# OPTIMAL DESIGN OF STRUCTURES (MAP 562)

G. ALLAIRE

February 4th, 2015

Department of Applied Mathematics, Ecole Polytechnique

CHAPTER VII (continued)

TOPOLOGY OPTIMIZATION

BY THE HOMOGENIZATION METHOD

### Brief review of the preceding course

- 1. Topology optimization versus geometric optimization
- 2. Homogenization method in the periodic case (two-scale asymptotic expansions)
- 3. An explicit class of composite materials: sequential laminates.

#### What remains to be done:

- rightharpoonup To characterize the set  $G_{\theta}$  of all composites materials
- rightharpoonup Towards this goal, prove bounds on  $A^*$ .
- Application to shape optimization
- To build numerical algorithms for topology optimization

# 7.3.4 Variational characterization of homogenized tensors

From now on, we assume that the microscopic tensor A(y) is symmetric. Then  $A^*$  is symmetric too.

Furthermore,  $A^*$  is characterized by the variational principle

$$A^*\xi \cdot \xi = \min_{w \in H^1_{\#}(Y)/\mathbb{R}} \int_Y A(y) \left(\xi + \nabla w\right) \cdot \left(\xi + \nabla w\right) dy$$

Indeed, if  $w_{\xi}$  is the minimizer, then it satisfies the Euler optimality condition

$$\begin{cases} -\operatorname{div}(A(y)(\xi + \nabla w_{\xi}(y))) = 0 & \text{in } Y \\ y \to w_{\xi}(y) & Y\text{-periodic.} \end{cases}$$

By linearity, we have  $w_{\xi} = \sum_{i=1}^{N} \xi_i w_i$  and thus

$$\int_{Y} A(y) (\xi + \nabla w_{\xi}) \cdot (\xi + \nabla w_{\xi}) dy = \sum_{i,j=1}^{N} \xi_{i} \xi_{j} A_{ij}^{*} = A^{*} \xi \cdot \xi.$$

### Arithmetic and harmonic mean bounds

Taking w = 0 in the variational principle, we deduce the arithmetic mean bound

$$A^*\xi \cdot \xi \le \left(\int_Y A(y) \, dy\right) \xi \cdot \xi$$

Enlarging the minimization space, we obtain the harmonic mean bound

$$\left(\int_Y A^{-1}(y) \, dy\right)^{-1} \xi \cdot \xi \le A^* \xi \cdot \xi$$

These bounds can be improved for two-phase composites!

Indeed, since  $\int_Y \nabla w \, dy = 0$ , we enlarge the minimization space by replacing  $\nabla w$  with any vector field  $\zeta(y)$  with zero-average on Y

$$A^*\xi \cdot \xi \ge \min_{\zeta \in L^2_{\#}(Y)^N, \ \int_Y \zeta \, dy = 0} \int_Y A(y) \, (\xi + \zeta(y)) \cdot (\xi + \zeta(y)) \, dy$$

The Euler equation for the minimizer  $\zeta_{\xi}(y)$  of this convex problem is

$$A(y) (\xi + \zeta_{\xi}(y)) = \lambda$$

where  $\lambda \in \mathbb{R}$  is the Lagrange multiplier for the constraint  $\int_Y \zeta \, dy = 0$ . We deduce

$$\xi = \left( \int_Y A(y)^{-1} \, dy \right) \lambda$$

and thus

$$\int_Y A(y) \Big( \xi + \zeta_{\xi}(y) \Big) \cdot \Big( \xi + \zeta_{\xi}(y) \Big) dy = \left( \int_Y A(y)^{-1} dy \right)^{-1} \xi \cdot \xi.$$

### 7.3.5 Characterization of $G_{\theta}$

We consider two isotropic phases  $A = \alpha \operatorname{Id}$  and  $B = \beta \operatorname{Id}$  with  $0 < \alpha < \beta$ .

