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Abstract Design of architectured materials and structures, whether in nature or in
engineering, often relies on forms of optimization. In nature, controlling architec-
ture or spatial heterogeneity is usually adaptive and incremental. Naturally occur-
ing architectured materials exploit heterogeneity with typically graded interfaces,
smoothly transitioning across properties and scales in the pursuit of performance
and longevity. This chapter explores an engineering tool, topology optimization, that
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SIMaP, Université Grenoble, F-38000 Grenoble, CNRS F-38000 Grenoble, France, e-mail:
alexis.faure@simap.grenoble-inp.fr

G. Parry
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SIMaP, Université Grenoble, F-38000 Grenoble, CNRS F-38000 Grenoble, France, e-mail: Yves.
Brechet@simap.grenoble-inp.fr

1

vermaak@lehigh.edu
georgios.michailidis@simap.grenoble-inp.fr
georgios.michailidis@simap.grenoble-inp.fr
alexis.faure@simap.grenoble-inp.fr
guillaume.parry@simap.grenoble-inp.fr
Rafael.Estevez@simap.grenoble-inp.fr
jouve@ljll.univ-paris-diderot.fr
gregoire.allaire@polytechnique.fr
gregoire.allaire@polytechnique.fr
Yves.Brechet@simap.grenoble-inp.fr
Yves.Brechet@simap.grenoble-inp.fr


2 Authors Suppressed Due to Excessive Length

is at the frontier of designing architectured materials and structures. Topology opti-
mization offers a mathematical framework to determine the most efficient material
layout for prescribed constraints and loading conditions. In engineering, topology
optimization is identifying designs with interfaces, materials, manufacturing meth-
ods, and functionalities unavailable to the natural world. The particular focus is on
the variety of roles that interfaces may play in advancing architectured materials and
structures with topology optimization.

1 Introduction
Designing architectured materials and structures introduces a scale for materials or-
ganization: this is the “architecture” between the microstructure and macroscopic
shape [1–3]. In this approach, “spatial heterogeneity” is controlled such that com-
binations of materials or of materials and space are arranged in configurations and
with connectivities that offer enhanced performance. In this way, interfaces are in-
tegral to architectured materials/structures. Interfaces are dynamic, diverse, some-
times dangerous frontiers. The idea of an interface implies the presence of some
kind of transition, difference, change, discontinuity, and/or heterogeneity. Within
the context of engineering applications, the interfaces of present interest may be
mathematical and numerical tools or physically-based constructs. Physically, inter-
faces occur within and between the primary physical states of matter (solid, liquid,
and gas).1 Mathematically and numerically, interfaces are surfaces, infinitely sharp,
that define the boundaries of regions.

Design of architectured materials/structures, whether in nature or in engineering,
often relies on forms of optimization. In nature, controlling spatial heterogeneity
is usually adaptive and incremental. Naturally occuring architectured materials ex-
ploit heterogeneity with typically graded interfaces, smoothly transitioning across
properties and scales in the pursuit of performance and longevity. In engineering,
topology optimization is identifying architectured designs with interfaces, materi-
als, manufacturing methods, and functionalities unavailable to the natural world.
Topology optimization provides a mathematical framework to determine the most
efficient material layout for prescribed constraints and loading conditions [4].

This chapter focuses on engineering applications within structural topology op-
timization and explores the roles that interfaces can play. Within the classification
of physical solid or bulk interfaces, several types of interfaces can occur. These
include bi-material or hybrid, dissimilar interfaces, heterophase boundaries, local-
ization of defects, grain boundaries, interphases, complexions, interlayers, coatings,
and joints. In many of these cases, lattice-parameter changes in the interfacial re-
gion, induced by interfacial stresses, may have a pronounced effect on the physical
properties and chemical composition at or near the interface [5]. Note that liquid,
gas, or mixed , solid/liquid, and liquid/gas interfaces are also of engineering interest
but beyond the scope of this chapter. In many structural applications, it is critical
to design these material or solid/solid interfaces for system performance. For ex-
ample, material interfaces often dictate tolerances and processing choices, lifetime
and failure characteristics. Recently, the tool of topology optimization has begun to

1 Plasma and other states of matter that occur under extreme conditions are not considered.
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consider more and more numerical and physical roles for interfaces in design. This
chapter explores some of these trends and provides perspectives and suggestions for
future developments in the context of architectured materials and structures.

