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Résumé

This paper is devoted to minimum stress design in structural optimization. The homogeni-
zation method is extended to such a framework and yields an efficient numerical algorithm for
topology optimization. The main idea is to use a partial relaxation of the problem obtained
by introducing special microstructures which are sequential laminated composites. Indeed, the
so-called corrector terms of such microgeometries are explicitly known, which allow us to com-
pute the relaxed objective function. These correctors can be interpreted as stress amplification
factors, caused by the underlying microstructure.

1 Introduction

The homogenization method for topology optimization in structural design is by now well es-
tablished (see the books [1], [7], [12], or the numerical works [4], [6], [8], and references therein).
However, the theory, as well as the numerical practice, is mostly restricted to compliance, eigen-
frequency or displacement field optimization (in the single or multiple loadings case). The main
problem is that optimal microstructures (which are crucial in the derivation of the relaxed ob-
jective function) are known only for special objective functions, all related to the stored elastic
energy. This difficulty can be alleviated (at least from a numerical point of view) by working with
a subclass of microstructures, possibly suboptimal but fully explicit. The simplest class is that of
sequential laminated composites which have fully explicit homogenized properties. This approach
has been followed in [2], [5] (see also Section 5.2.8 in [1]) and is called a partial relaxation of the
problem.

The goal of this paper is to extend, from a numerical point of view, the homogenization method
to another type of objective functions corresponding to minimum stress design. A typical example



of such objective functions is
inf/ lo|? de, (1)
2 Ja

where o is the stress tensor in the elastic body ). There are already some theoretical works that
studied the relaxation of (1), either in the present elasticity context or in conductivity, [15], [18],
[24], [26], but they do not furnish a fully explicit framework for numerical computations. On the
other hand, some papers, including [14], [17], already provided numerical algorithms for some
special type of microstructures. The present paper pertains to the latter category. We introduce
a partial relaxation of the problem based on the use of laminated microstructures. Compared to
the usual homogenization method, an additional difficulty arises which is due to the microscopic
fluctuations of the stress tensor. Indeed, it is well-known that microscopic heterogeneities may cause
stress concentrations, so that the actual stress distribution is very different from the macroscopic
averaged stress. In the vocabulary of homogenization theory, the previous mechanical statement
can be phrased as : when the size € of the heterogeneities go to zero, the stress tensor o, converges
weakly (or in average) to the homogenized stress o but not strongly or pointwise. Therefore, when
extending the objective function (1) to composite materials (as does the homogenization method),
one must multiply the macroscopic stress tensor by a stress amplification factor which takes into
account the microscopic heterogeneities. In other words, the relaxed or homogenized objective
function is

inf / (Pol? da, @)
2 Ja

where the tensor P > Id can be computed in terms of so-called corrector terms. For general
microstructures, it is very difficult to compute these correctors. However, for laminated composite
materials, there exists an explicit formula of the correctors (this is a classical result in mechanics
[20] but a rigorous proof is due to Briane [11]).

Note that there are many generalizations of the homogenization method which avoids the use of
the full theory of homogenization. Let us quote, for example, the convexification method, fictitious
or power-law materials (also called SIMP method, see e.g. [7], [9], [25], [10], [27]). However, even
for such simplified heuristic methods, the problem of taking into account the microscopic stress
concentrations has to be solved if one wants a clear mechanical interpretation of the generalized
objective function.

Finally let us make a brief comparison between our work and that of Bendsoe and Duysinx [14].
In both cases a local stress field is reconstructed which is different from the averaged macroscopic
stress (computed by a finite element method) and the minimal stress criterion is evaluated with
this local stress (and not the average one). However, we emphasize two major differences between
the approach followed by Bendsoe and Duysinx and ours. They used a pointwise maximum stress
criteria wheras we work with the simpler and smoother L2-norm critera (2). Although we can
localize this criterion in a subdomain (see the numerical examples in Section 6), it is clear that our
choice of the L?-norm critera is less sound from a mechanical point of view. On the other hand,
they were limited to orthogonal rank-two laminates while we can compute the stress amplification
factor P for sequential laminates of any rank. Clearly, our class of microstructures being much
larger, we can find among them better (near optimal ?) microstructures for minimizing the local
stress criterion.