**Theorem 7.17.** The set  $G_{\theta}$  of all homogenized tensors obtained by mixing  $\alpha$  and  $\beta$  in proportions  $\theta$  and  $(1 - \theta)$  is the set of all symmetric matrices  $A^*$  with eigenvalues  $\lambda_1, ..., \lambda_N$  such that

$$\left(\frac{\theta}{\alpha} + \frac{1-\theta}{\beta}\right)^{-1} = \lambda_{\theta}^{-} \le \lambda_{i} \le \lambda_{\theta}^{+} = \theta\alpha + (1-\theta)\beta \qquad 1 \le i \le N$$

$$\sum_{i=1}^{N} \frac{1}{\lambda_i - \alpha} \le \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{N - 1}{\lambda_{\theta}^{+} - \alpha}$$

$$\sum_{i=1}^{N} \frac{1}{\beta - \lambda_i} \le \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{N-1}{\beta - \lambda_{\theta}^{+}},$$

Furthermore, these so-called Hashin and Shtrikman bounds are optimal and attained by  $\operatorname{rank-}N$  sequential laminates.





# Set $G_{\theta}$ in dimension N=3



**Proof.** We first show that all matrices satisfying these inequalities (Hashin-Shtrikman bounds) belong to  $G_{\theta}$ .

Let us start by showing that the upper bound is attained by sequential laminates. Take a matrix  $A^*$  such that

$$\sum_{i=1}^{N} \frac{1}{\beta - \lambda_i} = \frac{1}{\beta - \lambda_{\theta}^-} + \frac{N-1}{\beta - \lambda_{\theta}^+}.$$

Define a rank-N sequential laminate  $A_L^*$  of matrix  $\beta$  and inclusion  $\alpha$ , with lamination directions being the (orthogonal) eigenvectors of  $A^*$ 

$$\theta \left( A_L^* - \beta \operatorname{Id} \right)^{-1} = \frac{1}{\alpha - \beta} \operatorname{Id} + (1 - \theta) \sum_{i=1}^N m_i \frac{e_i \otimes e_i}{\beta} \quad \text{with} \quad m_i \ge 0, \sum_{i=1}^N m_i = 1.$$

We have  $A^* = A_L^*$  if we can choose the  $m_i$ 's such that

$$\frac{\theta}{\lambda_i - \beta} = \frac{1}{\alpha - \beta} + \frac{m_i(1 - \theta)}{\beta} \iff m_i = \frac{\beta(\lambda_\theta^+ - \lambda_i)}{(1 - \theta)(\beta - \alpha)(\beta - \lambda_i)}$$

We check that  $0 < m_i < 1$  is equivalent to  $\lambda_{\theta}^- < \lambda_i < \lambda_{\theta}^+$  and that

$$\sum_{i=1}^{N} m_{i} = 1 \iff \sum_{i=1}^{N} \frac{1}{\beta - \lambda_{i}} = \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{N - 1}{\beta - \lambda_{\theta}^{+}},$$

thus any matrix on the upper bound is a rank-N sequential laminate with matrix  $\beta$  and inclusion  $\alpha$ .

The same proof works for the lower bound upon exchanging the role of  $\alpha$  (now the matrix) and  $\beta$  (now the inclusions).

Then, the next easy computation shows that the matrices "inside"  $G_{\theta}$  are attained by simple lamination of two matrices, one on the upper bound, the other on the lower bound.

# Computation for the interior of $G_{\theta}$

Recall the lamination formula:

$$\tau (A^* - B)^{-1} = (A - B)^{-1} + \frac{(1 - \tau)}{Be_1 \cdot e_1} e_1 \otimes e_1$$

Particular case:  $A, B \in G_{\theta}$  diagonal in the same basis  $(e_1, ..., e_N)$ .

$$A = diag(a_1, ..., a_N)$$
  $B = diag(b_1, ..., b_N)$ 

Then, for any  $\tau \in [0,1]$ ,  $A^* \in G_\theta$  and

$$a_1^* = \left(\frac{\tau}{a_1} + \frac{1-\tau}{b_1}\right)^{-1}$$
  $a_i^* = \tau a_i + (1-\tau)b_i$   $2 \le i \le N$ .

Branches of hyperbolas which connect the upper and lower bounds of  $G_{\theta}$ .