2 Structural Optimization
The phrase “structural optimization” is frequently used in engineering fields to de-
scribe processes and methodologies which aim to improve some characteristics of
a structural part related to its mechanical performance. Historically, mechanical de-
sign has been primarily based either on the experience and intuition of designers,
or on very simplistic analytical mechanical models. Extensive progress in computa-
tion over the last decades has enabled engineers to capitalize on mathematical op-
timization methods and algorithms to solve increasingly complex structural design
problems in an automated manner.

Several categories of structural optimization exist; they depend on the kind of
objectives or optimization variables of interest [6–8]. These differences in optimiza-
tion methods can have dramatic effects on the types of design problems that can be
considered and the way that interfaces can be accounted for in the design of archi-
tectured materials/structures. The following sections give an overview of the main
methods of structural optimization. The focus is on problems of “Topology Opti-
mization” (T.O.), i.e. problems where the design variables define the shape and the
connectivity of a structure. A general mathematical formulation of a T.O. problem
reads:

inf
Ω∈Uad

J(Ω), (1)

where Ω is the domain occupied by the structure, J is the objective function to be
minimized and Uad is a set of admissible shapes constraining the problem and to
which Ω shall belong. In general, this problem (eqn. 1) lacks a solution, unless the
admissible set, Uad , is adequately constrained.

2.1 Categories of Topology Optimization
A Topology Optimization method can be characterized by two choices: (i) how the
structural shape is described and (ii) how the shape evolves during the optimization
process. How the shape evolves during the optimization process is directly related to
the way a descent direction is calculated, i.e. how a direction that causes a decrease
in the objective function to be optimized is found. The majority of T.O. applica-
tions use gradient-based methods. Using the calculus of variations, and depending
on the nature of the optimization parameters, a descent direction is identified that
guarantees the decrease of the objective function, at least for a small change of the
design variables. Despite the fact that calculating such a descent direction can be
quite cumbersome, very efficient methods have been developed (MMA, CONLIN,
MFD, SQP, etc.) that allow one to quickly identify an optimal solution, even for
problems with a large number of optimization variables.

In terms of how the structural shape is described, the majority of numerical ap-
plications of topology optimization in the literature, as well as commercial software
codes, are based on what is called a “density approach” to topology optimization.
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In these density approaches, the T.O. problem, (eqn. 1), is translated into a problem
of finding an optimal density distribution in a design domain, i.e.

inf
θ∈Uad

J(θ ). (2)

The first density approaches to appear in the topology optimization literature used
homogenization theory [9–15]. The goal of these approaches was to overcome the
difficulty of the non-existence of solutions for the general T.O. problem (eqn. 1) by
including “composite” materials as admissible solutions. That is, within a design
domain, every point in the domain has an assigned density: 0 for material “A”, 1 for
material “B”, and any value between 0 and 1 represents a kind of “composite” or
mixture of “A” and “B” at that point. Note that material “A” or “B” may be physical
materials or void (empty space).

Following the early work based on homogenization theory, several simplified
methods have been proposed in order to force classical “0−1” shapes (shapes that
include only solid or void) as solutions to the T.O. problem (eqn. 2). The most well-
known among the density approaches is the “Solid Isotropic Material with Penal-
ization” or SIMP method [4]. SIMP uses a simple penalization scheme to suppress
the formation of intermediate densities (density values between 0 and 1 with little
physical meaning). With the advance of additive manufacturing, the motivation for
penalizing these intermediate densities is being reevaluated. Multi-material printers
continue to be developed with advanced capabilities. For example, one goal is to
mix materials like painters mix red and yellow to achieve any desired orange at any
point of interest. A great benefit of these density methods is the simplicity of the
description and the ease of computing derivatives with respect to the density field.
On the other hand, when the exact position of boundaries of or within the structural
shape plays an important role in the mechanics or physics of the problem, density
methods are not, in general, well-suited.