The content of the paper is the following. In Section 2 the problem of minimum stress design
is introduced in the classical setting of shape optimization. Section 3 is devoted to recalling some
useful results of homogenization theory and proposes a partial relaxation of the problem. Section
4 focuses on the computation of the correctors (or stress amplification factors) in the case of
laminated composite materials. Section 5 gives the details of the proposed partial relaxation and
numerical algorithm. Finally Section 6 is concerned with numerical examples.

2 Setting of the problem

Although our main motivation is shape optimization (i.e. punching holes in a given material B),
we formulate the problem as a two-phase optimization problem involving a strong material B and
a weak one A, mimicking holes. This is common practice in the homogenization method for shape
optimization and it has the advantage of avoiding many technical difficulties. Shape optimization
corresponds to the degenerate limit A — 0, but we shall not try to justify it rigorously.

We consider a bounded domain Q € R”, with N = 2 or 3, occupied by two linearly elastic
isotropic phases A and B. Their Hooke’s laws, also denoted by A and B, are given for any symmetric
matrix £ by

AE = 2uat + (»m - 2’“‘?*‘) (tré) I, BE = 2t + (»:B - 2“73) (tré) I,

where 0 < pg < pp are the shear moduli and 0 < k4 < kp are the bulk moduli. It is convenient
to introduce a Lamé coefficient, proportional to the Poisson’s ratio, defined by

2ua _ 2up
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Let x € L*(Q;{0,1}) be the characteristic function of phase A (i.e. taking the value 1 in A and 0
outside). We define an overall Hooke’s law in Q by

Ax(z) = x(2)A + (1 - x(2))B.

AA = Kg —

The corresponding displacement u, of this structure is computed as the unique solution in H} QN
of

oy = Aye(uy) inQ
—dive, =f inQ 3)
uy =0 on 01,

where e(uy) = (Vu + Vu)/2 is the strain tensor, and f is a given body force in L?(Q)".

For simplicity, we work with a model problem having Dirichlet boundary conditions, but clearly
more general surface loadings or boundary conditions are allowed. We address the following two-
phase optimal design problem

inf J(x), (4)

x€L>(2;{0,1})



with an objective function J defined by

() = / k() oy e, (5)

where k(z) is a given piecewise smooth non-negative function (a weighting factor that can localize
the objective function). More generally we can set

J() = /Q i, 0y)de,

with a smooth function j with quadratic growth in ¢. This allows us, for example, to minimize
the equivalent Von Mises stress intensity in 2. Similarly, we could consider a function j(x,e(uy))
depending on the strain tensor.

In general, (4) is expected to be an ill-posed problem which requires relaxation, i.e. for which
there exist only generalized optimal solutions (see e.g. [1], [15], [16], [22], [18], [24], [26]). These
generalized designs are defined as composite materials obtained by mixing on a microscopic scale
the two phases A and B. Such composite materials can be mathematically described thanks to
homogenization theory.

3 Homogenization and partial relaxation.

We begin by recalling some basic facts from homogenization theory. Let x. be a sequence of
characteristic functions in L= (£; {0, 1}) (for example, a minimizing sequence for the optimal design
problem (4)). The main result of homogenization theory ([21], or Theorem 1.2.16 of [1]) tells us
that, up to a subsequence still indexed by ¢, the following convergences hold

Xe — 0 weakly-*in L*(Q;][0,1]),
(6)

Ac=xA+(1—x)B K A% in the sense of homogenization.

where (6, A*) parameterizes a composite material with proportion 0 < # < 1 of phase A and
homogenized elasticity tensor A* (corresponding to the microstructure or geometric arrangement
of the two phases). As a consequence, the sequence of displacements u, (solution of (3) with the
characteristic function y.) satisfy

ue — u weakly in HJ(Q)V,

(7)

oc = Ace(u,) — o weakly in LZ(Q,]RN2),

where u is the homogenized displacement, and o the homogenized stress, solutions of the relaxed
state equation

o= A%*e(u) inQ,

—dive=f inQ, (8)
u=20 on 9N.



