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1. Outline

Several scales are present in the problem.

Should it be treated as “multiscale” problem ?
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Terminology used in this talk

• Multiscale problem : a problem in which several length-scales are coupled and must
be resolved simultaneously.

• “Homogenization” or upscaling problem : a problem in which the scales are well
separated and do not need to be resolved at the same time (change of scales).

• Homogenization for linear problems : OK : The problem at the macroscopic scale
and at the microscopic scales are uncoupled

σ = L(x) : ε, σ = L̃ : ε,

where L̃ is known by solving, once for all, 6 elasticity problems.

• Homogenization for nonlinear problems : theoretically feasible but remains a mul-
tiscale problem ! Even when the scales are well separated, the macroscopic problem
and the microscopic problem are coupled.

Ultimate goal : Avoid Multiscale problems ! Introduce approximations to decouple
the scales or reduce the coupling to only a few “microstructural variables”.
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Composite materials are ubiquitous in nature and in man-made structures.

Aim of this talk : discuss the local and global response of nonlinear
composites

1. Computationally : address composites with complex microstructure.
⇒ Fast numerical method for elliptic p.d.e.’s with periodicity conditions.

2. Theoretically : assess the accuracy of theoretical bounds or estimates for (nonlinear)
composites.
⇒ Importance of intraphase field heterogeneity .

3. Approximate models : make approximations under which the multiscale problem for
nonlinear composites can decoupled.
⇒ Nonuniform transformation field analysis .
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Composites with complex microstructure

Simple microstructure

SiC-Ti (ONERA)

Complex microstructures

Metallic foam (GEMPPM)

Polycrystal



Composites with complex microstructure

Simple microstructure

SiC-Ti (ONERA)

Complex microstructures

Metallic foam (GEMPPM)

Polycrystal

Compute the effective properties and the local response of composites with
complex microstructures . Make use of images of their real microstructure.

Local fields : High spatial resolution required : large number of dof’s. Large systems.
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Nonlinear phases

Nonlinear elasticity : σ = f(ε)
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m = +∞ : adaptative materials.



Nonlinear phases

Nonlinear elasticity : σ = f(ε)
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Power-law materials :

trε = 0,
σ

σ0
=

(
ε

ε0

)m
.

m = 1 : Linear elastic materials,
m = 0 : rigid-plastic materials,
m = +∞ : adaptative materials.

Incremental plasticity : ε = M : σ + εp, ε̇p = ∂ψ/∂σ(σ). :

ε ε

σ

Perfect plasticity Plasticity with linear hardening

ε

σσ
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2. A computational method for composites

based on Fast Fourier Transforms... Moulinec and Suquet (1994), W. Muller (1996),
Eyre and Milton (1999), Lebensohn (2000)...

Required input : • Constitutive relations for the phases (including interfaces).
σ, ε stress and infinitesimal tensors :

σ(x) = F(x, ε(x), ε̇(x)....).

• Microstructure. Only partial statistical information available.
Ensembble averaging over several realizations.
• Boundary conditions representing the in situ state of the rve.



2. A computational method for composites

based on Fast Fourier Transforms... Moulinec and Suquet (1994), W. Muller (1996),
Eyre and Milton (1999), Lebensohn (2000)...

Required input : • Constitutive relations for the phases (including interfaces).
σ, ε stress and infinitesimal tensors :

σ(x) = F(x, ε(x), ε̇(x)....).

• Microstructure. Only partial statistical information available.
Ensembble averaging over several realizations.
• Boundary conditions representing the in situ state of the rve.

Expected output :
• Homogenized constitutive relations :

σ = F̃(ε, ε̇, ...) ?

where overall (macroscopic) strain, stress ε = 〈ε〉,σ = 〈σ〉, 〈.〉 spatial averaging
• Local fields : σ, ε. How heterogeneous are they ?
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Local problem

σ(x) = F(x, ε(x), ε̇(x)....) Constitutive relations

ε = 1
2

(
∇u + T∇u

)
Compatibility

div (σ) = 0 Equilibrium

〈ε〉 = ε Loading

u∗ = u− ε.x periodic, σ.n anti-periodic Boundary conditions



Local problem

σ(x) = F(x, ε(x), ε̇(x)....) Constitutive relations

ε = 1
2

(
∇u + T∇u

)
Compatibility

div (σ) = 0 Equilibrium

〈ε〉 = ε Loading

u∗ = u− ε.x periodic, σ.n anti-periodic Boundary conditions

Constitutive relations : ordinary differential equations (NO coupling between material
points).

Equilibrium + compatibility : partial differential equations (coupling between material
points).
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Eshelby’s auxiliary problem

V representative volume element, homogeneous reference medium with elastic
stiffness L0 subject to a nonhomogeneous eigenstress τ (transformation stress)

σ(x) = L0 : ε(u∗(x)) + τ(x), div(σ) = 0, 〈ε(u∗)〉 = 0, Periodicity conditions .

⇒ ε(u∗(x)) = −Γ0 ∗ τ(x), ε̂∗(ξ) = −Γ̂
0
(ξ) : τ̂(ξ) ∀ξ 6= 0, ε̂∗(0) = 0.

Γ0 : Green’s operator for the reference medium.



Eshelby’s auxiliary problem

V representative volume element, homogeneous reference medium with elastic
stiffness L0 subject to a nonhomogeneous eigenstress τ (transformation stress)

σ(x) = L0 : ε(u∗(x)) + τ(x), div(σ) = 0, 〈ε(u∗)〉 = 0, Periodicity conditions .

⇒ ε(u∗(x)) = −Γ0 ∗ τ(x), ε̂∗(ξ) = −Γ̂
0
(ξ) : τ̂(ξ) ∀ξ 6= 0, ε̂∗(0) = 0.

Γ0 : Green’s operator for the reference medium.

Properties of Γ0 :

• Γ0 ∗ τ = 0 ⇔ div(τ) = 0. Γ0 ∗ τ measures the “distance” to equilibrium.