It remains to prove that the lower and upper Hashin-Shtrikman bounds hold true.

To establish the lower bound we introduce the so-called Hashin and Shtrikman variational principle.

Main idea: use Fourier analysis and Plancherel theorem, but, in a first step, eliminate the cubic terms.

By definition of  $A^*$ , for  $\xi \in \mathbb{R}^N$ , we have

$$A^*\xi \cdot \xi = \min_{w(y) \in H^1_{\#}(Y)} \int_Y \left( \chi(y)\alpha + (1 - \chi(y))\beta \right) (\xi + \nabla w) \cdot (\xi + \nabla w) dy$$

Substracting a reference material  $\alpha$ 

$$\int_{Y} (\chi \alpha + (1 - \chi)\beta) |\xi + \nabla w|^{2} dy =$$

$$\int_{Y} (1-\chi)(\beta-\alpha)|\xi+\nabla w|^2 dy + \int_{Y} \alpha|\xi+\nabla w|^2 dy.$$

We use convex duality (or Legendre transform): for any symmetric positive definite matrix M

$$M\zeta \cdot \zeta = \max_{\eta \in \mathbb{R}^N} \left( 2\zeta \cdot \eta - M^{-1}\eta \cdot \eta \right) \qquad \forall \zeta \in \mathbb{R}^N.$$

Since  $\beta - \alpha > 0$ , we apply the above formula at each point in Y, and we get

$$\int_{Y} (1 - \chi)(\beta - \alpha)|\xi + \nabla w|^{2} dy =$$

$$\max_{\eta(y)\in L^{2}_{\#}(Y)^{N}} \int_{Y} (1-\chi) \Big( 2(\xi + \nabla w) \cdot \eta - (\beta - \alpha)^{-1} |\eta|^{2} \Big) dy,$$

which becomes an inequality if we restrict the minimization to constant  $\eta$  in Y

$$\begin{split} &\int_{Y} (1-\chi)(\beta-\alpha)|\xi+\nabla w|^2 dy \geq \\ &\geq \max_{\eta} \int_{Y} (1-\chi) \Big(2(\xi+\nabla w)\cdot \eta - (\beta-\alpha)^{-1}|\eta|^2\Big) dy \\ &\geq (1-\theta) \Big(2\xi\cdot \eta - (\beta-\alpha)^{-1}|\eta|^2\Big) - 2\int_{Y} \chi \nabla w \cdot \eta \, dy. \end{split}$$

On the other hand, because of periodicity,  $\int_Y \nabla w dy = 0$  which implies

$$\int_{Y} \alpha |\xi + \nabla w|^2 dy = \alpha |\xi|^2 + \int_{Y} \alpha |\nabla w|^2 dy.$$

Overall, we obtain, for any  $\eta \in \mathbb{R}^N$ ,

$$A^*\xi \cdot \xi \ge \alpha |\xi|^2 + (1 - \theta) \Big( 2\xi \cdot \eta - (\beta - \alpha)^{-1} |\eta|^2 \Big) - g(\chi, \eta),$$

where  $g(\chi, \eta)$  is a so-called non-local term, defined by

$$g(\chi,\eta) = -\min_{w(y)\in H^1_{\#}(Y)} \int_Y \left(\alpha |\nabla w|^2 - 2\chi \nabla w \cdot \eta\right) dy.$$

We can now use Fourier analysis to compute  $g(\chi, \eta)$ .

By periodicity,  $\chi$  and the test function w can be written as Fourier series

$$\chi(y) = \sum_{k \in \mathbb{Z}^N} \hat{\chi}(k) e^{2i\pi k \cdot y}, \qquad w(y) = \sum_{k \in \mathbb{Z}^N} \hat{w}(k) e^{2i\pi k \cdot y}.$$

Since  $\chi$  and w are real-valued, their Fourier coefficients satisfy

$$\overline{\hat{\chi}(k)} = \hat{\chi}(-k)$$
 and  $\overline{\hat{w}(k)} = \hat{w}(-k)$ .