Unfortunately, the weak convergence in (7) does not allow to pass to the limit in the objective
function (5). In general, we have

liminf/ k(a:)|a€|2da:2/k(a:)|a|2da:,
e—0 Q Q

where the inequality is strict for most sequences. This is in sharp contrast with all other previous
applications of the homogenization method for which usually the objective function does not depend
on the stress nor on the strain (as, for example, compliance, eigenfrequency, or a least-square
criterion of approximation of a target displacement).

In order to pass to the limit in the objective function (5), and thus to determine the relaxed
formulation of (4), we need to have a strong convergence result instead of the weak one in (7). This
can be obtained by introducing so-called correctors terms. Homogenization theory ([21], or Section
1.3.6 of [1]) states that there exist a sequence W, of fourth-order tensors (called correctors) which
satisfy

W. — I, weakly in L2(Q,R""),
AW. — A* weakly in L2(Q,R""), (9)
(W)tA W, — A* weakly in L1(Q,R"Y"),

where I is the fourth-order identity tensor. The main interest of the corrector tensor W, is that
it corrects the lack of pointwise convergence of the strain and stress tensors, namely

e(uc) — Wee(u) — 0 strongly in L! (Q,]RN2),

-1 . 1 N2 (10)
oe— AWA* ¢ — 0strongly in L' (Q,R" ).

In the sequel, we shall use the notation P, = AEWEA"‘_1 which is a sequence of tensors converging
4
weakly to Iy in L?(Q, RY ). The main idea is now to rewrite the objective function as

J(xe)z/gk(x)|P€a|2dw+re, (1)

with a (hopefully) small remainder term

re = / k(z) (0. — P.o) - (0 + P.o) da.
Q

If one can prove that lim._,o 7. = 0, then we obtain the desired result
lim J(x.) = / k(z)|Po|*dz, (12)
e—0 Q

where P? is the weak limit of P2. Since P. converges weakly to I, we have the following estimate
(in the sense of quadratic forms)

P> I, (13)

which justifies our terminology of stress amplification factor for this tensor P. (Note that Lipton
[17] wrote |Po|?> = |0|?> + So - o and called S the covariance tensor.)



Remark 3.1. Remark that the convergences in (10) hold in the space Ll(Q,]RN2) and not in

L? (Q,]RNQ) as is required to prove that lim._,or. = 0. The reason is that, in general, W, and Vu
are merely L? functions, so their product belongs only to L'.

Thanks to o regularity result of Meyers [23] (see Theorem 1.8.41 of [1] for its application in the
context of homogenization), one can improve slightly the convergences in (10). Indeed, let p > 2 be
the Meyers exponent, i.e. the largest exponent such that the gradients of the solutions of (3) or (8)
belong to LP(Q2). (Such an exponent does exrist and depends only on A and B which are lower and
upper bounds for any elasticity tensor A, or A* involved in the above partial differential equations.)
Then, convergences in (10) hold in the space Lq(Q,IRN2) with ¢ = min(2,p/2) > 1 (see Corollary
1.3.43 of [1]). It may still happen that ¢ < 2 and thus this improved convergence is not enough
to prove that lim._,or. = 0. In such a case, the best that we can hope is to pass to the limit in a
objective function similar to (11) but with the exponent q < 2.

We are not able to prove (12) for any sequence of characteristic functions y. (i.e. for any
type of composite materials). Even if we could, the consequences of such a result would be of
limited practical interest since the stress amplification factor P is not explicitly computable in
most instances. This is the reason why we restrict ourselves to a special class of composites, namely
the sequential laminated composites. A sequential laminate is defined by iteratively layering
the two phases A and B in different directions and proportions and at well-separated lengthscales.
A laminate is said to have core A and matrix B when phase A is used only at the first layering
iteration (at smallest lengthscale) and only B is layered with the previously obtained laminate at
the next iterations (see Figure 1 for an example, and [1], [20] for further details).