Alternatively, geometric methods, as the name implies, use a geometric descrip-
tion of the shape, Ω, and constrain the admissible domain, Uad , to ensure the exis-
tence of optimal solutions. In the past, geometric methods have mostly been based
on mesh deformation. They were often considered inadequate for performing T.O.
due to the difficulty of enacting topological changes while moving the mesh. Re-
cently, the use of level-set methods [16] for T.O. [17–19] made it possible to pre-
serve a geometric description of the shape while perform topological changes in
a simplified way. In addition to level-set approaches, advanced mesh deformation
methods have also been developed [20] that handle topological changes with mesh
evolution. Levelset methods for T.O. will be described in greater detail in section
2.2.1. Geometric methods are usually more complicated than density methods, but
they also offer two major benefits. First, they do not inherently introduce interme-
diate densities into designs. Intermediate densities have limited physical interpreta-
tion and 0−1 designs are usually preferred. Thus, geometric methods do not require
further post-processing penalizations and re-interpretations of the design results like
most density methods apply for 0− 1 designs. Second, geometric methods can be
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applied in any mechanical framework without the need to modify the mechanics of
the problem to accommodate intermediate densities.

Other approaches to T.O. include phase-field, evolutionary, and stochastic meth-
ods. The phase-field approach combines characteristics from both density and geo-
metric methods [21, 22]. These methods are particularly suitable for multi-material
problems, however optimized solutions depend strongly on the penalization param-
eters used to obtain 0−1 solutions (without intermediate densities). In the so-called
“evolutionary methods,” the update of optimization parameters is based on a heuris-
tic criterion. For structural problems, the heuristic criterion is usually a stress-based
criterion. This criterion is used to decide whether to add material, to remove ma-
terial, or to advect a geometric shape [23, 24]. This process is similar to the way
that a tree branch will adapt to changing mechanical loads, slowly adding or re-
moving material [25]. Evolutionary methods are very simple to develop, however
they are also only effective for a limited range of problems where a heuristic crite-
rion is relevant and readily formulated. Lastly, stochastic methods are well-known
for solving general structural optimization problems, mainly involving integer val-
ues. However, they are limited to a small number of optimization parameters and
their use in Topology Optimization problems that are representative for engineering
applications is impractical [26].

2.2 Topology Optimization for interface problems
The choice of the T.O. method to be used for structural design depends strongly
on the complexity and the nature of the problem. For example, simplified density
methods perform very well for two-dimensional compliance minimization problems
and there is no reason to develop an eloborate geometric method in order to obtain
similar results. However, for problems where the position of the structural boundary
or the precise definition of shape is important, classical density methods may not be
sufficient due to the lack of geometric information. There is no explicit definition of
an interface for a shape described via a density field varying continuously between
0 and 1. Instead, for T.O. implementations that penalize intermediate density values,
the interface is recognized as a region of rapid density variation from 0 to 1. Despite
the recent combination of density methods with projection filters [27, 28] in T.O.,
the position of the interface cannot be described as accurately as when a geometric
method is used. In addition, although geometric methods are more difficult to im-
plement numerically and require more complexity to allow topological changes to
occur than density approaches, they also present an inherent benefit when it comes
to problems where interfaces are important. Namely, the positions of interfaces or
shape boundaries are always explicitly defined. This makes all operations related to
the interface or shape boundary significantly easier.

2.2.1 Level-set method for T.O.

Since the first publications on the topic of levelset-based T.O. [17–19], there has
been rapid growth in this field that is reflected in the numbers of related publica-
tions and industrial projects [29]. The combination of the level-set method with
the shape sensitivity approach [18, 30, 31] allows one to obtain a gradient-based
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geometric method that easily and elegantly performs topological changes. The fol-
lowing provides a brief description of the main elements of a level-set based T.O.
algorithm.