• Γ0 ∗ τ is a compatible fluctuation field ∀τ .

• Γ0 ∗
(
L0 : ε(u)

)
= ε(u∗).

Γ0 is a (nonorthogonal) projector on compatible fluctuation fields.
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Green’s operator

Standard Fourier analysis : Willis, 64, Khatchaturyan, 73, Mura, 82.

∂f

∂xj

Fourier→ iξjf̂(ξ) i =
√
−1 , div(σ) = 0 → i ξ.σ̂(ξ) = 0, ∇u → iξ⊗û(ξ)....
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Green’s operator

Standard Fourier analysis : Willis, 64, Khatchaturyan, 73, Mura, 82.

∂f

∂xj

Fourier→ iξjf̂(ξ) i =
√
−1 , div(σ) = 0 → i ξ.σ̂(ξ) = 0, ∇u → iξ⊗û(ξ)....

σ(x) = L0 : ε(u∗(x)) + τ(x → σ̂(ξ) = iL0 : ξ ⊗ û∗(ξ) + τ̂(ξ),

iξ.σ̂(ξ) = 0 ⇒ ξ.L0.ξ.û∗(ξ) = iξ.τ̂(ξ)

K0(ξ) = ξ.L0.ξ acoustic tensor , N0(ξ) = K0(ξ)−1, û∗(ξ) = iN0(ξ).ξ.τ̂(ξ),

ε̂∗(ξ) = iξ ⊗ û∗(ξ) = −ξ ⊗N0(ξ)⊗ ξ : τ̂(ξ) = −Γ0(ξ) : τ̂(ξ),

Γ0(ξ) = ξ ⊗N0(ξ)⊗ ξ, ξ 6= 0, Γ0(0) = 0.

Isotropic reference medium :

Γ̂0
ijkh(ξ) =

1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh

|ξ|4
.
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Back to initial problem

Linear elasticity :

σ(x) = L(x) : ε(x), < ε >= ε, ε = ε(u∗) + ε,

re-written as : σ(x) = L0 : ε(u∗(x)) + τ(x), with

τ(x) = δL(x) :
(
ε(u∗(x)) + ε

)
+ L0 : ε, δL(x) = L(x)− L0.



Back to initial problem

Linear elasticity :

σ(x) = L(x) : ε(x), < ε >= ε, ε = ε(u∗) + ε,

re-written as : σ(x) = L0 : ε(u∗(x)) + τ(x), with

τ(x) = δL(x) :
(
ε(u∗(x)) + ε

)
+ L0 : ε, δL(x) = L(x)− L0.

Use solution of the auxiliary problem :

ε(u∗) = −Γ0 ∗ τ = −Γ0 ∗ (δL : ε(u))− Γ0 ∗ (L0 : ε) = −Γ0 ∗ (δL : ε(u)) .

ε(u) = ε(u)∗+ ε ⇒ ε(u) = −Γ0 ∗ (δL : ε(u)) + ε.

Lippman-Schwinger integral equation
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Iterative scheme :

ε(ui+1) = −Γ0 ∗
(
δL : ε(ui)

)
+ ε.



Iterative scheme :

ε(ui+1) = −Γ0 ∗
(
δL : ε(ui)

)
+ ε.

Using the properties of the Green operator Γ0

ε(ui+1) = −Γ0 ∗
(
(L− L0) : ε(ui)

)
+ ε = −Γ0 ∗

(
(L : ε(ui)

)
+ ε(ui),

ε(ui+1) = ε(ui)− Γ0 ∗ (σi), σi = L : ε(ui).



Iterative scheme :

ε(ui+1) = −Γ0 ∗
(
δL : ε(ui)

)
+ ε.

Using the properties of the Green operator Γ0

ε(ui+1) = −Γ0 ∗
(
(L− L0) : ε(ui)

)
+ ε = −Γ0 ∗

(
(L : ε(ui)

)
+ ε(ui),

ε(ui+1) = ε(ui)− Γ0 ∗ (σi), σi = L : ε(ui).

Alternatively :

σi = L : ε(ui) in real space︸ ︷︷ ︸
Constitutive relations

, ε̂i+1(ξ) = ε̂i(ξ)− Γ̂
0
(ξ) : σ̂i(ξ) in Fourier space︸ ︷︷ ︸

Compatibility and equilibrium

.
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Nonlinear constitutive relations

σ = F (x, ε(u)) ,

re-written as σ(x) = L0 : ε(u∗(x)) + τ(x),

τ(x) = δF(x), ε) + L0 : ε, δF(x, ε) = F(x, ε)− L0 : ε.



Nonlinear constitutive relations

σ = F (x, ε(u)) ,

re-written as σ(x) = L0 : ε(u∗(x)) + τ(x),

τ(x) = δF(x), ε) + L0 : ε, δF(x, ε) = F(x, ε)− L0 : ε.

Nonlinear integral Lipmann-Schwinger equation :

ε(u) = −Γ0 ∗ δF (ε(u)) + ε.



Nonlinear constitutive relations

σ = F (x, ε(u)) ,

re-written as σ(x) = L0 : ε(u∗(x)) + τ(x),

τ(x) = δF(x), ε) + L0 : ε, δF(x, ε) = F(x, ε)− L0 : ε.

Nonlinear integral Lipmann-Schwinger equation :

ε(u) = −Γ0 ∗ δF (ε(u)) + ε.

Iterative scheme

ε(ui+1) = −Γ0 ∗ δF
(
ε(ui)

)
+ ε = ε(ui)− Γ0 ∗F

(
ε(ui)

)
= ε(ui)− Γ0 ∗ σi.

