Exercise 1

Let E and F be Banach spaces.

1. Let $T \in \mathcal{K}(E,F)$ and (x_n) be a weakly converging sequence in E. Prove that Tx_n is strongly convergent in F.

2. Conversely, let us assume that E is reflexive and let $T \in \mathcal{L}(E,F)$ such that for every weakly converging sequence (x_n) in E, (Tx_n) is strongly convergent in F. Prove that T is compact.

Answer of exercise 1

1. Firstly, as (x_n) is weakly convergent, it is bounded (see previous Tutorial Classes). Thus, as T is compact, there exists $\varphi : \mathbb{N} \to \mathbb{N}$ increasing and $y \in F$ such that (Tx_n) strongly converges toward y. Moreover, let x the weak limit of (x_n), for all $f \in F^*$, we have

$$\langle f, Tx \rangle = \langle T^* f, x \varphi(n) \rangle = \lim_n \langle f, T(x_{\varphi(n)}) \rangle = \langle f, y \rangle.$$

It follows that $y = T(x)$. We have proved that the subsequence $(x_{\varphi(n)})$ does converge toward $T(x)$. In fact, the whole sequence is converging. Otherwise, there exists $\varepsilon > 0$ and $\psi : \mathbb{N} \to \mathbb{N}$ increasing such that

$$\|x_{\psi(n)} - x\|_E > 0.$$

The sequence $(x_{\psi(n)})$ weakly converge toward x in E. Thus, it admits a subsequence strongly convergent toward x, what is in contradiction with the last inequality.

2. Let (x_n) be a bounded sequence in E. As E is reflexive, it admits a subsequence $(x_{\varphi(n)})$ weakly convergent, and $Tx_{\varphi(n)}$ is strongly convergent. Thus, T is compact.

Exercise 2

Let $E = \ell^p$ with $1 \leq p \leq \infty$. Let λ_n be a bounded sequence in \mathbb{R} and consider the operator $T \in \mathcal{L}(E)$ defined by

$$Tx = (\lambda_1 x_1, \ldots, \lambda_n x_n, \ldots),$$

where $x = (x_1, \ldots, x_n, \ldots)$. Prove that T is a compact operator iff $\lambda_n \to 0$.

Answer of exercise 2

First of all, we are going to prove that if T is compact, then λ_n is a sequence that does converge toward zero. Let (λ_n) be a sequence that does not converge toward zero. There exists $M > 0$ and an increasing sequence from \mathbb{N}^* into \mathbb{N}^* such that for all n,

$$|\lambda_{\varphi(n)}| > M$$

Let us introduce the sequence (x^n) in ℓ^p defined by

$$x^n_k = \begin{cases} 1 & \text{if } k = \varphi(n) \\ 0 & \text{if } k \neq \varphi(n). \end{cases}$$
The sequence x^n is bounded in ℓ^p and for all $n > m > 0$, we have

$$
\|T(x^n) - T(x^m)\|_{\ell^p} = \begin{cases}
(\lambda_{\varphi(n)}^p + |\lambda_{\varphi(m)}|^p)^{1/p} & \text{if } p \neq \infty \\
\max(\lambda_{\varphi(n)}, |\lambda_{\varphi(m)}|) & \text{if } \infty.
\end{cases}
$$

So that for all $n \neq m$,

$$
\|x^n - x^m\|_{\ell^p} > M
$$

It follows that no subsequence of $(T(x^n))$ can be convergent in ℓ^p, whereas (x^n) is bounded in ℓ^p. Thus, T is not a compact operator on ℓ^p.

Now, we have to prove the converse. Let us assume this time that (λ_n) is a sequence that does converge toward zero. Let (x^n) be a bounded sequence in ℓ^p. Using a diagonal process, there exists an increasing map $\varphi: \mathbb{N} \to \mathbb{N}$ such that $x_{\varphi(n)}$ is converging for all $k \in \mathbb{N}^*$ as n goes to infinity.

Exercise 3

Let E and F be two Banach spaces, and let $T \in \mathcal{L}(E, F)$.

