OPTIMAL DESIGN OF STRUCTURES (MAP 562)

G. ALLAIRE

February 4th, 2015
Department of Applied Mathematics, Ecole Polytechnique CHAPTER VII (continued)

TOPOLOGY OPTIMIZATION
BY THE HOMOGENIZATION METHOD

Brief review of the preceding course

1. Topology optimization versus geometric optimization
2. Homogenization method in the periodic case (two-scale asymptotic expansions)
3. An explicit class of composite materials: sequential laminates.

What remains to be done:
To characterize the set G_{θ} of all composites materials
Towards this goal, prove bounds on A^{*}.
Application to shape optimization
To build numerical algorithms for topology optimization

From now on, we assume that the microscopic tensor $A(y)$ is symmetric.
Then A^{*} is symmetric too.
Furthermore, A^{*} is characterized by the variational principle

$$
A^{*} \xi \cdot \xi=\min _{w \in H_{\#}^{1}(Y) / \mathbf{R}} \int_{Y} A(y)(\xi+\nabla w) \cdot(\xi+\nabla w) d y
$$

Indeed, if w_{ξ} is the minimizer, then it satisfies the Euler optimality condition

$$
\begin{cases}-\operatorname{div}\left(A(y)\left(\xi+\nabla w_{\xi}(y)\right)\right)=0 & \text { in } Y \\ y \rightarrow w_{\xi}(y) & Y \text {-periodic. }\end{cases}
$$

By linearity, we have $w_{\xi}=\sum_{i=1}^{N} \xi_{i} w_{i}$ and thus

$$
\int_{Y} A(y)\left(\xi+\nabla w_{\xi}\right) \cdot\left(\xi+\nabla w_{\xi}\right) d y=\sum_{i, j=1}^{N} \xi_{i} \xi_{j} A_{i j}^{*}=A^{*} \xi \cdot \xi
$$

Arithmetic and harmonic mean bounds

Taking $w=0$ in the variational principle, we deduce the arithmetic mean bound

$$
A^{*} \xi \cdot \xi \leq\left(\int_{Y} A(y) d y\right) \xi \cdot \xi
$$

Enlarging the minimization space, we obtain the harmonic mean bound

$$
\left(\int_{Y} A^{-1}(y) d y\right)^{-1} \xi \cdot \xi \leq A^{*} \xi \cdot \xi
$$

These bounds can be improved for two-phase composites !

Indeed, since $\int_{Y} \nabla w d y=0$, we enlarge the minimization space by replacing ∇w with any vector field $\zeta(y)$ with zero-average on Y

$$
A^{*} \xi \cdot \xi \geq \min _{\zeta \in L_{\#}^{2}(Y)^{N}, \int_{Y} \zeta d y=0} \int_{Y} A(y)(\xi+\zeta(y)) \cdot(\xi+\zeta(y)) d y
$$

The Euler equation for the minimizer $\zeta_{\xi}(y)$ of this convex problem is

$$
A(y)\left(\xi+\zeta_{\xi}(y)\right)=\lambda
$$

where $\lambda \in \mathbb{R}$ is the Lagrange multiplier for the constraint $\int_{Y} \zeta d y=0$. We deduce

$$
\xi=\left(\int_{Y} A(y)^{-1} d y\right) \lambda
$$

and thus

$$
\int_{Y} A(y)\left(\xi+\zeta_{\xi}(y)\right) \cdot\left(\xi+\zeta_{\xi}(y)\right) d y=\left(\int_{Y} A(y)^{-1} d y\right)^{-1} \xi \cdot \xi
$$

7.3.5 Characterization of G_{θ}

We consider two isotropic phases $A=\alpha \operatorname{Id}$ and $B=\beta$ Id with $0<\alpha<\beta$.
Theorem 7.17. The set G_{θ} of all homogenized tensors obtained by mixing α and β in proportions θ and $(1-\theta)$ is the set of all symmetric matrices A^{*} with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$ such that

$$
\begin{aligned}
\left(\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}\right)^{-1} & =\lambda_{\theta}^{-} \leq \lambda_{i} \leq \lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta \quad 1 \leq i \leq N \\
& \sum_{i=1}^{N} \frac{1}{\lambda_{i}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{N-1}{\lambda_{\theta}^{+}-\alpha} \\
& \sum_{i=1}^{N} \frac{1}{\beta-\lambda_{i}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{N-1}{\beta-\lambda_{\theta}^{+}}
\end{aligned}
$$

Furthermore, these so-called Hashin and Shtrikman bounds are optimal and attained by rank- N sequential laminates.