σi = F
(
ε(ui)

)
in real space, ε̂i+1(ξ) = ε̂i(ξ)− Γ̂

0
(ξ) : σ̂i(ξ) in Fourier space.
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Algorithm

Initialization : ε0(x) = ε, σ0(x) = L(x) : ε0(x), ∀ x ∈ V,

Iterate i+1 : εi and σi being known, do untill convergence :

Real space Fourier space

d σi FFT→ σ̂i

ε̂i+1(ξ) = ε̂i(ξ)− Γ̂
0
(ξ) : σ̂i(ξ)

ε̂i+1(0) = ε

εi+1(x)
(FFT )−1

← ε̂i+1(ξ)

b σi+1(x) = L(x) : εi+1(x)



Algorithm

Initialization : ε0(x) = ε, σ0(x) = L(x) : ε0(x), ∀ x ∈ V,

Iterate i+1 : εi and σi being known, do untill convergence :

Real space Fourier space

d σi FFT→ σ̂i

ε̂i+1(ξ) = ε̂i(ξ)− Γ̂
0
(ξ) : σ̂i(ξ)

ε̂i+1(0) = ε

εi+1(x)
(FFT )−1

← ε̂i+1(ξ)

b σi+1(x) = L(x) : εi+1(x)

- Constitutive relations are “local” in real space : σ(x) = L(x) : ε(x) can be
computed independently at each x.

- Equilibrium and compatibility equations are “nonlocal” in real space, but are local in
Fourier space .
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Fourier space

+N/2−N/2

Real space

i/N

j/N

0 1

Spatial resolution = Number of pixels or voxels in the image .

16× 16 64× 64 256× 256 1024× 1024
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Comparison FFT/FEM 2 elastic plastic phases σm0 = 100 Mpa, σf0 = 500 Mpa.

FFT FEM
Resol. σhom

0 CPU time Dof’s σhom
0 CPU time

N MPa s MPa s
16 160.34 1.64 * * *
32 160.66 3.02 1402 162.36 267.69
64 160.07 12.21 5710 160.62 2170.28

128 159.55 53.53 11370 160.37 6464.47
256 159.29 253.31 * * *
512 159.13 1075.60 * * * 0.0 0.0025 0.005 0.007

0

100

200

300

400

500

Composite
Matrix
Fibers

0
hom
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Comments

- Easy to implement on parallel computers : constitutive relations in real space,
Green’s operator in Fourier space.

- Can be extended to nonlinear behaviors : incremental plasticity, viscoplasticity,
hyperelasticity and finite strains.

- Faster than the Finite Element Method.



Comments

- Easy to implement on parallel computers : constitutive relations in real space,
Green’s operator in Fourier space.

- Can be extended to nonlinear behaviors : incremental plasticity, viscoplasticity,
hyperelasticity and finite strains.

- Faster than the Finite Element Method.

- Limitation : Rate of convergence ' contrast between the phases

ε(ui+1) = −Γ0 ∗
(
δL : ε(ui)

)
+ ε.

Does not converge for rigidly-reinforced or voided materials .

- Accelerated scheme (Eyre and Milton, 1999) : rate of convergence '
√

contrast.
Convergence still not ensured for composites with infinite contrast.

- Composites with infinite contrast (and power law materials) handled by a different
formulation based on augmented Lagrangians (Michel, Moulinec & PS, 2001).
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3. Accuracy of theoretical estimates for linear composites

In linear composites, it is sufficient to determine the first moment (average) of the
strain over each phase to determine the homogenized constitutive relations.

σ(x) = L(r) : ε(x) in phase r, εr = Ar : ε,

σ =
N∑
r=1

c(r)σr =
N∑
r=1

c(r)L(r) : εr ⇒ σ =

 N∑
r=1

c(r)L(r) : Ar

 : ε.

There is NO need to resolve the local stress and strain fields. It suffices to determine
their average per phase.

18



Classical treatment for linearly elastic constituents

u - .x 0
x

L0

Inclusion

LI
,

*

I

Inclusion problems (Eshelby, 1957) :
elastic ellipsoidal particle in a linear elastic infi-
nite medium subjected to an average strain ε at
infinity and a transformation strain ε∗I .
• LI = L0 : the strain field is uniform in the

inclusion :

εI = S0 : ε∗I

• LI 6= L0, ε∗I = 0 : the strain field is uniform
in the inclusion :

εI =
(
I + S0 : (L0)−1 : (LI − L0)

)−1
: ε

In both problems, the strain field is uniform in the inclusion phase.
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Most linear schemes derive from Eshelby’s result :
• Inclusion-matrix systems :

Dilute approximation
L0 = Lmatrix, ε∗I = 0.

No interaction bet-
ween inclusions ac-
counted for : valid for
small concentrations.
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Most linear schemes derive from Eshelby’s result :
• Inclusion-matrix systems :

Dilute approximation
L0 = Lmatrix, ε∗I = 0.

No interaction bet-
ween inclusions ac-
counted for : valid for
small concentrations.

Hashin-Shtrikman
bounds

L0 = Lopt, ε∗I uniform.

Optimal values of
L0, ε∗I determined
through variational
principles.

• Polycrystals :

No phase plays the role of a matrix.
Self-consistent scheme (Budiansky,
Kröner, Hill) :
reference medium = equivalent ho-
mogeneous medium .

E.H.M. E.H.M.

The self-consistent approximation assumes that the strain is uniform in the grains .
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Two-phase inclusion-matrix composites

Two-phase composite cylinders assemblage with three different fiber sizes. Idea :
microstructures for which one of the Hashin-Shtrikman bound is attained (isotropic
phases).

c(1) = 0.2105 c(1) = 0.4209

20 realizations for “ideal” fiber volume fraction : 0.25, 0.5, 0.75. (actual volume fractions
are smaller).
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Effective properties : linear composites Hashin and Shtrikman bounds :

µ̃HS
− = µ(2) + c(1) µ(1) − µ(2)

1 + c(2)2(µ(1) − µ(2))

(2 + d)µ(2)

, µ̃HS
+ : interchange µ(1) and µ(2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

2

3

4
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6
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8

9

10

HS+
HS-

(1)
/

(2)
= 20

c
(1)

/
(2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

2

3

4

5

6

7

8

9

10
(1)

/
(2)

= 10000

c
(1)

/
(2)

Why such a high contrast ? : Nonlinear composites ' linear composites with high
contrast. Satisfactory agreement satisfactory with HS- bound when c(1) ≤ 0.5.
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Elastic properties of 3d particle-matrix composites.