The gradient of w is

$$\nabla w(y) = \sum_{k \in \mathbb{Z}^N} 2i\pi e^{2i\pi k \cdot y} \hat{w}(k)k.$$

Plancherel formula yields

$$\int_{Y} \left( \alpha |\nabla w|^{2} - 2\chi \nabla w \cdot \eta \right) dy$$

$$= \sum_{k \in \mathbb{Z}^{N}} \left( 4\pi^{2} \alpha |\hat{w}(k)k|^{2} - 4i\pi \overline{\hat{\chi}(k)} \hat{w}(k) k \cdot \eta \right)$$

$$= \sum_{k \in \mathbb{Z}^{N}} \left( 4\pi^{2} \alpha |k|^{2} |\hat{w}(k)|^{2} + 4\pi \mathcal{I} m \left( \overline{\hat{\chi}(k)} \hat{w}(k) \right) \eta \cdot k \right).$$

To minimiz in  $w(y) \in H^1_{\#}(Y) \Leftrightarrow$  to minimize in  $\hat{w}(k) \in \mathbb{C}$ .

For  $k \neq 0$  the minimum is achieved by

$$\hat{w}(k) = -\frac{i\hat{\chi}(k)}{2\pi\alpha|k|^2}\eta \cdot k,$$

and we deduce

$$g(\chi,\eta) = \left(\alpha^{-1} \sum_{k \in \mathbb{Z}^N, \ k \neq 0} |\hat{\chi}(k)|^2 \frac{k}{|k|} \otimes \frac{k}{|k|}\right) \eta \cdot \eta = \alpha^{-1} \theta (1-\theta) M \eta \cdot \eta,$$

where M is a symmetric non-negative matrix. Since, by Plancherel theorem, we have

$$\sum_{k \in \mathbb{Z}^N, \ k \neq 0} |\hat{\chi}(k)|^2 = \int_Y |\chi(y) - \theta|^2 \, dy = \theta(1 - \theta),$$

we deduce that the trace of M is equal to 1.

Regrouping terms yields, for any  $\xi, \eta \in \mathbb{R}^N$ ,

$$A^* \xi \cdot \xi \ge \alpha |\xi|^2 + (1 - \theta) \left( 2\xi \cdot \eta - (\beta - \alpha)^{-1} |\eta|^2 \right) - \alpha^{-1} \theta (1 - \theta) M \eta \cdot \eta.$$

The minimum (in  $\xi$ ) of this inequality is obtained when

$$\xi = (1 - \theta)(A^* - \alpha)^{-1}\eta$$

We deduce

$$(1 - \theta)(A^* - \alpha)^{-1}\eta \cdot \eta \le (\beta - \alpha)^{-1}|\eta|^2 + \alpha^{-1}\theta M\eta \cdot \eta \quad \forall \eta \in \mathbb{R}^N.$$

$$\Leftrightarrow (1 - \theta)(A^* - \alpha)^{-1} \le (\beta - \alpha)^{-1} \operatorname{Id} + \alpha^{-1}\theta M$$

Taking the trace of this matrix inequality, and since TrM = 1, we obtain the lower Hashin-Shtrikman bound.

The proof of the upper bound is similar.

# 7.4 Homogenized formulation of shape optimization

The relaxed or homogenized optimization problem is

$$\min_{(\theta, A^*) \in \mathcal{U}_{ad}^*} J(\theta, A^*),$$

with an objective function

$$J(\theta, A^*) = \int_{\Omega} fu \, dx$$
, or  $J(\theta, A^*) = \int_{\Omega} |u - u_0|^2 dx$ ,

and an homogenized admissible set given by

$$\mathcal{U}_{ad}^* = \left\{ (\theta, A^*) \in L^{\infty} \left( \Omega; [0, 1] \times \mathbb{R}^{N^2} \right), A^*(x) \in G_{\theta(x)} \text{ in } \Omega, \int_{\Omega} \theta(x) \, dx = V_{\alpha} \right\},$$

where  $G_{\theta}$  is explicitly characterized.