Set G_{θ} in dimension $N=2$

Set G_{θ} in dimension $N=3$

Proof. We first show that all matrices satisfying these inequalities (Hashin-Shtrikman bounds) belong to G_{θ}.

Let us start by showing that the upper bound is attained by sequential laminates. Take a matrix A^{*} such that

$$
\sum_{i=1}^{N} \frac{1}{\beta-\lambda_{i}}=\frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{N-1}{\beta-\lambda_{\theta}^{+}}
$$

Define a rank- N sequentiel laminate A_{L}^{*} of matrix β and inclusion α, with lamination directions being the (orthogonal) eigenvectors of A^{*}
$\theta\left(A_{L}^{*}-\beta \mathrm{Id}\right)^{-1}=\frac{1}{\alpha-\beta} \operatorname{Id}+(1-\theta) \sum_{i=1}^{N} m_{i} \frac{e_{i} \otimes e_{i}}{\beta} \quad$ with $\quad m_{i} \geq 0, \sum_{i=1}^{N} m_{i}=1$.
We have $A^{*}=A_{L}^{*}$ if we can choose the m_{i} 's such that

$$
\frac{\theta}{\lambda_{i}-\beta}=\frac{1}{\alpha-\beta}+\frac{m_{i}(1-\theta)}{\beta} \Leftrightarrow m_{i}=\frac{\beta\left(\lambda_{\theta}^{+}-\lambda_{i}\right)}{(1-\theta)(\beta-\alpha)\left(\beta-\lambda_{i}\right)}
$$

We check that $0<m_{i}<1$ is equivalent to $\lambda_{\theta}^{-}<\lambda_{i}<\lambda_{\theta}^{+}$and that

$$
\sum_{i=1}^{N} m_{i}=1 \Leftrightarrow \sum_{i=1}^{N} \frac{1}{\beta-\lambda_{i}}=\frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{N-1}{\beta-\lambda_{\theta}^{+}}
$$

thus any matrix on the upper bound is a rank- N sequential laminate with matrix β and inclusion α.

The same proof works for the lower bound upon exchanging the role of α (now the matrix) and β (now the inclusions).

Then, the next easy computation shows that the matrices "inside" G_{θ} are attained by simple lamination of two matrices, one on the upper bound, the other on the lower bound.

Computation for the interior of G_{θ}

Recall the lamination formula:

$$
\tau\left(A^{*}-B\right)^{-1}=(A-B)^{-1}+\frac{(1-\tau)}{B e_{1} \cdot e_{1}} e_{1} \otimes e_{1}
$$

Particular case: $A, B \in G_{\theta}$ diagonal in the same basis $\left(e_{1}, \ldots, e_{N}\right)$.

$$
A=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right) \quad B=\operatorname{diag}\left(b_{1}, \ldots, b_{N}\right)
$$

Then, for any $\tau \in[0,1], A^{*} \in G_{\theta}$ and

$$
a_{1}^{*}=\left(\frac{\tau}{a_{1}}+\frac{1-\tau}{b_{1}}\right)^{-1} \quad a_{i}^{*}=\tau a_{i}+(1-\tau) b_{i} \quad 2 \leq i \leq N
$$

Branches of hyperbolas which connect the upper and lower bounds of G_{θ}.

It remains to prove that the lower and upper Hashin-Shtrikman bounds hold true.

To establish the lower bound we introduce the so-called Hashin and Shtrikman variational principle.

Main idea: use Fourier analysis and Plancherel theorem, but, in a first step, eliminate the cubic terms.