A= s
] e 6 o>e,

&=l

FIG. 1 — A rank-2 sequential laminate with core A and matrix B.

A sequential laminate A*, with core A and matrix B, in proportions 6 and (1 — ) respectively,
is characterized by its lamination directions (e;)1<i<, (unit vectors of RY) and its lamination
parameters (m;)1<i<q, satisfying m; > 0 and Y7, m; = 1. Its Hooke’s law is explicitly given by

0(A"=B)" = (A-B) ' +(1-6) ) mifs(e), (14)
i=1

where fg(e) is defined by
1

_— - 2
+ 0 (Ee-e)”. (15)

fele)é ¢ (I€el* = (¢e-e)?)

1
_NB



Furthermore, there also exists an explicit formula for the corrector P. and the stress intensity
factor P of such sequential laminates (see Section 4 below). In particular, P, as A*, depends only
the parameters 6, (e;)i<i<q and (m;)i<i<q. The set of all Hooke’s laws A* given by (14) and
corresponding P (with the same parameters) is denoted by AP;.

As a final ingredient, we recall here one of the results of Briane [11] concerning correctors for
laminated composites.

Lemma 3.2 (Briane). For any laminated composite, there exist corrector tensors W, and P,
satisfying (9) and (10), which furthermore are uniformly bounded in L>®(Q, RN 4).

By using Lemma 3.2, we can improve the convergences in (10), as is stated in the next result.
Proposition 3.3. Let x. be a sequence of characteristic functions corresponding to a laminated
composite. Let W, and P, be the corrector tensors, belonging to L (1, RY 4) by Lemma 3.2. Then,
the convergence (10) holds true in L2(Q,]RN2) and the desired convergence (12) of the objective
function holds true.

Proof. This is a simple adaptation of the classical proof of (10) due to Murat and Tartar [21]
(see also Corollary 1.3.43 of [1]). This classical argument shows that, if u,, is a sequence of smooth
functions that converges strongly to u in H} ()Y, then

lim [le(ue) = Wee(un)ll72() < Clle(u) — e(un)ll72()-
On the other hand, we have the following estimate
lle(ue) — Wee(u)llza@) < lle(ue) — Wee(un)llL2(o)
HIWe | Lo oy lle(u — un)||L2(0)

< C (|le(ue) — Weelun)ll2(e) + lle(u — un)llz2(a)) -

Combining these two inequalities and letting n go to infinity, we obtain the desired convergence
(10) in L2(Q, RN 2) instead of merely L(Q, R™ 2). This obviously implies lim_,o 7. = 0, and thus
(12) holds true. O

Remark 3.4. All corrector results are stated in the space L?(Q). It is easily seen on some explicit
examples that the corrector tensors W, and P. are not enough to obtain strong convergence in
spaces LP(Q) with 2 < p < +oo. In other words, our computation of the local stress tensors (even
for laminates) is complete only for an objective function of the type of (12). In general, there are
other correctors terms which may be important in the L™ -norm but which vanish in the L?-norm.
Therefore, we can not extend our approach to objective functions involving the mazimum value of
the stress.

We are now in a position to propose a relaxed formulation of the original optimization problem
(4). Once and for all we fix the set of lamination directions (e;)1<i<, which are the same at every
point in Q. Then, we parameterize a sequential laminate design by a density function 6(z) and the
lamination functions (m;(x))i<i<, with values in the constraint set

M:{miZOand imizl}. (16)

i=1



We define the set LD of sequentially laminated designs by
£D = {(8,ms) € L= (95 [0,1] x M)} (17)

For any design parameters (6,m;) € LD we can explicitly compute an homogenized tensor A* by
formula (14) and a stress amplification factor P by the formulas of section 4. The proposed partial
relaxation is

inf {J*(O,mi):/gk(x)|730|2dx}, (18)

(68,m;)€ELD
where o is the solution of (8).