1. Assume that E is reflexive. Prove that $T(B_E)$ is closed (strongly).
2. Assume that E is reflexive and that $T \in \mathcal{K}(E, F)$. Prove that $T(B_E)$ is compact.
3. Let $E = F = C([0, 1])$ and $T(u) = \int_0^1 u(s) \, ds$ Check that $T \in \mathcal{K}(E)$. Prove that $T(B_E)$ is not closed.

Answer of exercise 3

1. Let x_n be a sequence in B_E such that $y_n = T(x_n)$ converges in F toward an element F. As E is reflexive, the unit ball is weakly compact and without lost of generality, we can assume that it is weakly convergent toward an element $x \in B_E$. For all $L \in F^*$, $\langle L, T(\cdot) \rangle$ is a continuous linear form, so

$$
\langle L, T(x_n) \rangle \to \langle L, T(x) \rangle.
$$

Moreover, as $T(x_n)$ converges strongly toward y, we have

$$
\langle L, T(x) \rangle = \langle L, y \rangle,
$$

for all $L \in F^*$, so that $T(x) = y$. Finally, $x \in B_E$, so that $y \in T(B_E)$ and $T(B_E)$ is closed for the strong topology.

2. If T is compact, $T(B_E)$ is relatively compact. Moreover, as E is reflexive, $T(B_E)$ is closed. Thus, it is compact.

3. Let u be an element of the unit ball of $C([0, 1])$. We have

$$
|T(u)(s) - T(u)(t)| \leq \int_s^t |u(x)| \, dx \leq |s - t|.
$$

Thus, $T(B_E)$ is uniformly equi-continuous and thus is relatively compact in $C([0, 1])$ (from the Ascoli Theorem). It is easy to see that $v(x) = |x - 1/2|$ belongs to the closure of $T(B_E)$ but does not belong to $T(B_E)$.

2
Exercise 4

Let E and F be two Banach spaces and let $T \in K(E,F)$. Assume that $\dim E = \infty$. Prove that there exists a sequence (u_n) in E such that $\|u_n\|_E = 1$ and $\|Tu_n\|_F \to 0$. [Hint: Argue by contradiction]

Answer of exercise 4

Assume that it is not the case, then we claim that there exists r such that the ball $B_r(F)$ of F of radius r centered in the origin is such that $B_r(E) \cap T(S_E) = \emptyset$, where S_E is the unit sphere of E. Thus, $T(B_E)$ contains the ball B_r of F. As $T(B_E)$ is relatively compact, the ball of F is also relatively compact. It follows that F is of finite dimension. Finally, as E is of non finite dimension, the kernel of T is not empty and there exists $u \in S_E$ such that $T(u) = 0$ what is contradictory.

Exercise 5

Let $1 \leq p < \infty$. Check that $\ell^p \subset c_0$ with continuous injection (we recall that c_0 is the set of sequences $(x_n) \in \mathbb{R}^\mathbb{N}$ such that $\lim x_n = 0$. Is the injection compact?

Answer of exercise 5

1. Let $x \in \ell^p$. We have

$$\sum_{n} |x_n|^p < \infty.$$

Thus, $x_n \to 0$ as n goes to infinity. Moreover,

$$\|x\|_{c_0} = \sup_n |x_n| \leq \left(\sum_{n} |x_n|^p \right)^{1/p} = \|x\|_{\ell^p}.$$

2. The injection is not compact. Indeed, let (x^n) be the sequence in ℓ^p defined by

$$x^n_k = \begin{cases} 1 & \text{if } n = k, \\ 0 & \text{if } n \neq k. \end{cases}$$

We have $\|x^n\|_{\ell^p} = 1$ for all n and no subsequence of x^n can be a Cauchy sequence of c_0 as for every $n \neq m$,

$$\|x^n - x^m\|_{c_0} = 1.$$

Exercise 6

Let (λ_n) be a sequence of positive numbers such that $\lim_{n \to \infty} = +\infty$. Let V be the space of sequences $(u_n)_{n \geq 1}$ such that

$$\sum_{n=1}^{\infty} \lambda_n |u_n|^2 < \infty.$$
The space V is quipped with the scalar product

$$(u, v) = \sum_{n=1}^{\infty} \lambda_n u_n v_n.$$

Prove that V is a hilbert space and that $V \subset \ell^2$ with compact injection.