By definition of A^{*}, for $\xi \in \mathbb{R}^{N}$, we have

$$
A^{*} \xi \cdot \xi=\min _{w(y) \in H_{\#}^{1}(Y)} \int_{Y}(\chi(y) \alpha+(1-\chi(y)) \beta)(\xi+\nabla w) \cdot(\xi+\nabla w) d y
$$

Substracting a reference material α

$$
\begin{gathered}
\int_{Y}(\chi \alpha+(1-\chi) \beta)|\xi+\nabla w|^{2} d y= \\
\int_{Y}(1-\chi)(\beta-\alpha)|\xi+\nabla w|^{2} d y+\int_{Y} \alpha|\xi+\nabla w|^{2} d y
\end{gathered}
$$

We use convex duality (or Legendre transform): for any symmetric positive definite matrix M

$$
M \zeta \cdot \zeta=\max _{\eta \in \mathbf{R}^{N}}\left(2 \zeta \cdot \eta-M^{-1} \eta \cdot \eta\right) \quad \forall \zeta \in \mathbb{R}^{N}
$$

Since $\beta-\alpha>0$, we apply the above formula at each point in Y, and we get

$$
\begin{aligned}
& \quad \int_{Y}(1-\chi)(\beta-\alpha)|\xi+\nabla w|^{2} d y= \\
& \max _{\eta(y) \in L_{\#}^{2}(Y)^{N}} \int_{Y}(1-\chi)\left(2(\xi+\nabla w) \cdot \eta-(\beta-\alpha)^{-1}|\eta|^{2}\right) d y,
\end{aligned}
$$

which becomes an inequality if we restrict the minimization to constant η in Y

$$
\begin{aligned}
& \int_{Y}(1-\chi)(\beta-\alpha)|\xi+\nabla w|^{2} d y \geq \\
\geq & \max _{\eta} \int_{Y}(1-\chi)\left(2(\xi+\nabla w) \cdot \eta-(\beta-\alpha)^{-1}|\eta|^{2}\right) d y \\
\geq & (1-\theta)\left(2 \xi \cdot \eta-(\beta-\alpha)^{-1}|\eta|^{2}\right)-2 \int_{Y} \chi \nabla w \cdot \eta d y .
\end{aligned}
$$

On the other hand, because of periodicity, $\int_{Y} \nabla w d y=0$ which implies

$$
\int_{Y} \alpha|\xi+\nabla w|^{2} d y=\alpha|\xi|^{2}+\int_{Y} \alpha|\nabla w|^{2} d y
$$

Overall, we obtain, for any $\eta \in \mathbb{R}^{N}$,

$$
A^{*} \xi \cdot \xi \geq \alpha|\xi|^{2}+(1-\theta)\left(2 \xi \cdot \eta-(\beta-\alpha)^{-1}|\eta|^{2}\right)-g(\chi, \eta)
$$

where $g(\chi, \eta)$ is a so-called non-local term, defined by

$$
g(\chi, \eta)=-\min _{w(y) \in H_{\#}^{1}(Y)} \int_{Y}\left(\alpha|\nabla w|^{2}-2 \chi \nabla w \cdot \eta\right) d y
$$

We can now use Fourier analysis to compute $g(\chi, \eta)$.

By periodicity, χ and the test function w can be written as Fourier series

$$
\chi(y)=\sum_{k \in \mathbb{Z}^{N}} \hat{\chi}(k) e^{2 i \pi k \cdot y}, \quad w(y)=\sum_{k \in \mathbb{Z}^{N}} \hat{w}(k) e^{2 i \pi k \cdot y}
$$

Since χ and w are real-valued, their Fourier coefficients satisfy

$$
\overline{\hat{\chi}(k)}=\hat{\chi}(-k) \quad \text { and } \quad \overline{\hat{w}(k)}=\hat{w}(-k) .
$$

The gradient of w is

$$
\nabla w(y)=\sum_{k \in \mathbb{Z}^{N}} 2 i \pi e^{2 i \pi k \cdot y} \hat{w}(k) k
$$

Plancherel formula yields

$$
\begin{gathered}
\int_{Y}\left(\alpha|\nabla w|^{2}-2 \chi \nabla w \cdot \eta\right) d y \\
=\sum_{k \in \mathbb{Z}^{N}}\left(4 \pi^{2} \alpha|\hat{w}(k) k|^{2}-4 i \pi \overline{\hat{\chi}(k)} \hat{w}(k) k \cdot \eta\right) \\
=\sum_{k \in \mathbb{Z}^{N}}\left(4 \pi^{2} \alpha|k|^{2}|\hat{w}(k)|^{2}+4 \pi \mathcal{I} m(\overline{\hat{\chi}(k)} \hat{w}(k)) \eta \cdot k\right) .
\end{gathered}
$$