Shape description

Using the level-set method for shape description, the boundary of a domain Ω,
denoted ∂ Ω, is defined as the zero level-set of an auxiliary function φ (see Figure
1). Thus, discretizing the level-set function, φ , which is part of a larger working
domain, D, and defining φ as:

φ (x) = 0↔ x ∈ ∂ Ω∩D,
φ (x) < 0 ↔ x ∈Ω,
φ (x) > 0 ↔ x ∈

(
D\Ω

)
,

(3)

one ensures an immediate and precise knowledge of the interface or shape boundary.
It should be noted that, based on the definition in equation 3, a domain, Ω, can

Fig. 1 Level-set based definition of a domain Ω.

be equivalently described by an infinity of level-set functions. A “good” choice of
levelset function is one that is smooth enough to guarantee sufficient accuracy for
all of the necessary numerical approximations: finding the exterior normal vector,
the mean curvature, etc. Such a “good” choice is the signed-distance function to
the domain, defined as:

dΩ(x) =


−d(x,∂ Ω) if x ∈Ω,
0 if x ∈ ∂ Ω,
d(x,∂ Ω) if x ∈ cΩ,

(4)

where d(x,∂ Ω) denotes the standard Euclidean distance from a point, x ∈Ω, to the
boundary. Beyond the smoothness of the signed-distance function, its use allows
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one to obtain valuable geometric information about the shape in order to define
geometric characteristics, like a zone of prescribed thickness.

Another benefit of the level-set framework for T.O. is the ability to capture and
describe multiple phases or materials in a natural way [32–34]. By defining n level-
set functions in the same design domain and combining their values, one can de-
scribe up to m = 2n different materials (see Figure 2).

DΦ

Φ Φ
Φ

1

4

3

2

φ < 0
φ > 0

1

2

φ < 0
φ < 0

1

2

φ > 0
φ < 0

1

2

φ > 0
φ > 0

1

2

Fig. 2 Multiphase representation in the level-set framework.

Shape derivative

To employ a gradient-based optimization method, one needs to compute a deriva-
tive for the functionals contained in the optimization problem with respect to the de-
sign variables considered. Using the level-set framework for the description of the
shape requires no parameterization of the shape, i.e. the shape is implicitly defined
through the values of the discretized level-set function, φ , and no design variables
need be considered. Instead, the notion of a shape derivative, i.e. a derivative of a
functional with respect to variations of the shape in a direction θ (x), which dates
back to Hadamard, can be defined as follows [31, 35, 36].

Starting from a domain Ω, one considers perturbations by a smooth enough vec-
tor field θ (x), such that the new domain, Ωθ , is described by (see Figure 3):

Ωθ =
(
Id +θ

)
Ω.

Then, the shape derivative J′(Ω)(θ ) of the functional J(Ω) in a direction θ (x) is
obtained through an asymptotic expansion formula of the type:

J
(
(Id +θ )Ω

)
= J(Ω)+ J′(Ω)(θ )+ o(θ ) with lim

θ→0

|o(θ )|
‖θ‖

= 0 .

Once calculated, a descent direction can be found by advecting the shape in the
direction θ = −tJ′(Ω) for a small enough descent step t > 0. For the new shape
Ωt = ( Id+ tθ )Ω, if V 6= 0, one can formally write:
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∂(Ω(Id + θ)) ∂Ω

D

Ω

Fig. 3 Perturbation of the domain Ω via a vector field θ (x).

J (Ωt) = J (Ω)− t(J′(Ω))2 +O(t2) < J (Ω) ,

which guarantees a descent direction for small positive t.

Shape evolution

During the optimization process the shape is advected with a velocity V (x) ob-
tained from shape differentiation, as presented above. The advection is described
in the level-set framework by introducing a pseudo-time, t ∈ R+, and solving the
well-known Hamilton-Jacobi transport equation:

∂φ

∂ t
+V (x)|∇φ |= 0, (5)

using an explicit second order upwind scheme [37], [38].
With this general description of the components of the levelset T.O. method,