Answer of exercise 6

First, let is prove that V is a Hilbert space. Obviously, (\cdot, \cdot) defines a scalar product and $\|u\|_V = ((u, u))^{1/2}$ is a norm on V. It remains to prove that V, endowed with this norm is complete. Let u^n be a Cauchy sequence in V. We have

$$\|u^n - u^m\|_V^2 = \sum_{k=1}^{\infty} \lambda_n |u^n_k - u^m_k|^2.$$

Thus for every $k \in \mathbb{N}^*$, u_k^n is a Cauchy sequence, and is convergent toward an element $u_k \in \mathbb{R}$. Moreover, for every $\varepsilon > 0$,

$$\|u^n - u\|_V^2 = \sum_{k=1}^{\infty} \lambda_n |u^n_k - u_k|^2 \leq \liminf_{m \to \infty} \sum_{k=1}^{\infty} \lambda_n |u^n_k - u^m_k|^2 \leq \varepsilon,$$

for n great enough. Thus, V is indeed a Banach space.

Next, we would like to prove that the $V \subset \ell^2$. This is a straightforward consequence of the inequality

$$\|u\|_{\ell^2} \leq \inf_n \lambda_n^{1/2} \|u\|_V.$$

It remains to prove that the injecton is compact. Let (u^n) be a sequence in the unit ball of V. Using a diagonal process, we can extract a subsequence (still denoted (u^n)) such that u^n_k is convergent toward an element $u_k \in \mathbb{R}$. Finally, for every $N > 0$,

$$\sum_k |u^n_k - u_k|^2 \leq \sum_{k=1}^{N} |u^n_k - u_k|^2 + \left(\inf_{k \geq N} \lambda_k \right)^{-1} \sum_{k=1}^{\infty} \lambda_k |u^n_k - u_k|^2$$

$$\leq \sum_{k=1}^{N} |u^n_k - u_k|^2 + 4 \left(\inf_{k \geq N} \lambda_k \right)^{-1} (\|u^n\|^2 + \|u^n\|^2)$$

$$\leq \sum_{k=1}^{N} |u_k^n - u_k|^2 + 8 \left(\inf_{k \geq N} \lambda_k \right)^{-1}.$$

For every $\varepsilon > 0$, there exists N such that

$$\inf_{k \geq N} \lambda_k > \varepsilon/16.$$
and for \(n \) and \(m \) great enough,

\[
\sum_{k=1}^{N} |u_{nk} - u_{mk}|^2 < \varepsilon/2.
\]

It follows, that for \(n \) and \(m \) great enough,

\[
\|u^n - u^m\|_{\ell^2} < \varepsilon,
\]

meaning that \((u^n)\) is a Cauchy sequence in \(\ell^2 \). Thus, the injection of \(V \) into \(\ell^2 \) is compact as claimed.

Exercise 7

Let \(1 \leq q \leq p \leq \infty \). Prove that the canonical injection from \(L^p(0, 1) \) into \(L^q(0, 1) \) is continuous but not compact. [**Hint:** Use Rademacher’s functions]

Answer of exercise 7

First, from the generalized Hölder inequality,

\[
\int_0^1 |f|^q \leq \int_0^1 |f|^p,
\]

proving that the injecton of \(L^p(0, 1) \) into \(L^q(0, 1) \) is continuous. We st \(u_n(x) = f(nx) \), where \(f \) is the 1-periodic function defined by

\[
f(x) = \begin{cases}
1 & \text{if } x \geq 1/2, \\
0 & \text{if } x < 1/2.
\end{cases}
\]

We already know that \(f \) is weakly convergent in \(\sigma(L^\infty, L^1) \) toward the constant map \(1/2 \). If the injection was compact, \(u_n \) would admit a subsequence \(u_{\varphi(n)} \) converging toward an element \(u \) in \(L^q(0, 1) \). As the strong convergence does imply the weak convergence, we would have \(u = 1/2 \). Finally, as

\[
\|u_n - u\|_q = \left(\int_0^1 |u_n - 1/2|^q \right)^{1/q} = 1/2,
\]

\(u_n \) can not converge toward \(u \), leading to a contradiction. Thus, the injection is not compact.