Suspension of monodisperse spherical inclusions in an elastic matrix.

10
0

2 5 10
1

2 5 10
2

2 5

Number of spheres

5

10

15

cho
m FFT numerical results

Hashin Shtrikman lower bound
Hashin Shtrikman upper bound
c

(p)
=0.2678

Spherical elastic particles

11
11

Elastic properties

Number of Number of L̃1111 L̃1111

particles tests mean (GPa) std deviation
1 1 7.919 -
8 101 7.675 0.142

64 40 7.664 0.054
420 21 7.667 0.024
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Two-phase, Granular type of microstructures

Covering by identical hexagons. Properties of the hexagons chosen randomly (phase 1 or phase 2). 200
different configurations for each volume fraction.

Contiguity of the phases : depends on the volume fraction. Inclusion / matrix type of microstructure at low

and high volume fraction.
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Transverse shear modulus

0.0 0.2 0.4 0.6 0.8 1.0
c1

2

4

6

8
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/
2

Comput.
Self-C.
HS+
HS-

1 / 2 = 20
Transverse shear
UD composite

200 configurations

Hashin Shtrikman bounds :

µHS− = µ(2) + c(1) µ(1) − µ(2)

1 + c(2)µ
(1) − µ(2)

2µ(2)

,

µHS+ = µ(2) + c(1) µ(1) − µ(2)

1 + c(2)µ
(1) − µ(2)

µ(1) + µ(2)

Self-consistent scheme :

µSC =
1

2

(
(c(1) − c(2))(µ(1) − µ(2))+

+

√
(c(2) − c(1))2(µ(2) − µ(1))2 + 4µ(1)µ(2)

)
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Not accurate at all contrast

0.0 0.2 0.4 0.6 0.8 1.0
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/
2

Comput.
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HS+
HS-

1 / 2 = 20
Transverse shear
UD composite

contrast=20

0.0 0.2 0.4 0.6 0.8 1.0
c1

0

1000

2000
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4000

5000

6000

7000

8000

9000

10000

/
2

Comput.
Self-C.
HS+
HS-

1 / 2 = 10 000
Transverse shear
UD composite

contrast=104.

Percolation threshold : correct. Percolation exponent : not correct.
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Polycrystals

(a) (b) (c)

e

e

2

3

Rotation

e
1

Each grain is a copy of the same single crystal, except for its orientation θ which varies
from grain to grain.
• Stiffness for the single crystal Ls.
• Stiffness for a rotated grain Lsθ(x) = TR.TR.Ls.R.R.

• Effective stiffness for the polycrystal (aggregate of grains) :

1

2
ε : Lp : ε = inf

u∈K(ε)

1

2
< ε(u)) : Lsθ(x) : ε(u)) > .
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Real microstructure
Optical micrograph

Simulated microstructure
Voronoi tesselation : 512 grains.
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Antiplane shear-modulus

σ13 = 2µ1ε13, σ23 = 2µ2ε23, M = µ1/µ2

Self-consistent scheme :

µ̃ =
√
Mµ(2).

Agrement is good even at high
contrast.

10
0

2 5 10
1

2 5 10
2

2 5 10
3

M

10
0

2

5

10
1

2

5

/
1

FFT
Self consistent
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Comments

• At moderate contrast : Effective properties of common microstructures are accurately
described by the Hashin-Shtrikman bounds or self-consistent scheme.

• Inclusion-matrix morphology : Hashin-Shtrikman bounds.

• “Granular” morphology : self-consistent.
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4. A case study for nonlinear composites

Recoverable strains in polycrystals

Shape memory effect in single crystals by martensitic transformation = change in
lattice symmetry :

c

γ

b

a

c

γ

b

a

Ti

Ni

MM

W

ε

ε ε1 2

c

A

T < T

MM

W

ε

ε ε1 2

cT = T

A

W

ε

ε ε1 2

M M

cT > T

A
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Relaxation and Microstructures in single crystals

Take a volume element V composed of only the homogeneous material (single crystal)
with energy w. Consider the variational problem :

inf

u ∈ K(ε)

〈w(ε(u))〉, (1)

K(ε) = {ε = grad(u) in V, u = ε.x + v, v# on ∂V }.
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〈w(ε(u))〉, (1)

K(ε) = {ε = grad(u) in V, u = ε.x + v, v# on ∂V }.

• Initial energy w nonconvex . Although the material is homogeneous, the best minimizer
in (1) is NOT necessarily ε = ε.
• Minimization problems well-posed with the relaxed (or effective) energy

Qw(ε) = inf
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〈w(ε(u))〉.



Relaxation and Microstructures in single crystals

Take a volume element V composed of only the homogeneous material (single crystal)
with energy w. Consider the variational problem :

inf

u ∈ K(ε)

〈w(ε(u))〉, (1)

K(ε) = {ε = grad(u) in V, u = ε.x + v, v# on ∂V }.

• Initial energy w nonconvex . Although the material is homogeneous, the best minimizer
in (1) is NOT necessarily ε = ε.
• Minimization problems well-posed with the relaxed (or effective) energy

Qw(ε) = inf

u ∈ K(ε)

〈w(ε(u))〉.

• Approximate minimizers (fields ε(x)) are fine mixtures of energy-wells. Formation of
fine microstructures (Ball and James, 1987).
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MM

W

ε

A

ε1 ε2

Note that there is a domain of low energy in strain space : domain of recoverable
strains for the single crystal.
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The shape memory effect in polycrystals

Typical commercial specimens are polycrystals. Observations :

• The same material might exhibit very different shape memory behavior as a single
crystal or as a polycrystal.