The homogenized state equation is

$$\begin{cases}
-\operatorname{div}(A^*\nabla u) = f & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

Theorem 7.19 (admitted). The homogenized formulation is actually a relaxation of the original shape optimization problem in the sense that:

- rightharpoonup there exists, at least, one optimal composite shape  $(\theta, A^*)$ ,
- any minimizing sequence of classical shapes  $\chi$  converges, in the sense of homogenization, to a composite optimal solution  $(\theta, A^*)$ ,
- any composite optimal solution  $(\theta, A^*)$  is the limit of a minimizing sequence of classical shapes.

The minima of the original and homogenized objective functions coincide

$$\inf_{\chi \in \mathcal{U}_{ad}} J(\chi) = \min_{(\theta, A^*) \in \mathcal{U}_{ad}^*} J(\theta, A^*).$$

#### Remark.

- The shape optimization problem is thus not changed by relaxation.
- © Close to any optimal composite shape, we are sure to find a quasi-optimal classical shape.
- This theorem is at the root of new numerical algorithms.

### 7.4.2 Optimality conditions

We now compute the gradient of the following objective function

$$J(\theta, A^*) = \int_{\Omega} |u - u_0|^2 dx,$$

where  $u_0 \in L^2(\Omega)$ . We introduce the adjoint state p, unique solution in  $H_0^1(\Omega)$  of

$$\begin{cases}
-\operatorname{div}(A^*\nabla p) = -2(u - u_0) & \text{in } \Omega \\
p = 0 & \text{on } \partial\Omega.
\end{cases}$$

**Proposition 7.20.** Let  $\alpha > 0$  and  $\mathcal{M}_{\alpha}$  be the set of symmetric positive definite matrices M such that  $M \geq \alpha$  Id. The functional J is differentiable with respect to  $A^*$  in  $L^{\infty}(\Omega; \mathcal{M}_{\alpha})$ , and its derivative is

$$\nabla_{A^*} J(\theta, A^*) = \nabla u \otimes \nabla p.$$

**Remark.** The partial derivative with respect to  $\theta$  vanishes because  $\theta$  appears only in the constraint  $A^* \in G_{\theta}$ .

### Proof of Proposition 7.20

It is standard! It became a parametric (sizing) shape optimization problem where  $A^*$  plays the role of a thickness.

We introduce the Lagrangian

$$\mathcal{L}(A^*, v, q) = \int_{\Omega} |v - u_0|^2 dx + \int_{\Omega} A^* \nabla v \cdot \nabla q \, dx - \int_{\Omega} f q \, dx$$

Its partial derivative with respect to q yields the state.

Its partial derivative with respect to v yields the adjoint.

Its partial derivative with respect to  $A^*$  yields the gradient

$$\nabla_{A^*} J(\theta, A^*) = \frac{\partial \mathcal{L}}{\partial A^*} (A^*, u, p) = \nabla u \otimes \nabla p.$$

# Essential consequence

**Theorem 7.21.** Let  $(\theta, A^*)$  be a global minimizer of J in  $\mathcal{U}_{ad}^*$  which admits u and p as state and adjoint. There exists  $(\tilde{\theta}, \tilde{A}^*)$ , another global minimizer of J in  $\mathcal{U}_{ad}^*$ , which admits the same state and adjoint u and p, and such that  $\tilde{A}^*$  is a rank-1 simple laminate.

Simplification: in the definition of  $\mathcal{U}_{ad}^*$  the set  $G_{\theta}$  can be replaced by its simpler subset of rank-1 simple laminates.

#### Remark.

- rightharpoonupOptimality condition  $\Rightarrow$  simplification of the problem.
- We actually use this simplification in the numerical algorithms.
- Simplification which holds true for other objective functions, but not for multiple loads optimization.