To minimiz in $w(y) \in H_{\#}^{1}(Y) \Leftrightarrow$ to minimize in $\hat{w}(k) \in \mathbb{C}$.
For $k \neq 0$ the minimum is achieved by

$$
\hat{w}(k)=-\frac{i \hat{\chi}(k)}{2 \pi \alpha|k|^{2}} \eta \cdot k
$$

and we deduce

$$
g(\chi, \eta)=\left(\alpha^{-1} \sum_{k \in \mathbb{Z}^{N}, k \neq 0}|\hat{\chi}(k)|^{2} \frac{k}{|k|} \otimes \frac{k}{|k|}\right) \eta \cdot \eta=\alpha^{-1} \theta(1-\theta) M \eta \cdot \eta,
$$

where M is a symmetric non-negative matrix. Since, by Plancherel theorem, we have

$$
\sum_{k \in \mathbb{Z}^{N}, k \neq 0}|\hat{\chi}(k)|^{2}=\int_{Y}|\chi(y)-\theta|^{2} d y=\theta(1-\theta)
$$

we deduce that the trace of M is equal to 1 .

Regrouping terms yields, for any $\xi, \eta \in \mathbb{R}^{N}$,

$$
A^{*} \xi \cdot \xi \geq \alpha|\xi|^{2}+(1-\theta)\left(2 \xi \cdot \eta-(\beta-\alpha)^{-1}|\eta|^{2}\right)-\alpha^{-1} \theta(1-\theta) M \eta \cdot \eta .
$$

The minimum (in ξ) of this inequality is obtained when

$$
\xi=(1-\theta)\left(A^{*}-\alpha\right)^{-1} \eta
$$

We deduce

$$
\begin{gathered}
(1-\theta)\left(A^{*}-\alpha\right)^{-1} \eta \cdot \eta \leq(\beta-\alpha)^{-1}|\eta|^{2}+\alpha^{-1} \theta M \eta \cdot \eta \quad \forall \eta \in \mathbb{R}^{N} . \\
\Leftrightarrow(1-\theta)\left(A^{*}-\alpha\right)^{-1} \leq(\beta-\alpha)^{-1} \mathrm{Id}+\alpha^{-1} \theta M
\end{gathered}
$$

Taking the trace of this matrix inequality, and since $\operatorname{Tr} M=1$, we obtain the lower Hashin-Shtrikman bound.

The proof of the upper bound is similar.

7.4 Homogenized formulation of shape optimization

The relaxed or homogenized optimization problem is

$$
\min _{\left(\theta, A^{*}\right) \in \mathcal{U}_{a d}^{*}} J\left(\theta, A^{*}\right)
$$

with an objective function

$$
J\left(\theta, A^{*}\right)=\int_{\Omega} f u d x, \quad \text { or } \quad J\left(\theta, A^{*}\right)=\int_{\Omega}\left|u-u_{0}\right|^{2} d x
$$

and an homogenized admissible set given by
$\mathcal{U}_{a d}^{*}=\left\{\left(\theta, A^{*}\right) \in L^{\infty}\left(\Omega ;[0,1] \times \mathbb{R}^{N^{2}}\right), A^{*}(x) \in G_{\theta(x)}\right.$ in $\left.\Omega, \int_{\Omega} \theta(x) d x=V_{\alpha}\right\}$,
where G_{θ} is explicitly characterized.
The homogenized state equation is

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla u\right)=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 7.19 (admitted). The homogenized formulation is actually a relaxation of the original shape optimization problem in the sense that:
there exists, at least, one optimal composite shape $\left(\theta, A^{*}\right)$,
any minimizing sequence of classical shapes χ converges, in the sense of homogenization, to a composite optimal solution $\left(\theta, A^{*}\right)$,
any composite optimal solution $\left(\theta, A^{*}\right)$ is the limit of a minimizing sequence of classical shapes.
The minima of the original and homogenized objective functions coincide

$$
\inf _{\chi \in \mathcal{U}_{a d}} J(\chi)=\min _{\left(\theta, A^{*}\right) \in \mathcal{U}_{a d}^{*}} J\left(\theta, A^{*}\right)
$$

Remark.