• Many materials exhibit good shape memory behavior as single crystals but little or none
as polycrystals. Typical figures for recoverable strains :

Alloy Single crystal Polycrystal
Ni-Al 0 - 13 % Negligible
Fe-Ni-C 0 - 12 % Negligible
Cu-Al-Ni 2 - 9 % 2 % ( textured ribbons : 6 % )
Ni-Ti 3 - 10 % 5 - 8 %

• Why is there such a difference between single crystals and polycrystals ?
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Each grain is a copy of the same single crystal, with energy ws except for its orientation θ
which varies from grain to grain.



Polycrystal

(a) (b) (c)

e

e

2

3

Rotation

e
1

Each grain is a copy of the same single crystal, with energy ws except for its orientation θ
which varies from grain to grain.
• Energy for the single crystal ws(ε).
• Energy for a rotated grain ws(R, ε).

• Effective energy for the polycrystal (aggregate of grains) :

wp(ε) = inf
u∈K(ε)

< ws(R(x), ε(u)) > .

Homogenization problem for a nonconvex energy.
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Minimizers and microstructures
Single crystalPolycrystal

Strain compatibility from one grain to another : strong geometrical constraint.
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Energy landscape

Single crystal Polycrystal

K
s

K
pε ε

1 2

HomogenizationRelaxation

p
w wQw

Domains of recoverable
strains (strains with '
zero energy) :

• ε1 and ε2 for the va-
riants,

• Ks for the single crys-
tal,

• Kp for the polycrystal.

Predict Kp from Ks ?
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Simplified modelling

Single crystal Polycrystal
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Approximations :

• Inside Ks :

ws(ε) ' 0.

• Outside Ks :

ws(ε)� 1.

• Replace ws = Qw by the in-
dicator function of Ks :

ws(ε) =


0 if ε ∈ Ks

+∞ otherwise



Simplified modelling

Single crystal Polycrystal

K
s

K
pε ε

1 2

psw w w

Approximations :

• Inside Ks :

ws(ε) ' 0.

• Outside Ks :

ws(ε)� 1.

• Replace ws = Qw by the in-
dicator function of Ks :

ws(ε) =


0 if ε ∈ Ks

+∞ otherwise

Locking materials (Demengel and PS, 1985) : can deform freely in the interior of Ks but
lock on ∂Ks.
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Homogenization problem

• Homogenization problem for a convex energy :

wp(ε) = inf
u∈K(ε)

< ws(R(x), ε(u)) >, Kp = {ε, wp(ε) < +∞. }.



Homogenization problem

• Homogenization problem for a convex energy :

wp(ε) = inf
u∈K(ε)

< ws(R(x), ε(u)) >, Kp = {ε, wp(ε) < +∞. }.

• Dual formulation :

(w∗)p(σ) = inf
div(σ)=0,〈σ〉=σ

< (w∗)s(R(x),σ) > .

• (w∗)s is positively homogeneous of degree 1 in σ. Stress with finite energy can be
measures concentrated on lines (2d) or surfaces (3d) : locking lines carrying the
stress .



Homogenization problem

• Homogenization problem for a convex energy :

wp(ε) = inf
u∈K(ε)

< ws(R(x), ε(u)) >, Kp = {ε, wp(ε) < +∞. }.

• Dual formulation :

(w∗)p(σ) = inf
div(σ)=0,〈σ〉=σ

< (w∗)s(R(x),σ) > .

• (w∗)s is positively homogeneous of degree 1 in σ. Stress with finite energy can be
measures concentrated on lines (2d) or surfaces (3d) : locking lines carrying the
stress .

• The problem is analogous (even identical in 2d, anti-plane strains) to problems for non-
linear, plastic, composites.
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Bounds and estimates for nonlinear polycrystals



Bounds and estimates for nonlinear polycrystals
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• Taylor bound : ε = ε.

Kp =
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x∈V
Ks(R(x)).

Locking as soon as the locking condition is attained in
one grain. Very small domain for anisotropic single
crystals and untextured polycrystals !



Bounds and estimates for nonlinear polycrystals

p
K

T
K

s

• Taylor bound : ε = ε.

Kp =
⋂

x∈V
Ks(R(x)).

Locking as soon as the locking condition is attained in
one grain. Very small domain for anisotropic single
crystals and untextured polycrystals !

• Improved bounds (Willis 91, Ponte Castañeda 91, PS

92, Olson, 94, Willis, Nesi, Smyshlaev 2000...). Based

on the introduction of a linear comparison composite.

• The bounds are far apart (Taylor is pessimistic, other bounds are optimistic).
• Objective : assess the accuracy of various bounds and estimates.
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Model Problem (Bhattacharya & Kohn 97)

• Scalar problem (antiplane shear) :

u(x1, x2), ε1 =
∂u

∂x1
, ε2 =

∂u

∂x2
,

∂σ1

∂x1
+
∂σ2

∂x2
= 0.



Model Problem (Bhattacharya & Kohn 97)

• Scalar problem (antiplane shear) :

u(x1, x2), ε1 =
∂u

∂x1
, ε2 =

∂u

∂x2
,

∂σ1

∂x1
+
∂σ2

∂x2
= 0.

• Domain of recoverable strains for the single crystal : Ks = {ε, ws(ε) = 0}.

ε

ε

1

2

Ks

ε

ε

0

0

(1)

(2)

|ε1| ≤ ε
(1)
0 , |ε2| ≤ ε

(2)
0 .

– 4 “variants”(corners of Ks).
– If ε(2)

0 = 0, only 2 variants.

– ε
(1)
0 /ε

(2)
0 = M : anisotropy ratio.

• Dual energy :

(w∗)s = M |σ1|+ |σ2|.
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Checkerboard bi-crystal. ε
(1)
0 = ε

(2)
0 = 1.