**Proof.** We fix  $\theta$  and makes variations on  $A^*$  only. Remarking that  $G_{\theta}$  is convex (not obvious), the optimality condition is an Euler inequality which is

$$\int_{\Omega} (A^0 - A^*) \nabla u \cdot \nabla p \, dx \ge 0$$

for any  $A^0 \in G_\theta$ , which is equivalent to

$$A^* \nabla u \cdot \nabla p = \min_{A^0 \in G_\theta} \left( A^0 \nabla u \cdot \nabla p \right) \quad \forall \, x \in \Omega.$$

If  $\nabla u$  or  $\nabla p$  vanishes, then any  $A^*$  is optimal. Otherwise, we define

$$e = \frac{\nabla u}{|\nabla u|}$$
 and  $e' = \frac{\nabla p}{|\nabla p|}$ ,

and we look for minimizers  $A^*$  of

$$\min_{A^0 \in G_\theta} 4A^0 e \cdot e' = A^0 (e + e') \cdot (e + e') - A^0 (e - e') \cdot (e - e').$$

A lower bound is easily obtained

$$\min_{A^0 \in G_{\theta}} 4A^0 e \cdot e' \geq \min_{A^0 \in G_{\theta}} A^0 (e + e') \cdot (e + e') - \max_{A^0 \in G_{\theta}} A^0 (e - e') \cdot (e - e')$$

$$= \lambda_{\theta}^- |e + e'|^2 - \lambda_{\theta}^+ |e - e'|^2.$$

This lower bound is actually the precise minimal value.

Indeed, choosing  $A^0 = A^1$  which is a rank-1 simple laminate in the direction e + e', orthogonal to e - e', we get

$$A^{1}(e + e') = \lambda_{\theta}^{-}(e + e')$$
 and  $A^{1}(e - e') = \lambda_{\theta}^{+}(e - e')$ 

and an easy computation shows that

$$4A^{1}e \cdot e' = \lambda_{\theta}^{-}|e + e'|^{2} - \lambda_{\theta}^{+}|e - e'|^{2}$$

Thus

$$\min_{A^0 \in G_{\theta}} 4A^0 e \cdot e' = \lambda_{\theta}^- |e + e'|^2 - \lambda_{\theta}^+ |e - e'|^2$$

If now  $A^*$  is any optimal tensor, then, as a rank-1 laminate, it satisfies

$$A^*(e + e') = \lambda_{\theta}^-(e + e')$$
 and  $A^*(e - e') = \lambda_{\theta}^+(e - e')$  (1)

Indeed, if (1) does not hold true, one of the arithmetic and harmonic bounds would give a strict inequality

$$4A^*e \cdot e' = A^*(e+e') \cdot (e+e') - A^*(e-e') \cdot (e-e') > \lambda_{\theta}^- |e+e'|^2 - \lambda_{\theta}^+ |e-e'|^2$$

which is a contradiction with the optimal character of  $A^*$ .

We deduce that any optimal  $A^*$  satisfies, like the rank-1 simple laminate  $A^1$ ,

$$2A^*\nabla u = 2A^1\nabla u = \left(\lambda_{\theta}^+ + \lambda_{\theta}^-\right)\nabla u + \left(\lambda_{\theta}^+ - \lambda_{\theta}^-\right)\frac{|\nabla u|}{|\nabla p|}\nabla p$$

$$2A^*\nabla p = 2A^1\nabla p = \left(\lambda_{\theta}^+ + \lambda_{\theta}^-\right)\nabla p + \left(\lambda_{\theta}^+ - \lambda_{\theta}^-\right)\frac{|\nabla p|}{|\nabla u|}\nabla u,$$

Therefore any optimal tensor  $A^*$  can be replaced by this rank-1 simple laminate  $A^1$  without changing u and p.

$$-\operatorname{div}(A^*\nabla u) = -\operatorname{div}(A^1\nabla u) = f$$

$$-\operatorname{div}(A^*\nabla p) = -\operatorname{div}(A^1\nabla p) = -2(u - u_0)$$

### Parametrization of rank-1 simple laminates

In space dimension N=2 (to simplify) a rank-1 laminate is defined by

$$A^*(\theta,\phi) = \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \lambda_{\theta}^+ & 0 \\ 0 & \lambda_{\theta}^- \end{pmatrix} \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \quad \phi \in [0,\pi].$$

The admissible set is thus simply

$$\mathcal{U}_{ad}^{L} = \left\{ (\theta, \phi) \in L^{\infty} \left( \Omega; [0, 1] \times [0, \pi] \right), \int_{\Omega} \theta(x) \, dx = V_{\alpha} \right\}.$$

