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1 Parametric optimization: 12 points

We consider an elastic membrane with a variable thickness h(x), clamped on
its boundary, occupying at rest a plane domain Ω (a smooth bounded open
set of R2). This membrane is loaded by a time-dependent force f(t, x) ∈
C
(

[0, T ];L2(Ω)
)

where T > 0 is a given final time. Its vertical displacement
u(t, x) is the unique solution of a dissipative evolution equation







∂u
∂t

− div (h∇u) = f in (0, T ) ×Ω,
u = 0 on (0, T ) × ∂Ω,
u(t = 0, x) = uinit(x) in Ω,

(1)

where uinit ∈ L2(Ω) is a given initial data. The thickness belongs to the
following space of admissible designs

Uad = {h ∈ L∞(Ω) , hmax ≥ h(x) ≥ hmin > 0 in Ω} .

The goal is to minimize the objective function

inf
h∈Uad

{

J(h) =

∫ T

0

∫

Ω
j1(u(t, x)) dt dx +

∫

Ω
j2(u(T, x)) dx

}

, (2)

where j1 and j2 are two smooth functions satisfying

|jk(v)| ≤ C(|v|2 + 1), |j′k(v)| ≤ C(|v|+ 1), |j′′k (v)| ≤ C.

For an integer N ≥ 1 we define a time step ∆t = T/N , discrete times
tn = n∆t and we discretize the previous problem by the following scheme

{

un−un−1

∆t
− div (h∇un) = fn in Ω,

un = 0 on ∂Ω,
(3)

inf
h∈Uad

{

J∆t(h) =

N
∑

n=1

∆t

∫

Ω
j1(u

n(x)) dx+

∫

Ω
j2(u

N (x)) dx

}

, (4)

where, for 1 ≤ n ≤ N , fn(x) = f(tn, x), u0(x) = uinit(x) and un(x) is an
approximation of u(tn, x).

1. Write the variational formulation for the unknown un in terms of un−1.
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2. Write the Lagrangian associated to the objective function J∆t(h).

3. By differentiating the Lagrangian with respect to un, deduce the ad-
joint variational formulation for an adjoint state pn, for 1 ≤ n ≤ N .
Write down explicitly the boundary value problem satisfied by pn. In
which order shall we compute the adjoints pn ?

4. Compute (formally) the derivative of J∆t(h).

5. Show that the partial differential equations for {pn(x)}1≤n≤N (pos-
sibly multiplied by a suitable coefficient) are a time discretization of
an evolution equation for a formal limit p(t, x). Give explicitly the
boundary value problem satisfied by p(t, x). Similarly, give the formal
limit of the derivative of J∆t(h) as ∆t goes to 0.

6. Explain what is the main computational cost or ”bottle-neck” (in
terms of CPU and/or memory requirement) in the numerical evalu-
ation of the derivative of J∆t(h) when the number N of time steps is
large (compared to the steady-state case).

2 Topology optimization: 8 points

In a smooth bounded domain Ω ⊂ R
N we consider a mixture of three con-

ducting phases with conductivities 0 < α1 ≤ α2 ≤ α3 occupying three
disjoint complementary subsets of Ω with characteristic functions χ1, χ2, χ3,
satisfying for any x ∈ Ω

χi(x) = 0 or 1 and

3
∑

i=1

χi(x) = 1. (5)

We denote by aχ(x) the mixture conductivity

aχ(x) = α1χ1(x) + α2χ2(x) + α3χ3(x)

and for a given source term f(x) ∈ L2(Ω) we solve
{

−div (aχ∇u) = f in Ω,
u = 0 on ∂Ω.

(6)

We maximize the compliance, i.e. we want to obtain the worst possible
conducting mixture,

inf
χ∈Uad

{

J(χ) = −

∫

Ω
f(x)u(x) dx

}

, (7)

where, for 0 ≤ ci ≤ 1 such that
∑3

i=1 ci = 1, the set of admissible designs is

Uad =

{

χ = (χ1, χ2, χ3) satisfying (5) and

∫

Ω
χi(x)dx = ci|Ω|

}

.
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We recall that minus the compliance can be rewritten as

−

∫

Ω
f(x)u(x) dx = min

v∈H1

0
(Ω)

∫

Ω

(

aχ|∇v|2 − 2fv
)

dx. (8)

To relax the optimization problem (7) we enlarge the space Uad of designs by
allowing composite materials which are simple laminates of the three phases
in respective proportions θ1, θ2, θ3 satisfying

0 ≤ θi ≤ 1,

3
∑

i=1

θi = 1, (9)

with the lamination direction e (a unit vector, see Figure 2). Of course, the
proportions and the direction of lamination may vary with x ∈ Ω.

αα 32α1

e

1. Compute the homogenized conductivity tensor A∗(θ1, θ2, θ3) for such
a simple laminate when the direction of lamination is the first vector
e1 of the canonical basis.

2. Denoting by A∗(x) any possible simple laminate, i.e.,

A∗(x) = R(x)A∗ (θ1(x), θ2(x), θ3(x)) R
T (x),

where A∗(θ1, θ2, θ3) is the tensor computed in the first question and
R(x) is a rotation matrix (RT (x) being its transposed), write the re-
laxed state equation and relaxed objective function.

3. By using the minimization principle (8) for the relaxed state equation,
prove that the relaxed formulation is equivalent to

inf
θ∈U∗

ad
,v∈H1

0
(Ω)

{

J∗(θ, v) =

∫

Ω

(

λ−
θ |∇v|2 − 2fv

)

dx

}

, (10)
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where

λ−
θ =

(

3
∑

i=1

θi
αi

)−1

and the set of admissible densities is

U∗
ad =

{

θ = (θ1, θ2, θ3) satisfying (9) and

∫

Ω
θi(x)dx = ci|Ω|

}

.

4. Show that this relaxed formulation admits at least one optimal solu-
tion. Hint: show that J∗(θ, v) is a convex function.
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