The shape optimization problem is thus not changed by relaxation.
Close to any optimal composite shape, we are sure to find a quasi-optimal classical shape.

This theorem is at the root of new numerical algorithms.

7.4.2 Optimality conditions

We now compute the gradient of the following objective function

$$
J\left(\theta, A^{*}\right)=\int_{\Omega}\left|u-u_{0}\right|^{2} d x
$$

where $u_{0} \in L^{2}(\Omega)$. We introduce the adjoint state p, unique solution in $H_{0}^{1}(\Omega)$ of

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla p\right)=-2\left(u-u_{0}\right) & \text { in } \Omega \\ p=0 & \text { on } \partial \Omega\end{cases}
$$

Proposition 7.20. Let $\alpha>0$ and \mathcal{M}_{α} be the set of symmetric positive definite matrices M such that $M \geq \alpha$ Id. The functional J is differentiable with respect to A^{*} in $L^{\infty}\left(\Omega ; \mathcal{M}_{\alpha}\right)$, and its derivative is

$$
\nabla_{A^{*}} J\left(\theta, A^{*}\right)=\nabla u \otimes \nabla p
$$

Remark. The partial derivative with respect to θ vanishes because θ appears only in the constraint $A^{*} \in G_{\theta}$.

Proof of Proposition 7.20

It is standard! It became a parametric (sizing) shape optimization problem where A^{*} plays the role of a thickness.

We introduce the Lagrangian

$$
\mathcal{L}\left(A^{*}, v, q\right)=\int_{\Omega}\left|v-u_{0}\right|^{2} d x+\int_{\Omega} A^{*} \nabla v \cdot \nabla q d x-\int_{\Omega} f q d x
$$

Its partial derivative with respect to q yields the state.
Its partial derivative with respect to v yields the adjoint.
Its partial derivative with respect to A^{*} yields the gradient

$$
\nabla_{A^{*}} J\left(\theta, A^{*}\right)=\frac{\partial \mathcal{L}}{\partial A^{*}}\left(A^{*}, u, p\right)=\nabla u \otimes \nabla p
$$

Essential consequence

Theorem 7.21. Let $\left(\theta, A^{*}\right)$ be a global minimizer of J in $\mathcal{U}_{a d}^{*}$ which admits u and p as state and adjoint. There exists $\left(\tilde{\theta}, \tilde{A}^{*}\right)$, another global minimizer of J in $\mathcal{U}_{a d}^{*}$, which admits the same state and adjoint u and p, and such that \tilde{A}^{*} is a rank-1 simple laminate.

Simplification: in the definition of $\mathcal{U}_{a d}^{*}$ the set G_{θ} can be replaced by its simpler subset of rank-1 simple laminates.

Remark.

Optimality condition \Rightarrow simplification of the problem.
We actually use this simplification in the numerical algorithms.
Simplification which holds true for other objective functions, but not for multiple loads optimization.

Proof. We fix θ and makes variations on A^{*} only. Remarking that G_{θ} is convex (not obvious), the optimality condition is an Euler inequality which is

$$
\int_{\Omega}\left(A^{0}-A^{*}\right) \nabla u \cdot \nabla p d x \geq 0
$$

for any $A^{0} \in G_{\theta}$, which is equivalent to

$$
A^{*} \nabla u \cdot \nabla p=\min _{A^{0} \in G_{\theta}}\left(A^{0} \nabla u \cdot \nabla p\right) \quad \forall x \in \Omega .
$$

If ∇u or ∇p vanishes, then any A^{*} is optimal. Otherwise, we define

$$
e=\frac{\nabla u}{|\nabla u|} \quad \text { and } \quad e^{\prime}=\frac{\nabla p}{|\nabla p|},
$$

and we look for minimizers A^{*} of

$$
\min _{A^{0} \in G_{\theta}} 4 A^{0} e \cdot e^{\prime}=A^{0}\left(e+e^{\prime}\right) \cdot\left(e+e^{\prime}\right)-A^{0}\left(e-e^{\prime}\right) \cdot\left(e-e^{\prime}\right)
$$