**Proposition 7.23.** The objective function  $J(\theta, \phi)$  is differentiable with respect to  $(\theta, \phi)$  in  $\mathcal{U}_{ad}^L$ , and its derivative is

$$\nabla_{\phi} J(\theta, \phi) = \frac{\partial A^*}{\partial \phi} \nabla u \cdot \nabla p \quad \text{and} \quad \nabla_{\theta} J(\theta, \phi) = \frac{\partial A^*}{\partial \theta} \nabla u \cdot \nabla p$$

## 7.4.3 Numerical algorithm

Projected gradient algorithm for the minimization of  $J(\theta, \phi)$ .

- 1. We initialize the design parameters  $\theta_0$  and  $\phi_0$  (for example, equal to constants).
- 2. Until convergence, for  $k \geq 0$  we iterate by computing the state  $u_k$  and adjoint  $p_k$ , solutions with the previous design parameters  $(\theta_k, \phi_k)$ , then we update these parameters by

$$\theta_{k+1} = \max \left( 0, \min \left( 1, \theta_k - t_k \left( \ell_k + \frac{\partial A^*}{\partial \theta} (\theta_k, \phi_k) \nabla u_k \cdot \nabla p_k \right) \right) \right)$$

$$\phi_{k+1} = \phi_k - t_k \frac{\partial A^*}{\partial \phi} (\theta_k, \phi_k) \nabla u_k \cdot \nabla p_k$$

with  $\ell_k$  a Lagrange multiplier for the volume constraint (iteratively enforced), and  $t_k > 0$  a descent step such that  $J(\theta_{k+1}, \phi_{k+1}) < J(\theta_k, \phi_k)$ .

# The self-adjoint case

A first example: maximization of torsional rigidity (maximization of compliance).

$$\min_{(\theta, A^*) \in \mathcal{U}_{ad}^L} \left\{ J(\theta, A^*) = -\int_{\Omega} u(x) dx \right\},\,$$

where u is the solution of

$$\begin{cases}
-\operatorname{div}(A^*\nabla u) = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

and the adjoint state is just p = u.

We solve in the domain  $\Omega = (0,1)^2$  with the phases  $\alpha = 1$  and  $\beta = 2$ . We fix a 50% volume constraint of  $\alpha$ . We initialize with a constant value of  $\theta = 0.5$  and a constant zero lamination angle. We perform 30 iterations.

Self-adjoint case p = u.

$$\nabla_{A^*}J(\theta,A^*) = \nabla u \otimes \nabla u \ge 0.$$

To minimize J we have to decrease  $A^*$ .

Any optimal  $A^*$  satisfies

$$A^*\nabla u = \lambda_{\theta}^- \nabla u$$

thus the optimal composite is the worst possible conductor.

Consequence. We can eliminate the angle  $\phi$  and it remains to optimize with respect to  $\theta$  only!

# Convexity

We rewrite the optimization problem thanks to the primal energy

$$-\int_{\Omega} u \, dx = -\int_{\Omega} \lambda_{\theta}^{-} |\nabla u|^{2} dx = \min_{v \in H_{0}^{1}(\Omega)} \int_{\Omega} \lambda_{\theta}^{-} |\nabla v|^{2} dx - 2 \int_{\Omega} v \, dx$$

Thus, we obtain a double minimization

$$\min_{\theta, A^* = \lambda_{\theta}^-} J(\theta, A^*) = \min_{\theta, v} \int_{\Omega} \lambda_{\theta}^- |\nabla v|^2 dx - 2 \int_{\Omega} v \, dx$$

Remember: the function  $(\theta, v) \to \lambda_{\theta}^{-} |\nabla v|^2$  is convex.

Consequence. There are only global minima!

Numerically, we use an algorithm based on alternate direction minimization (see chapter 5).

# Convergence history:

objective function in terms of the iteration number.