45°

0°

0°

45°

0.0 0.25 0.5 0.75 1.0 1.25 1.5

0.0

0.25

0.5

0.75

1.0

1.25

1.5

2

FFT
Taylor

1

Taylor is exact !

Snapshot of the stress intensity (traction in the direction inclined at angle α :

α = 00 α = 150 α = 300 α = 450
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“Locking lines” M = 50

Microstructure Stress Strain
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Another example of “stress chanelling”
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Another example of “stress chanelling”

Checkerboard.
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(ws)∗ = M |σ1|+ |σ2|, M = 10.

The stress is chanelled in direction
2 where the transformation strain is
small.



Another example of “stress chanelling”

Checkerboard.

30°

30°

120°

120°

(ws)∗ = M |σ1|+ |σ2|, M = 10.

The stress is chanelled in direction
2 where the transformation strain is
small.
Convexity of the energy does not
rule out very fine local fields !
(Not strictly convex).

Stress intensity

(Spatial resolution 2048 x 2048).
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Untextured polycrystals

Untextured : Kp ' isotropic , radius ε̃0.

Single crystals with “weak” anisotropy M = ε
(1)
0 /ε
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0 = 1.
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Untextured polycrystals

Untextured : Kp ' isotropic , radius ε̃0.

Single crystals with “weak” anisotropy M = ε
(1)
0 /ε

(2)
0 = 1.

0 30 60 90 120 150 180

1.0

1.1

1.2

1.3

0
/

0(2
)

Sachs

VB(HS+) NSW

VE(SC)

Voronoi
Hexagons

Taylor

• Taylor bound : ε̃0/ε
(2)
0 = 1.

• FFT : ε̃0/ε
(2)
0 = 1.07.

ϕ

Theoretical predictions :

• Sachs bound : ε̃0/ε
(2)
0 = 4/π ' 1.273.

• Translation bound : ε̃0/ε
(2)
0 =

√
3/2 ' 1.22.

• Variational bound : ε̃0/ε
(2)
0 = 1.26

• Nln Self-consistent estimate : ε̃0/ε
(2)
0 = 1.22
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Anisotropic single crystal. M = ε
(1)
0 /ε

(2)
0 6= 1. Isotropic texture.
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Anisotropic single crystal. M = ε
(1)
0 /ε

(2)
0 6= 1. Isotropic texture.
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0
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2 5 10
2

M

10
0

2
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10
1

0
/

0(2
)

Individual configurations
FFT (average)
Kohn-Little

Taylor bound : ε̃0/ε
(2)
0 = 1.

ε

ε

1

2

Ks

ε

ε

0

0

(1)

(2)

Theoretical predictions :

• Kohn-Little bound ε̃0/ε
(2)
0 =

√
2M.

• Nonlinear self-consistent estimate
ε̃0/ε

(2)
0 #

√
M.

• Numerical simulations (1 ≤ M ≤ 100)
ε̃0/ε

(2)
0 #M1/4.
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Comments

• Recoverable strains in untextured polycrystals are significantly smaller than in single
crystals. Close to the Taylor bound .

• Taylor estimate is good for weakly anisotropic materials , but pessimistic for strongly
anisotropic materials.

• Available general bounds do not seem to predict the right scaling .

• Still room for improvement of theoretical estimates .
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5. Estimates for nonlinear composites

Nonlinear local problem

N phases, r = 1, ..., N , characteristic functions χ(r), volume fraction c(r), characterized
by their strain-energy function w(r).

Local problem :

Constitutive relations : σ(x) = ∂w(r)

∂ε (ε(x)) dans la phase r,

Equilibrium : div(σ) = 0,

Loading : 〈ε〉 = ε + Boundary conditions.

Averaging : σ = 〈σ〉. Homogenized relations : σ as a function of ε.
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Effective potential

when the w(r)’s are (strictly) convex , there exists an effective energy.

w̃(ε) = inf
v∈K(ε)

< w(x, ε(v)) >, K(ε) = {v = ε.x + v∗, v∗# on ∂V },

w̃∗(σ) = inf
τ∈S(σ)

< w∗(x, τ >, S(σ) = {τ , div(τ) = 0, 〈τ 〉 = σ, τ .n −# }.

Then

σ =
∂w̃

∂ε
(ε), ε =

∂w̃∗

∂σ
(σ).

Proof : w̃(ε) = 〈w(ε(u))〉,
∂w̃

∂ε
(ε) =

〈
∂w

∂ε
(ε(u)) : ε

(
∂u

∂ε

)〉
=
〈
σ : ε

(
∂u

∂ε

)〉
.

〈ε〉 = ε ⇒
〈
ε
(
∂u

∂ε

)〉
= I

Hill⇒
∂w̃

∂ε
(ε) = 〈σ〉 : I = σ.
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Elementary bounds

Choose v = ε.x and τ = σ

w̃(ε) ≤ < w > (ε) (Voigt), w̃∗(σ) ≤ < w∗ > (σ) (Reuss).

Power-law materials with the same exponent n (or m), the same ε0 but different flow
stress σ(r)

0 :

w(r)(ε) =
σ
(r)
0 ε0

m+ 1

(
εeq

ε0

)m+1

, w̃(ε) =
σ̃0ε0
m+ 1

(
εeq

ε0

)m+1

,

< σ
−1/n
0 >−n ≤ σ̃0 ≤ < σ0 >

Rigid-plastic materials (m = 0, n = +∞)

inf
(r)

σ
(r)
0 ≤ σ̃0 ≤ < σ0 > .

Weakest link property .

Objective : improve on these bounds.

50



Heuristic methods : Linear Comparison Composite

A nonlinear composite behaves as a linear composite with infinitely many different

phases.