Clearly, (18) is an extension of the original problem (4) since by taking 6 = x, a characteristic
function, we obtain A* = A, and P = I4, so we recover (4). Furthermore, any laminated design
(8, m;) is attained as the limit (in the sense of homogenization as described above) of a sequence
of classical designs (xe, Ac, P.) with

J*(8,ms) = lim J(x.)-
e—0

In particular, this implies that we have not changed the physical signification of the problem when
passing from (4) to (18). Therefore, (18) is called a partial relaxation of (4). It is merely “partial”
because we can not prove the existence of a solution to (18). However, if the class of sequential
laminates is rich enough, (18) is a “more well-posed” minimization problem than (4). Numerically,
we expect to have better properties (fast convergence, global minima) for the partial relaxation
(18) since its integrand and its space of admissible designs have been smoothed or averaged, at
least partially, leading to better convexity properties. As a possible justification of this partial
relaxation (18), let us simply recall that in the cases of compliance or eigenfrequency optimization
it coincides with the full relaxation.

As usual, a nearly optimal classical design can easily be recovered from an (almost) optimal
composite design by a suitable penalization process. Of course, the main advantage of (18) is that
it yields numerical algorithms that act as topology optimization methods.

4 Correctors for laminated composites.

In this section we describe the corrector associated to the homogenization a sequentially lami-
nated composite with core A (the weak material) and matrix B. Briane [11] gave such an explicit
corrector in a conductivity setting. His result was more general since any number of phases was
allowed and the ordering of laminations was arbitrary. Here we simply rephrase his result in the
elasticity case and for sequential laminates (we do not reproduce his proofs).

Let ey, ..., e, be ¢ unit vectors (lamination directions) in RY. For € positive and arbitrarily small
we define the Hooke’s law of the rank-¢q laminate A, by

Al =A
AR = 3EB 4+ (1 - xF) AR, 1<k <yq,
A2+1 = AE7



where x¥(x) = x*(%) is the characteristic function of the k" layer, with x* a [0, 1]N-periodic
characteristic function and €*(€) a function going to zero with € and satisfying an assumption of
separation of scales, lim_,q €*(€) /e**1(e) = 0 for 1 < k < g —1 (the scale k = 1 is thus the finest).

As is well-known in the mechanical literature (see e.g. [20]) and was first proved rigorously in
[11], the strain tensor e(u.) in such a laminate is constant in each phase layer, up to a term strongly
converging to zero in L2. Hence, there exist ¢ + 1 constant matrices &', ..., €971 (independent of ¢)
such that the strain tensor e(u.) can be obtained from the following induction formula (up to a
term strongly converging to zero in L?)

1 §1
=l = £t
ERHL = xkeH 4 (1-xF)EF, 1<k <q,
Bl = e(u).

We explain below how to compute these constant tensors &. Before that, let us remark that a
similar structure arises for the stress tensor o. = Ace(u.) (again up to a term strongly converging
to zero in L?)

x = Ag,
T =) EBEk 4 (1 - xE)EF, 1<k <yq,
Eg"’l = 0.

As proved in [11], the corrector P, introduced in (10), is defined similarly by

¢t =P,
CH1 = kPl 4 (1 —xF)CF, 1<k <q,
Cg+1 =F,

where the ¢ + 1 constant tensors Py, 1 < k < ¢ + 1, can be computed explicitly. Since P.c — o,
goes to zero in L2, the above inductive definitions of o, and P, leads to

Plo = A€, Pto =B¢*, 2<k <q+1. (19)

Using (19), we can now give a precise formula for the homogenized objective function J*(8,m;).
Let 0% be the weak-* limit of x*. The quantity |Pc|? is given by

jl = |A§1|2,
GEHL = gF|BEFH2 4 (1 — 0F)j%, 1<k <q,
j* = [Pof.

An important feature of the above formula for the stress amplification factor P is its depen-
dence with respect to the order of the lamination directions (e;)1<;<,. Indeed, enumerating these
directions in a different order yields a different value of P. This is in sharp contrast with the lami-
nation formula (14) which delivers the value of the homogenized elasticity tensor A* and which is
independent of the ordering of the lamination directions.