A lower bound is easily obtained

$$
\begin{aligned}
\min _{A^{0} \in G_{\theta}} 4 A^{0} e \cdot e^{\prime} & \geq \min _{A^{0} \in G_{\theta}} A^{0}\left(e+e^{\prime}\right) \cdot\left(e+e^{\prime}\right)-\max _{A^{0} \in G_{\theta}} A^{0}\left(e-e^{\prime}\right) \cdot\left(e-e^{\prime}\right) \\
& =\lambda_{\theta}^{-}\left|e+e^{\prime}\right|^{2}-\lambda_{\theta}^{+}\left|e-e^{\prime}\right|^{2}
\end{aligned}
$$

This lower bound is actually the precise minimal value.
Indeed, choosing $A^{0}=A^{1}$ which is a rank-1 simple laminate in the direction $e+e^{\prime}$, orthogonal to $e-e^{\prime}$, we get

$$
A^{1}\left(e+e^{\prime}\right)=\lambda_{\theta}^{-}\left(e+e^{\prime}\right) \quad \text { and } \quad A^{1}\left(e-e^{\prime}\right)=\lambda_{\theta}^{+}\left(e-e^{\prime}\right)
$$

and an easy computation shows that

$$
4 A^{1} e \cdot e^{\prime}=\lambda_{\theta}^{-}\left|e+e^{\prime}\right|^{2}-\lambda_{\theta}^{+}\left|e-e^{\prime}\right|^{2}
$$

Thus

$$
\min _{A^{0} \in G_{\theta}} 4 A^{0} e \cdot e^{\prime}=\lambda_{\theta}^{-}\left|e+e^{\prime}\right|^{2}-\lambda_{\theta}^{+}\left|e-e^{\prime}\right|^{2}
$$

If now A^{*} is any optimal tensor, then, as a rank- 1 laminate, it satisfies

$$
\begin{equation*}
A^{*}\left(e+e^{\prime}\right)=\lambda_{\theta}^{-}\left(e+e^{\prime}\right) \quad \text { and } \quad A^{*}\left(e-e^{\prime}\right)=\lambda_{\theta}^{+}\left(e-e^{\prime}\right) \tag{1}
\end{equation*}
$$

Indeed, if (1) does not hold true, one of the arithmetic and harmonic bounds would give a strict inequality

$$
4 A^{*} e \cdot e^{\prime}=A^{*}\left(e+e^{\prime}\right) \cdot\left(e+e^{\prime}\right)-A^{*}\left(e-e^{\prime}\right) \cdot\left(e-e^{\prime}\right)>\lambda_{\theta}^{-}\left|e+e^{\prime}\right|^{2}-\lambda_{\theta}^{+}\left|e-e^{\prime}\right|^{2}
$$

which is a contradiction with the optimal character of A^{*}.

We deduce that any optimal A^{*} satisfies, like the rank-1 simple laminate A^{1},

$$
\begin{aligned}
& 2 A^{*} \nabla u=2 A^{1} \nabla u=\left(\lambda_{\theta}^{+}+\lambda_{\theta}^{-}\right) \nabla u+\left(\lambda_{\theta}^{+}-\lambda_{\theta}^{-}\right) \frac{|\nabla u|}{|\nabla p|} \nabla p \\
& 2 A^{*} \nabla p=2 A^{1} \nabla p=\left(\lambda_{\theta}^{+}+\lambda_{\theta}^{-}\right) \nabla p+\left(\lambda_{\theta}^{+}-\lambda_{\theta}^{-}\right) \frac{|\nabla p|}{|\nabla u|} \nabla u,
\end{aligned}
$$

Therefore any optimal tensor A^{*} can be replaced by this rank- 1 simple laminate A^{1} without changing u and p.

$$
\begin{gathered}
-\operatorname{div}\left(A^{*} \nabla u\right)=-\operatorname{div}\left(A^{1} \nabla u\right)=f \\
-\operatorname{div}\left(A^{*} \nabla p\right)=-\operatorname{div}\left(A^{1} \nabla p\right)=-2\left(u-u_{0}\right)
\end{gathered}
$$

Parametrization of rank-1 simple laminates

In space dimension $N=2$ (to simplify) a rank-1 laminate is defined by

$$
A^{*}(\theta, \phi)=\left(\begin{array}{rr}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{ll}
\lambda_{\theta}^{+} & 0 \\
0 & \lambda_{\theta}^{-}
\end{array}\right)\left(\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \quad \phi \in[0, \pi]
$$