Volume fraction  $\theta$  (iterations 1, 5, and 30)







### A second self-adjoint example

Compliance minimization.

$$\min_{(\theta, A^*) \in \mathcal{U}_{ad}^L} \left\{ J(\theta, A^*) = \int_{\Omega} u(x) dx \right\},$$

where u is the solution of

$$\begin{cases}
-\operatorname{div}(A^*\nabla u) = 1 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

and the adjoint state is just p = -u.

We solve in the domain  $\Omega = (0,1)^2$  with the phases  $\alpha = 1$  and  $\beta = 2$ . We fix a 50% volume constraint of  $\alpha$ . We initialize with a constant value of  $\theta = 0.5$  and a constant zero lamination angle. We perform 30 iterations.

Self-adjoint case p = -u.

$$\nabla_{A^*} J(\theta, A^*) = -\nabla u \otimes \nabla u \leq 0.$$

To minimize J we have to increase  $A^*$ .

Any optimal  $A^*$  satisfies

$$A^*\nabla u = \lambda_\theta^+ \nabla u$$

thus the optimal composite is the **best possible conductor**.

Consequence. We can eliminate the angle  $\phi$  and it remains to optimize with respect to  $\theta$  only!

# Convexity

We rewrite the optimization problem thanks to the dual energy

$$\int_{\Omega} u \, dx = \min_{\substack{\tau \in L^2(\Omega)^N \\ -\text{div}\tau = 1 \text{ in } \Omega}} \int_{\Omega} (\lambda_{\theta}^+)^{-1} |\tau|^2 dx.$$

Thus, we obtain a double minimization

$$\min_{\theta, A^* = \lambda_{\theta}^+} J(\theta, A^*) = \min_{\theta, \tau} \int_{\Omega} (\lambda_{\theta}^+)^{-1} |\tau|^2 dx$$

Remember: the function  $(\theta, \tau) \to \frac{|\tau|^2}{\lambda_{\theta}^+}$  is convex.

Consequence. There are only global minima!

Numerically, we use an algorithm based on alternate direction minimization (see chapter 5).

Minimal compliance membrane (iterations 1, 10, and 30)







# Remarks

Convergence to a global minimum.

- 1. Numerical experiments with various initializations.
- 2. Convexity properties.

Shape optimization rather than two-phase optimization.

- 1. Numerically, holes can be mimicked by a very weak phase  $\alpha \ (\approx 10^{-3}\beta)$ .
- 2. Mathematically, when  $\alpha \to 0$  we obtain Neumann boundary conditions on the holes boundaries.

### Penalization

The previous algorithm compute composite shapes while we are rather interested by classical shapes.

Therefore we use a penalization process to force the density to take values close to 0 or 1.

Possible algorithms: after convergence to a composite shape,

1. either we add a penalization term to the objective function

$$J(\theta, A^*) + c_{pen} \int_{\Omega} \theta(1-\theta) dx,$$

2. either we continue the previous algorithm with a modified "penalized" density

$$\theta_{pen} = \frac{1 - \cos(\pi \theta_{opt})}{2}.$$

If  $0 < \theta_{opt} < 1/2$ , then  $\theta_{pen} < \theta_{opt}$ , while, if  $1/2 < \theta_{opt} < 1$ , then  $\theta_{pen} > \theta_{opt}$ .

## Example

Optimal radiator.

$$\begin{cases}
-\operatorname{div}(A^*\nabla u) = 0 & \text{in } \Omega \\
A^*\nabla u \cdot n = 1 & \text{on } \Gamma_N \\
A^*\nabla u \cdot n = 0 & \text{on } \Gamma \\
u = 0 & \text{on } \Gamma_D.
\end{cases}$$

We minimize the temperature where heating takes place

$$\min_{(\theta, A^*) \in \mathcal{U}_{ad}^L} \left\{ J(\theta, A^*) = \int_{\Gamma_N} u \, ds \right\}.$$

This is precisely the compliance! Thus the problem is self-adjoint with p=-u.

Isotropic materials with conductivity  $\alpha = 0.01$  and  $\beta = 1$ , in proportions 50, 50%, in the domain  $\Omega = (0, 1)^2$ .