( ∝ phases )

Nonlinear composite

(two−phase)

Equivalent linear composite

ε

σ

ε

σ

Es(ε )
2

ε

eff

Es(ε
1

)
eff

Linear comparison composite 

(two−phase)

σ

Approximation= replace the N-phase nonlinear composite by a N-phase linear
composite :
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Choose a linearization rule

σ
ε

.
.

Et

Es

ε

σ
0τ

( )ε

• Secant formulation :

σ = Lsct(ε) : ε.

• Tangent (or incremental) formulation :

σ̇ = Ltgt(ε) : ε̇.



Choose a linearization rule

σ
ε

.
.

Et

Es

ε

σ
0τ

( )ε

• Secant formulation :

σ = Lsct(ε) : ε.

• Tangent (or incremental) formulation :

σ̇ = Ltgt(ε) : ε̇.

Define an effective strain (stress)

The stiffness of the LCC is the (secant or tangent) stiffness of the actual nonlinear
composite evaluated at some effective strain ε(r)

eff for each individual phase.

Is the strain uniform in the phase ? If not, define an “optimal” effective strain.
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Effective strain : the most classical and simplest choice
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Mean field theories : effective strain = average
strain.

ε(r)
eff = ε(r) = 〈ε〉r.

Good if the strain field is almost uniform with
each individual phase.



Effective strain : the most classical and simplest choice

ε

σ

ε
eff

Esct

E
tgt

Mean field theories : effective strain = average
strain.

ε(r)
eff = ε(r) = 〈ε〉r.

Good if the strain field is almost uniform with
each individual phase.

Aim of the rest of this talk :

• Show that the strain field (or the plastic strain field) is far from being uniform in
each individual phase or grain (intraphase heterogeneity).
• Use numerical simulation to get an insight into the intraphase fluctuations.
• Propose an ad hoc model accounting for the intrinsic nonuniformity of the plastic strain

field.
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Rigorous approach : variational procedure (Ponte Castañeda 92)

w̃(ε) = inf
v∈K(ε)

〈w(x, ε(v))〉.



Rigorous approach : variational procedure (Ponte Castañeda 92)

w̃(ε) = inf
v∈K(ε)

〈w(x, ε(v))〉.

Linear Comparison Composite with quadratic energy w0 :

w0(x, ε) =
1

2
ε : L0(x) : ε.

Translation :

w̃(ε) = inf
v∈K(ε)

< w(x, ε(v)) >= inf
v∈K(ε)

(< w0(x, ε(v)) > + < (w − w0)(x, ε(v)) >)



Rigorous approach : variational procedure (Ponte Castañeda 92)

w̃(ε) = inf
v∈K(ε)

〈w(x, ε(v))〉.

Linear Comparison Composite with quadratic energy w0 :

w0(x, ε) =
1

2
ε : L0(x) : ε.

Translation :

w̃(ε) = inf
v∈K(ε)

< w(x, ε(v)) >= inf
v∈K(ε)

(< w0(x, ε(v)) > + < (w − w0)(x, ε(v)) >)

≤
(

inf
v∈K(ε)

〈w0(x, ε(v))〉
)

+

〈
sup
e∈R9

s

(w − w0)(x, e)

〉

≤
1

2
ε : L̃0 : ε + 〈V (L0)〉 ∀ L0 > 0, V (L0) = sup

e∈R9
s

(w − w0)(x, e)



Rigorous approach : variational procedure (Ponte Castañeda 92)

w̃(ε) = inf
v∈K(ε)

〈w(x, ε(v))〉.

Linear Comparison Composite with quadratic energy w0 :

w0(x, ε) =
1

2
ε : L0(x) : ε.

Translation :

w̃(ε) = inf
v∈K(ε)

< w(x, ε(v)) >= inf
v∈K(ε)

(< w0(x, ε(v)) > + < (w − w0)(x, ε(v)) >)

≤
(

inf
v∈K(ε)

〈w0(x, ε(v))〉
)

+

〈
sup
e∈R9

s

(w − w0)(x, e)

〉

≤
1

2
ε : L̃0 : ε + 〈V (L0)〉 ∀ L0 > 0, V (L0) = sup

e∈R9
s

(w − w0)(x, e)

≤ inf
L0(x)

(
1

2
ε : L̃0 : ε + 〈V (L0)〉

)
Optimal choice for L0.
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6. Field fluctuations

In linear composites, it is sufficient to determine the first moment (average) of the
strain over each phase : εr = Ar : ε.

σ =
N∑
r=1

c(r)σr =
N∑
r=1

c(r)L(r) : εr ⇒ σ =

 N∑
r=1

c(r)L(r) : Ar

 : ε

This is NO more the case for nonlinear composites :

σ = F(r)(ε), BUT σ(r) 6= F(r)(ε(r)).

The local fields have to be fully resolved !

ε(x) = εr︸︷︷︸
Mean field

+(ε(x)− εr)︸ ︷︷ ︸
Fluctuation

.

Average of fluctuations = 0. intensity of fluctuations measured by their2nd moment
(covariance).
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Experimental evidence of intraphase strain heterogeneity

Bulk metallic glass.

• Amorphous matrix. Crystalline inclu-
sions.
• Uniaxial tension in the vertical direction.
• Optical microscopy.
• Strain localization initiated in the crys-

talline inclusions, running through the
matrix.
• Inclination of the most deformed zones

(shear bands in white) at 450.

c©W. Johnson (Caltech, USA)

The strain field is far from being uniform in each phase : Intraphase heterogeneity :
heterogeneity with a single phase.
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Polycrystalline Zirconium.

• Grain boundaries (white).
• Uniaxial tension in the vertical direction. Ove-

rall deformation 3.5%.
• Observation (SEM) during test. Microextenso-

metry using a microgrid with a 5µm step.
• Snapshot of the equivalent strain.
• Inclination of the most deformed zones at
±450.

c©P. Doumalin, M. Bornert (Ecole Polytechnique,
France)

The strain field is far from being uniform in each grain !
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Strain heterogeneity seen through numerical simulation

Influence of the matrix nonlinearity on the strain heterogeneity within the matrix
(intraphase strain heterogeneity). Elastic fibers, nonlinear matrix. Tension in the
horizontal direction. Generalized plane strains.