Let us now explain how the strain tensors £, 1 < k < g + 1 are computed. Since the laminate
is characterized by ¢ separated scales (the first one being the smallest one), each heterogenous
field representing the k first laminations can be seen, at the (k + 1)* scale, as a homogeneous



mean field. Let &x41, 1 < k < ¢, be the homogeneous mean strain tensor resulting from the k first

laminations with the convention &; = &1, €541 = e(u). We denote by Aj the rank-k laminate given
by the following lamination formula

(1- @1 -03ym) (4; = B) ' = (A-B)" + 1 - S mifp(e). (20)
For every k, 1 < k < g, we have

Er1 = Okbrrr + (1 — 01) (21)

>From the continuity of the displacement v at the interface between the regions occupied by Aj,_;
and B (this interface being a hyperplan normal to the vector ey at scale k) we deduce the existence
of a constant vector wy, € RY such that

1
§k+1—§k:kaekZE(wk®ek+ek®wk). (22)

Now let us note that the homogeneous mean stress resulting form the £ first laminations and given
by Ajéky1, 1 < k < g, is also equal to 6, B&y1 + (1 — 0x)Af_; &k After some tedious algebra we
finally obtain

q
1 = e(u) + (1 — Hk)wk ®ep — Z Oiw; © e, (23)
i=k+1
with
wr, = gk ((A5—1 — B)&k11) ek, (24)

where the symmetric matrix g is implicitly given by the following quadratic form

qk_lv Sy = ((1 —6,)B + HkAz_l) vOe,:v®eg YveRY. (25)

5 Gradient algorithm for the partial relaxation

The advantage of dealing with generalized designs in £D, instead of classical designs which are
characteristic functions, is that we can easily compute the derivative of the objective function and
build a gradient minimization algorithm. Recall that the lamination directions (e;)1<;<4 are fixed
(we assume that the unit sphere Sy_; is sufficiently discretized by these unit vectors). Thus the

design parameters are the proportion §(z) of phase A and the lamination parameters (mi (a:)) 1<i<q”

For simplicity, the integrand of the objective function is considered as a function of (x, e(u), 8, m;),
which is always possible since o = A*(6, m;)e(u),

J* (0, m;) :/Qj(x,e(u),O,mi)dx.

10



Note that, u also depends on € and m;, as the solution of (8). The objective function J*(6,m;) is
differentiable, and denoting by d0 and dm; admissible increments, its directional derivative is

g
8J*(0,m;) = / d9j 60 dx + Z/ Om.J Om; dx, (26)
Q = Ja
where
. 0j , 0jou
%1 = 36t Bu 26°
(27)
P 9j | 0j Ou
™= Bm; T ouom;

In order to compute the above objective increments we introduce an adjoint state p solution of the
equation (28) below and which allows to eliminate the partial derivatives of u in (27).

i * =2 ;) in
{ ;ilg (A*e(p)) = au(xae(u)aeami) on%Q, (28)

Formally, the right hand side of (28) is

%(-’E,e(u)ae,mi) = —div (g—‘é(m,fﬂ,mz)) with E: e(u)

Indeed, we can rewrite dgj and d,,,j as follows :

. 0j 9A*
69.7 - % - 60 e(u) - e@)7

8  DA*

8m,~ B 8m,

OmiJ = e(u) : e(p),

with the partial derivatives

% = T '((A-B) ' +X% mifs(e)) T,
gﬁ; = —61 =T fa(e)T7,
T - (A_B)_l +(1-9) Eg=1 m;fe(e;) .

This gives the basis for a numerical gradient method which is described below. Of course, since
(0,m;) are constrained locally at each point z (6 must stay in the range [0,1], and the (m;) must
stay in the set M defined by (16)) the gradient method must be combined with a projection step
to satisfy these constraints.

Remark 5.1. For simplicity we focused on the case of a single load optimization problem. There
is obviously no difficulty in extending the previous analysis to multiple load problems.

11



We now have all the ingredients to define the proposed numerical algorithm.