The admissible set is thus simply

$$
\mathcal{U}_{a d}^{L}=\left\{(\theta, \phi) \in L^{\infty}(\Omega ;[0,1] \times[0, \pi]), \int_{\Omega} \theta(x) d x=V_{\alpha}\right\}
$$

Proposition 7.23. The objective function $J(\theta, \phi)$ is differentiable with respect to (θ, ϕ) in $\mathcal{U}_{a d}^{L}$, and its derivative is

$$
\nabla_{\phi} J(\theta, \phi)=\frac{\partial A^{*}}{\partial \phi} \nabla u \cdot \nabla p \quad \text { and } \quad \nabla_{\theta} J(\theta, \phi)=\frac{\partial A^{*}}{\partial \theta} \nabla u \cdot \nabla p
$$

7.4.3 Numerical algorithm

Projected gradient algorithm for the minimization of $J(\theta, \phi)$.

1. We initialize the design parameters θ_{0} and ϕ_{0} (for example, equal to constants).
2. Until convergence, for $k \geq 0$ we iterate by computing the state u_{k} and adjoint p_{k}, solutions with the previous design parameters $\left(\theta_{k}, \phi_{k}\right)$, then we update these parameters by

$$
\begin{aligned}
\theta_{k+1} & =\max \left(0, \min \left(1, \theta_{k}-t_{k}\left(\ell_{k}+\frac{\partial A^{*}}{\partial \theta}\left(\theta_{k}, \phi_{k}\right) \nabla u_{k} \cdot \nabla p_{k}\right)\right)\right) \\
\phi_{k+1} & =\phi_{k}-t_{k} \frac{\partial A^{*}}{\partial \phi}\left(\theta_{k}, \phi_{k}\right) \nabla u_{k} \cdot \nabla p_{k}
\end{aligned}
$$

with ℓ_{k} a Lagrange multiplier for the volume constraint (iteratively enforced), and $t_{k}>0$ a descent step such that $J\left(\theta_{k+1}, \phi_{k+1}\right)<J\left(\theta_{k}, \phi_{k}\right)$.

The self-adjoint case

A first example: maximization of torsional rigidity (maximization of compliance).

$$
\min _{\left(\theta, A^{*}\right) \in \mathcal{U}_{a d}^{L}}\left\{J\left(\theta, A^{*}\right)=-\int_{\Omega} u(x) d x\right\},
$$

where u is the solution of

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla u\right)=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and the adjoint state is just $p=u$.
We solve in the domain $\Omega=(0,1)^{2}$ with the phases $\alpha=1$ and $\beta=2$. We fix a 50% volume constraint of α. We initialize with a constant value of $\theta=0.5$ and a constant zero lamination angle. We perform 30 iterations.

Self-adjoint case $p=u$.

$$
\nabla_{A^{*}} J\left(\theta, A^{*}\right)=\nabla u \otimes \nabla u \geq 0 .
$$

To minimize J we have to decrease A^{*}.
Any optimal A^{*} satisfies

$$
A^{*} \nabla u=\lambda_{\theta}^{-} \nabla u
$$

thus the optimal composite is the worst possible conductor.
Consequence. We can eliminate the angle ϕ and it remains to optimize with respect to θ only !

Convexity

We rewrite the optimization problem thanks to the primal energy

$$
-\int_{\Omega} u d x=-\int_{\Omega} \lambda_{\theta}^{-}|\nabla u|^{2} d x=\min _{v \in H_{0}^{1}(\Omega)} \int_{\Omega} \lambda_{\theta}^{-}|\nabla v|^{2} d x-2 \int_{\Omega} v d x
$$

Thus, we obtain a double minimization

$$
\min _{\theta, A^{*}=\lambda_{\theta}^{-}} J\left(\theta, A^{*}\right)=\min _{\theta, v} \int_{\Omega} \lambda_{\theta}^{-}|\nabla v|^{2} d x-2 \int_{\Omega} v d x
$$

Remember: the function $(\theta, v) \rightarrow \lambda_{\theta}^{-}|\nabla v|^{2}$ is convex.
Consequence. There are only global minima!
Numerically, we use an algorithm based on alternate direction minimization (see chapter 5).

Convergence history:
objective function in terms of the iteration number.