Matrix : linear elastic ... with linear hardening ideally plastic

Conclusion : the strain field (in the matrix) is close to uniform when the matrix is linear
elastic, not too far from uniform for a matrix with linear hardening, highly localized
(heterogeneous) when the matrix is elastic perfectly plastic.
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Tension at 00

“Hard”configuration.
Locking of shear bands by clus-
ters of fibers. Clusters play a fa-
vourable role to prevent strain
localization.

“High” flow stress.

“Weak” configuration. More
regular spatial arrangement.
Shear bands running at ±450

with respect to the tensile
direction.

“Low” flow stress.

Percolation of shear bands.

The composite effective properties are not governed by the volume fraction of the
fibers but by the tortuosity of the matrix domain.
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Similar effects in 3d

0 5 10 15 20 25 30
(degrees)

0.95

1.0
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0ho
m

/
0

Spherical elastic particles : c
(p)

=0.25

FFT
SOE(HS-)
VE(HS-)

Elastic inclusions. Ideally plastic matrix.

Uniaxial tension

σ =

 0 0 0
0 0 0
0 0 σeq


Pure shear

σ =
1√
3

 σeq 0 0
0 0 0
0 0 −σeq


Highly localized strain field ⇒ lower flow
stress for the composite.
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How does the intraphase strain heterogeneity depend on nonlinearity ?

Inclusion-matrix microstructures, power-law and incompressible phases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ 0

0.0

0.5

1.0

1.5

2.0

/
0 m=100

m=10
m=0.1
m=0.01 tr (ε) = 0,

ε

εeq
=

2

3

s

σeq
, s : stress deviator,

σeq = σ0

(
εeq

ε0

)m
, εeq = ε0

(
σeq

σ0

)n
, n =

1

m
,

m = 1, n = 1 : linear elastic, m = 0, n = +∞ : rigid
plastic material.
n measures the material nonlinearity.
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Strain fields
• Same exponent n for both phases but different flow stresses σ0. σ(1)

0 /σ
(2)
0 = 5.

• Applied loading : pure shear ε12 6= 0, other εij = 0. Snapshot of ε12. Same color
scale for all snapshots.

n = 1 n = 3 n = 10

Phase 1 (fibers) : ε(1) ↘ when n↗. Phase 2 (matrix) : strain concentration (high
fluctuations) ↗ when n↗.
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Probability density

Snapshot and probability density for ε12. n = 1.
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n = 1 : the probability density can reasonably be considered as being Gaussian.
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n = 2
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n = 5
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n = 10
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Comments
• Localized strains (which have a tremendous influence on the effective properties) cor-

respond to the tail of the probability density. ⇒ higher order moments of the strain
field should be accounted for.
• These higher order moments are unknown in the actual nonlinear composite. Only

the first and second moments are known for linear composites (with random
microstructure).
• High fluctuations not well captured by the first moment. Introduce the second moment

(Qiu and Weng, 1992, Buryachenko, 1993, Suquet, 1995, Hu, 1996) :〈
ε2eq

〉
r
=

2

3
K :: 〈ε⊗ ε〉r, ε

(r)
eff = (

〈
ε2eq

〉
r
)1/2.

Second moment of the strain field in the LCC :

< ε⊗ ε >r =
1

c(r)
ε :

∂L̃

∂L(r)
: ε,

〈
ε2eq

〉
r

=
1

3c(r)
ε :

∂L̃

∂µ(r)
: ε.

⇒ Modified secant theory based on the second moment of the strain.

• It turns out (PS, 95) that the modified secant procedure is equivalent to the variational
procedure of Ponte Castañeda (⇒ delivers an upper bound).
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Effective flow-stress. The effective properties of the LCC are estimated by the
lower Hashin-Shtrikman bound.
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Classical = mean-field theory (1st moment), Modified = based on second-moments.
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Average strain per phase (1st moment)
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Stiff fibers, the average strain per phase is almost prescribed by the fiber volume
fraction :

ε(2) '
1

c(2)
ε.
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Quadratic fluctuations. Strain fluctuations in phase r : ε− ε(r).

Isotropic invariant : δ
(r)
eq =

〈
2

3
(εij − ε

(r)
ij )(εij − ε

(r)
ij

〉1/2

r
.
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Fluctuations of the strain in the matrix ↗ when m↘ 0. Blow-up not well captured by
the secant theories.
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Anisotropic measure of fluctuations (introduced by Ponte Castañeda, 2002)

C(r)
ε =

〈
ε− ε(r) ⊗ ε− ε(r)

〉
, E(r) =

2

3

ε(r)

ε(r)eq

⊗
ε(r)

ε(r)eq

, F (r) = K −E(r).

δ(r)|| =

√
2

3
E(r) :: C(r)

ε , δ(r)⊥ =

√
2

3
F (r) :: C(r)

ε , δ(r)eq =
√

(δ(r)|| )2 + (δ(r)⊥ )2.
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• Fluctuations are anisotropic . Not taken into account by the secant theories (only by
the recent “new second-order method” of Ponte Castañeda, 2002, 2004).
• At present only second moment(s) of the strain fluctuations are incorporated in ana-

lytical schemes. No analytical mean to compute higher order-moments.
• ⇒ ad hoc theories accounting for the nonuniformity of plastic strain fields.
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Concluding remarks

• In nonlinear composites intraphase field heterogeneity can be large. It has an impor-
tant influence on the effective properties of composites.

• Moments up to order 2 can be computed analytically. Higher order moments also
contain essential information.

• The heterogeneity of the plastic strain field can be built in approximate (but accurate)
models : Nonuniform Transformation Field Analysis .
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