1. Initialization of the design parameters 6y, mg (for example, we take them constant satisfying
the constraints).

2. Tteration until convergence, for £ > 0 :

(a) Computation of the state uy and the adjoint state py, solutions of (8) and (28) respec-
tively, with the previous design parameters 8y, my.

(b) Updating of these parameters by
Ok11 = max (0,min (1,0, —t;VeJ})),
Mik+1 = Max (0, Mk — tkvmij;: + Zk) .

where ¢}, is a Lagrange multiplier (iteratively adjusted) for the constraint Y7 | m;; = 1,
and t; > 0 is a small step such that

T (Ort1, mpy1) < T (Or, mp,).

A good descent step t; is computed through a line search that may be expensive since each
evaluation of the objective function requires the solution of the direct and adjoint equation. In
practice, we stop as soon as Jy,; < Ji and we divide the step by two if not. Of course, more clever
optimization schemes could be used.

6 Numerical results

We have tested our numerical method on various 2-D problems (see Figures 2 and 3 ; 3-D would
work as well in principle) restricting ourselves to the following objective function :

T*(6,m;) = / (@, e(u), 8, m:)dz = / Xo[Pol2ds, (30)
Q Q

where x,, is the characteristic function of a subset w of the working domain (2.

Remark 6.1. Of course, the objective function (30) can easily be generalized, for instance, if one
wants to minimize the equivalent Von Mises stress, by taking J*(0,m;) = | xoAPo - Paodx where

Q
A is an ad hoc tensor. If we want to design mechanisms, we can also introduce a target oy and

minimize J*(6,m;) = / Xw (|PU|2 —200-0+ |‘70|2) dex.
Q

The Young modulus Ep of material B is normalized to 1 and its Poisson ratio is fixed to 0.3.
The Young modulus E4 of the weak material A is taken equal to 10~2 (with the same Poisson
ratio 0.3). The algorithm is initialized with a density 6y(x). Usually, we start with a constant
uniform value of 6. This is the case for the medium cantilever displayed on Figure 4 where the
fixed overall volume fraction of material B is 30% and where the number of laminations is ¢ = 7
and w = Q. For the same problem, we started from a non-uniform density 6y(z) which was optimal

12
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F1G. 2 — Boundary conditions for the arch (left) and the L-beam (right) problems.

B )

F1G. 3 — Boundary conditions for the short (left) and the medium (right) cantilever problems.

for the compliance minimization. The number of laminations is still ¢ = 7, the volume fraction of
material B is 30% and w = Q. Both shapes in Figure 5 look similar, but the objective function has
decreased (see Figure 6) which proves that the optimal shape is not the same for compliance or
stress minimization. Remark also that the optimal shapes in Figures 4 and 5 (right) are the same
although they correspond to two different initializations.

When we increase the number of laminations for the same cantilever problem, one clearly get
a nicer shape which contains more composite (compare Figure 4 with ¢ = 7 and Figure 7 (right)
with ¢ = 23). On the other hand, if we fix the values of the (m; = 1/7)1<i<7 and optimize only
with respect to the density 6, we obtain an optimal shape with much less composite zones (see
Figure 7 left).

The same phenomenon can be reproduced on an arch problem (see Figures 8 and 9). One can
check on Figure 10 that the optimality of the composite shape increases with the number ¢ of
laminations, although the minimum value of J* does not change too much from ¢ = 9 to ¢ = 36.

We now investigate the influence of the choice of the localization zone w in the objective function
(30). We study the arch problem with three different choices of w which localizes j either in a
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F1G. 4 — Medium cantilever : optimal design for stress minimization starting from a uniform density
0p=03and w=0.q="1.

F1G. 5 — Medium cantilever : optimal design (right) for stress minimization starting from a density
6o which was optimal for compliance minimization (left), with ¢ = 7 and w = Q.