Volume fraction θ (iterations 1,5 , and 30)

A second self-adjoint example

Compliance minimization.

$$
\min _{\left(\theta, A^{*}\right) \in \mathcal{U}_{a d}^{L}}\left\{J\left(\theta, A^{*}\right)=\int_{\Omega} u(x) d x\right\}
$$

where u is the solution of

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla u\right)=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and the adjoint state is just $p=-u$.
We solve in the domain $\Omega=(0,1)^{2}$ with the phases $\alpha=1$ and $\beta=2$. We fix a 50% volume constraint of α. We initialize with a constant value of $\theta=0.5$ and a constant zero lamination angle. We perform 30 iterations.

Self-adjoint case $p=-u$.

$$
\nabla_{A^{*}} J\left(\theta, A^{*}\right)=-\nabla u \otimes \nabla u \leq 0
$$

To minimize J we have to increase A^{*}.
Any optimal A^{*} satisfies

$$
A^{*} \nabla u=\lambda_{\theta}^{+} \nabla u
$$

thus the optimal composite is the best possible conductor.
Consequence. We can eliminate the angle ϕ and it remains to optimize with respect to θ only !

Convexity

We rewrite the optimization problem thanks to the dual energy

$$
\int_{\Omega} u d x=\min _{\substack{\tau \in L^{2}(\Omega) \\-d_{i v}^{N} \\ \text { div } \tau=\text { in } \Omega}} \int_{\Omega}\left(\lambda_{\theta}^{+}\right)^{-1}|\tau|^{2} d x .
$$

Thus, we obtain a double minimization

$$
\min _{\theta, A^{*}=\lambda_{\theta}^{+}} J\left(\theta, A^{*}\right)=\min _{\theta, \tau} \int_{\Omega}\left(\lambda_{\theta}^{+}\right)^{-1}|\tau|^{2} d x
$$

Remember: the function $(\theta, \tau) \rightarrow \frac{|\tau|^{2}}{\lambda_{\theta}^{+}}$is convex.
Consequence. There are only global minima!
Numerically, we use an algorithm based on alternate direction minimization (see chapter 5).

Minimal compliance membrane (iterations 1, 10, and 30)

Remarks

Convergence to a global minimum.

1. Numerical experiments with various initializations.
2. Convexity properties.

Shape optimization rather than two-phase optimization.

1. Numerically, holes can be mimicked by a very weak phase $\alpha\left(\approx 10^{-3} \beta\right)$.
2. Mathematically, when $\alpha \rightarrow 0$ we obtain Neumann boundary conditions on the holes boundaries.

Penalization

The previous algorithm compute composite shapes while we are rather interested by classical shapes.

Therefore we use a penalization process to force the density to take values close to 0 or 1 .

Possible algorithms: after convergence to a composite shape,

1. either we add a penalization term to the objective function

$$
J\left(\theta, A^{*}\right)+c_{p e n} \int_{\Omega} \theta(1-\theta) d x
$$

2. either we continue the previous algorithm with a modified "penalized" density

$$
\theta_{p e n}=\frac{1-\cos \left(\pi \theta_{o p t}\right)}{2}
$$

If $0<\theta_{o p t}<1 / 2$, then $\theta_{\text {pen }}<\theta_{o p t}$, while, if $1 / 2<\theta_{o p t}<1$, then $\theta_{\text {pen }}>\theta_{\text {opt }}$.

Example

Optimal radiator.

$$
\begin{cases}-\operatorname{div}\left(A^{*} \nabla u\right)=0 & \text { in } \Omega \\ A^{*} \nabla u \cdot n=1 & \text { on } \Gamma_{N} \\ A^{*} \nabla u \cdot n=0 & \text { on } \Gamma \\ u=0 & \text { on } \Gamma_{D}\end{cases}
$$

We minimize the temperature where heating takes place

$$
\min _{\left(\theta, A^{*}\right) \in \mathcal{U}_{a d}^{L}}\left\{J\left(\theta, A^{*}\right)=\int_{\Gamma_{N}} u d s\right\} .
$$

This is precisely the compliance! Thus the problem is self-adjoint with $p=-u$.

Isotropic materials with conductivity $\alpha=0.01$ and $\beta=1$, in proportions $50,50 \%$, in the domain $\Omega=(0,1)^{2}$.

Optimal radiator

