt = x0 + t g(x0)n(x0)
}

with a given incremental function g.

G. Allaire, Ecole Polytechnique Optimal design of structures
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x

Ω

x+  (x)θ

0
  d 0(Ι  +θ)Ω

The shape Ω = ( Id + θ)(Ω0) is defined by

Ω = {x+ θ(x) | x ∈ Ω0} .

Thus θ(x) is a vector field which plays the role of the displacement of the

reference domain Ω0.

G. Allaire, Ecole Polytechnique Optimal design of structures
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Lemma 6.13. For any θ ∈ W 1,∞(IRN ; IRN ) satisfying ‖θ‖W 1,∞(IRN ;IRN ) < 1,

the map T = Id + θ is one-to-one into IRN and belongs to the set T .

Proof. Based on the formula

θ(x)− θ(y) =

∫ 1

0

(x− y) · ∇θ
(

y + t(x− y)
)

dt ,

we deduce that | θ(x)− θ(y) |≤ ‖θ‖W 1,∞(IRN ;IRN ) | x− y | and θ is a strict

contraction. Thus, T = Id + θ is one-to-one into IRN .

Indeed, ∀b ∈ IRN the map K(x) = b− θ(x) is a contraction and thus admits a

unique fixed point y, i.e., b = T (y) and T is therefore one-to-one into IRN .

Since ∇T = I +∇θ (with I = ∇ Id) and the norm of the matrix ∇θ is strictly

smaller than 1 (‖I‖ = 1), the map ∇T is invertible. We then check that

(T−1 − Id) ∈ W 1,∞(IRN ; IRN ).

G. Allaire, Ecole Polytechnique Optimal design of structures
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Definition of the shape derivative

Definition 6.15. Let J(Ω) be a map from the set of admissible shapes C(Ω0)

into IR. We say that J is shape differentiable at Ω0 if the function

θ → J
(

( Id + θ)(Ω0)
)

is Fréchet differentiable at 0 in the Banach space W 1,∞(IRN ; IRN ), i.e., there

exists a linear continuous form L = J ′(Ω0) on W 1,∞(IRN ; IRN ) such that

J
(

( Id + θ)(Ω0)
)

= J(Ω0) + L(θ) + o(θ) , with lim
θ→0

|o(θ)|
‖θ‖ = 0 .

J ′(Ω0) is called the shape derivative and J ′(Ω0)(θ) is a directional derivative.

G. Allaire, Ecole Polytechnique Optimal design of structures
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The directional derivative J ′(Ω0)(θ) depends only on the normal

component of θ on the boundary of Ω0.

This surprising property is linked to the fact that the internal variations of

the field θ does not change the shape Ω, i.e.,

θ ∈ C1
c (Ω)

N and ‖θ‖ << 1 ⇒ ( Id + θ)Ω = Ω.

x

x+

Ω

n(x)

(x)θ

(x)θ

(I+θ)Ω

0

0

G. Allaire, Ecole Polytechnique Optimal design of structures
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Proposition 6.15. Let Ω0 be a smooth bounded open set of IRN . Let J be a

differentiable map at Ω0 from C(Ω0) into IR. Its directional derivative

J ′(Ω0)(θ) depends only on the normal trace on the boundary of θ, i.e.

J ′(Ω0)(θ1) = J ′(Ω0)(θ2)

if θ1, θ2 ∈ C1(IRN ; IRN ) satisfy

θ1 · n = θ2 · n on ∂Ω0.
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Proof. Take θ = θ2 − θ1 and introduce the solution of






dy
dt
(t) = θ

(

y(t)
)

y(0) = x

which satisfies

y(t+ t′, x, θ) = y(t, y(t′, x, θ), θ) for any t, t′ ∈ IR

y(λt, x, θ) = y(t, x, λθ) for any λ ∈ IR

The we define the one-to-one map from IRN into IRN , x → eθ(x) = y(1, x, θ),

the inverse of which is e−θ, e0 = Id, and t → etθ(x) is the solution of the o.d.e.
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Lemma 6.20. Let θ ∈ W 1,∞(IRN ; IRN ) be such that θ · n = 0 on ∂Ω0. Then

etθ(Ω0) = Ω0 for all t ∈ IR.

Proof (by contradiction). Assume ∃x ∈ Ω0 such that the trajectory y(t, x)

escapes from Ω0 (or conversely). Thus ∃t0 > 0 such that x0 = y(t0, x) ∈ ∂Ω0.

Locally the boundary ∂Ω0 is parametrized by an equation φ(x) = 0 and the

normal is n = n0/|n0| with n0 = ∇φ (defined around ∂Ω0).

We modify the vector field as θ̃ = θ − (θ · n)n to obtain a modified trajectory

ỹ(t, x0) such that, for any t ≥ t0,

d

dt

(

φ(ỹ(t, x))
)

=
dỹ

dt
· ∇φ(ỹ) = θ̃(ỹ) · n|n0| = 0

Since φ(ỹ(t0, x0)) = 0, we deduce φ(ỹ(t, x0)) = 0, i.e., the trajectory ỹ stays on

∂Ω0. Since θ · n = 0 on ∂Ω0, ỹ is also a trajectory for the vector field θ.

Uniqueness of the o.d.e.’s solution yields ỹ(t) = y(t) ∈ ∂Ω0 for any t which is a

contradiction with x ∈ Ω0.

Remark. The crucial point is that θ is tangent to the boundary ∂Ω0.
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Proof of Proposition 6.15 (Ctd.)

Since etθ(Ω0) = Ω0 for any t ∈ IR, the function J is constant along this path

and
dJ

(

etθ(Ω0)
)

dt
(0) = 0.