55—

F1G. 6 — Convergence history of the medium cantilever when starting from the optimal design for
compliance minimization (see Figure 5).

neighbourhood of the high stress zone or far from it (see Figures 11, 12, 13). Surprisingly, the
size, topology and localization of w do not seem to be relevant parameters in the capture of the
optimal shape. This is due to the fact that instead of true void we have a weak elastic phase A
(E4 = 10~* in our simulations except in the case of Figure 8) as is usual in the homogenization
method. For minimum stress design this approximation seems to be questionable (although it is
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F1G. 7 — Medium cantilever : optimal design for ¢ = 23 (right), and for fixed (m;) with ¢ = 7,
optimizing only with respect to 8 (left). In both cases, 8y = 0.3 and w = Q.

A\

F1G. 8 — The arch : optimal design with ¢ = 9 (left) and ¢ = 36 (right). In both cases, 6y = 0.3
and w = Q.

rigorously proved to be consistent for compliance minimization, see [1], [4]). For example, in the
case of Figure 13, if A was true void, an optimal solution would be obtained by any shape that does
not intersect the black squares (the stress would be zero in these squares, thus yielding a minimal
zero value for the objective function). Instead we obtain a different optimal composite shape which
is stable when decreasing the Young modulus of A (see Figure 14). The point is that in a weak
phase (however weak it may be) the stress is never zero as in void, and thus the structure should
be optimized to minimize it.

Remark that we may decide that w is not subject to optimization and is, for instance, always

F1G. 9 — The arch : optimal design when optimizing only with respect to § with fixed (m;), ¢ = 3,
0p =03 and w =N
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F1G. 10 — The arch : convergence history when ¢ = 36 (- - -), ¢ = 9 (...) or when optimizing with
respect to 6 only with fixed (m;) and ¢ = 3 (—). In all cases, g = 0.3 and w = Q.

A

F1G. 11 — The arch : optimal design with ¢ = 7, 8y = 0.3. The subset w is the black zone on the
right.

Fi1G. 12 — The arch : optimal design with ¢ = 7, 6§y = 0.3. The subset w is the black zone on the
right.
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F1G. 13 — The arch : Optimal design with ¢ = 7, 8y = 0.3. The subset w is the black zone on the
right.

F1G. 14 — The arch : optimal design with ¢ = 7, 6y = 0.3, and the same subset w as in Figure 13.
The weak phase is weaker : E4 = 1075,

filled with the strong material B. Then j does not explicitly (but only implicitly through u) depend
on the design variables 8 and (m;), i.e. % = BB—WJ“ = 0 in (29). In this case, the minimization of
J* (and the optimization of A*) only relies on the adjoint state contribution which is enough to
recover an optimal composite shape. This is the case, for example, in Figure 11 where the same
optimal shape is obtained if w is filled with the strong material B which can not be removed during
the optimization process.

Another example is the L-beam (see Figure 15). Remark that there is a stress concentration at
the re-entrant corner and that our algorithm is unable to change the shape of the corner in order
to reduce this stress concentration (whatever the choice of w is).

Finally we observe that the optimal short cantilever does not ezactly correspond to the classical
orthogonal two bar truss design which is optimal for compliance minimization (see Figures 16 and
17 for different working domains, design variables and volume of phase B).

All the results presented here are optimal composite shapes, i.e. there was no penalization of
intermediate densities in order to obtain a classical shape (black and white design). As a matter
of fact, the traditional penalization procedures, which act on the density 8 by forcing it to be close
to 0 or 1, do not work so well in practice on stress minimization problems. Rather, we advocate
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Fi¢. 15 — L-beam : optimal composite shape. ¢ =7, 6§y = 0.3 and w = Q.

F1G. 16 — Short cantilever : optimal design. ¢ =7, 8y = 0.1 and w = .

18
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F1G. 17 — Short cantilever : optimal design when optimizing with respect to 6 only with fixed (m;).
q="17,00=0.3 and w = Q.

a different penalization scheme which relies on microstructure reduction : after convergence to a
composite optimal design, we reduce the number of laminations or we fix arbitrarily the values of
the lamination parameters. This has the effect of penalizing intermediate densities as is clear from
the results of Figures 7 (left), 9, 17, where only the density § was subject to optimization.
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