By the chain rule lemma we deduce

dJ
(

etθ(Ω0)
)

dt
(0) = J ′(Ω0)

(

detθ

dt

)

(0) = J ′(Ω0) (θ) = 0,

because the path etθ(x) satisfies

detθ(x)

dt
(0) = θ(x),

which yields the result by linearity in θ.
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Review of known formulas

To compute shape derivatives we need to recall how to change variables in

integrals.

Lemma 6.21. Let Ω0 be an open set of IRN . Let T ∈ T be a diffeomorphism

and 1 ≤ p ≤ +∞. Then f ∈ Lp
(

T (Ω0)
)

if and only if f ◦ T ∈ Lp(Ω0), and

∫

T (Ω0)

f dx =

∫

Ω0

f ◦ T | det∇T | dx

∫

T (Ω0)

f | det(∇T )−1 | dx =

∫

Ω0

f ◦ T dx.

On the other hand, f ∈ W 1,p
(

T (Ω0)
)

if and only if f ◦ T ∈ W 1,p(Ω0), and

(

∇f
)

◦ T =
(

(∇T )−1
)t ∇(f ◦ T ).

(t = adjoint or transposed matrix)
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Change of variables in a boundary integral.

Lemma 6.23. Let Ω0 be a smooth bounded open set of IRN . Let

T ∈ T ∩ C1(IRN ; IRN ) be a diffeomorphism and f ∈ L1
(

∂T (Ω0)
)

.

Then f ◦ T ∈ L1(∂Ω0), and we have
∫

∂T (Ω0)

f ds =

∫

∂Ω0

f ◦ T | det∇T |
∣

∣

∣

(

(∇T )−1
)t
n
∣

∣

∣

IRN
ds,

where n is the exterior unit normal to ∂Ω0.
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Examples of shape derivatives

Proposition 6.22. Let Ω0 be a smooth bounded open set of IRN ,

f(x) ∈ W 1,1(IRN ) and J the map from C(Ω0) into IR defined by

J(Ω) =

∫

Ω

f(x) dx.

Then J is shape differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

Ω0

div
(

θ(x) f(x)
)

dx =

∫

∂Ω0

θ(x) · n(x) f(x) ds

for any θ ∈ W 1,∞(IRN ; IRN ).

Remark. To make sure the result is right, the safest way (but not the easiest)

is to make a change of variables to get back to the reference domain Ω0.
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✞

✝

☎

✆
Intuitive proof

Ω 0

(Ι+θ)Ω 0

θ.n

Surface swept by the transformation: difference between ( Id + θ)Ω0 and Ω0

≈ ∂Ω0 ×
(

θ · n
)

. Thus

∫

( Id+θ)Ω0

f(x) dx =

∫

Ω0

f(x) dx+

∫

∂Ω0

f(x)θ · nds+ o(θ).
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Proof. We rewrite J(Ω) as an integral on the reference domain Ω0

J
(

( Id + θ)Ω0

)

=

∫

Ω0

f ◦ ( Id + θ) | det( Id +∇θ) | dx.

The functional θ → det( Id +∇θ) is differentiable from W 1,∞(IRN ; IRN ) into

L∞(IRN ) because

det( Id +∇θ) = det Id + divθ + o(θ) with lim
θ→0

‖o(θ)‖L∞(IRN ;IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

On the other hand, if f(x) ∈ W 1,1(IRN ), the functional θ → f ◦ ( Id + θ) is

differentiable from W 1,∞(IRN ; IRN ) into L1(IRN ) because

f ◦ ( Id+ θ)(x) = f(x) +∇f(x) · θ(x) + o(θ) with lim
θ→0

‖o(θ)‖L1(IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

By composition of these two derivatives we obtain the result.
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Proposition 6.24. Let Ω0 be a smooth bounded open set of IRN ,

f(x) ∈ W 2,1(IRN ) and J the map from C(Ω0) into IR defined by

J(Ω) =

∫

∂Ω

f(x) ds.

Then J is shape differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

∂Ω0

(

∇f · θ + f
(

divθ −∇θn · n
))

ds

for any θ ∈ W 1,∞(IRN ; IRN ). By a (boundary) integration by parts this

formula is equivalent to

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

∂f

∂n
+Hf

)

ds,

where H is the mean curvature of ∂Ω0 defined by H = divn.
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✞

✝

☎

✆
Interpretation

Two simple examples:

☞ If ∂Ω0 is an hyperplane, then H = 0 and the variation of the boundary

integral is proportional to the normal derivative of f .

☞ If f ≡ 1, then J(Ω) is the perimeter (in 2-D) or the surface (in 3-D) of the

domain Ω and its variation is proportional to the mean curvature.

G. Allaire, Ecole Polytechnique Optimal design of structures



57

Proof. A change of variable yields

J
(

( Id + θ)Ω0

)

=

∫

∂Ω0

f ◦ ( Id + θ)| det( Id +∇θ)| |
(

( Id +∇θ)−1
)t
n |IRN ds.

We already proved that θ → det( Id +∇θ) and θ → f ◦ ( Id + θ) are

differentiables.

On the other hand, θ →
(

( Id +∇θ)−1
)t
n is differentiable from

W 1,∞(IRN ; IRN ) into L∞(∂Ω0; IR
N ) because

(

( Id +∇θ)−1
)t
n = n− (∇θ)tn+ o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0;IRN )

‖θ‖W 1,∞(IRN ;IRN )

= 0.

By composition with the derivative of g →| g |IRN , we deduce

|
(

( Id +∇θ)−1
)t
n |IRN= 1−(∇θ)tn·n+o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0)

‖θ‖W 1,∞(IRN ;IRN )

= 0.

Composing these three derivatives leads to the result. The formula, including

the mean curvature, is obtained by an integration by parts on the surface ∂Ω0.
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