the following sections focus on how level-set T.O. can account for interfaces from
numerical and physical perspectives. In both perspectives, this chapter considers in-
terfaces as either sharp or smooth. Sharp interfaces represent discontinuous jumps.
Smooth interfaces represent regions of gradation between distinct regions. Physi-
cally and in real materials, examples of both sharp and smooth interfaces can be
found. Smooth or graded interfaces are commonly found in naturally occuring ar-
chitectured materials. Sharp interfaces are representative of the atomically sharp
boundaries that can be engineered in modern devices. If one looks at metals at the
atomic scale, one can see a physical motivation for both kinds of interface models
(sharp or smooth/graded). At an atomic scale it is possible to get a nearly perfectly
sharp boundary; this is typically achieved in the semiconductor industry by molec-
ular beam epitaxy. However, in many cases one gets (by design or not) smooth or
graded interface zones that are a result of interdiffusion and surface reactions. These
graded interface zones can be controlled and tuned by parameters like temperature.
All of these types of interfaces serve functions but it is commonly thought that sharp
interfaces sacrifice lifetime for performance. Thus, accounting for an engineering
interfaces in material/structural design is of great interest.
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3 Interfaces as numerical tools in topology optimization
In T.O. one needs to handle criteria that depend on the solution of partial differential
equations (PDEs) that represent the physics and mechanics of the problem of inter-
est. These PDEs are defined with respect to a domain, Ω, which is populated by one
or more materials and that is a part of a larger working domain, D. The complemen-
tary of D, i.e. D \Ω, is filled with a weak material (“ersatz material”) representing
void or the absence of material. When an interface region between two phases or
two materials is present, then the PDE must contain boundary conditions describing
compatibility conditions across the interface. In linear elasticity, compatibility con-
ditions typically refer to the displacement fields and the normal component of the
stress tensor.

In T.O., treating a sharp interface between different materials or phases is a deli-
cate issue, due to discontinuities in the material properties. This is because disconti-
nuities are not differentiable and the calculation of a shape derivative becomes more
tedious. As such, historically, smooth interfaces were initially introduced and used
in T.O. as numerical tools to circumvent difficulties related to the differentiation of
functionals rather than as models of real interface properties. More specifically, the
principle goal of introducing smooth interfaces was to avoid difficulties related to
shape differentiation or to avoid limitations of the numerical methods, rather than to
represent material realities.

To the best of the authors’ knowledge, smooth interfaces in T.O. first appeared
in [19] and were followed by a long series of publications that follow this strictly
numerical interpretation. In this legacy treatment: (i) mechanical properties are
smoothly interpolated across the whole design domain using the level-set function,
φ , (ii) all of the criteria in the optimization problem are expressed in terms of φ ,
and (iii) classical variational calculus is used to calculate a descent direction, i.e. the
derivative of a functional, J(φ ), in a direction, ξ , reads:

〈
J′(φ ),ξ

〉
= lim

δ→0

J(φ + δξ )− J(φ )
δ

,

which usually includes much simpler calculations compared to computing a classi-
cal shape derivative.

Similar interface modelling was proposed by Allaire et al. in [34] using the
signed-distance function (see Figure 4), coupled with a shape derivative. As it is
explained in [34], the shape derivative in the multi-material setting contains the
jumps of discontinuous stress and strain components across the interface. However,
these jumps cannot be computed using Lagrange finite elements on a fixed mesh.
Instead of employing techniques that accurately discretize the material interface
[20, 39, 40], a remedy to this numerical limitation consists in smoothing the problem
using a shape differentiable function (the signed-distance function) and constructing
an interpolation scheme that converges to the sharp interface framework when the
interpolation width tends to zero.

Beyond smoothing discontinuities or facilitating the derivation, interfaces can
also be used numerically to ensure the existence of a minimizer. A minimizer refers
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dΩ1
E( d   ),

-ε ε0

ε-ε 0

Φ

Φ
1

4

Ω1

Fig. 4 Interpolation between two phases Φ1 and Φ4 using the signed-distance function dΩ1 .

to the case where a sequence of shapes during the optimization process (minimiz-
ing sequence) converges to a shape (the minimizer) in Uad . As previously men-
tioned, the general T.O. problem (eqn. 1) lacks a solution unless the admissible set
is adequately constrained. For example, the minimizing sequence may converge to
a “composite” design that does not belong to the Uad that is composed of 0− 1
shapes. Controling the complexity of the shapes in the sequence can be achieved by
penalizing the perimeter of the shape [41], choosing smooth vector fields to advect
smooth domains [6], or imposing manufacturing constraints like minimum thick-
nesses [42, 43].

Another approach to stop a minimizing sequence is to add a fictitous interface of
constant width. This interface is a numerical tool to control the complexity of de-
sign features using a projection scheme [44, 45]. Figure 5 presents a typical exam-
ple of a bi-material minimizing sequence obtained using a level-set based topology
optimization algorithm that imposes an equality volume constraint at each iteration
[44, 45]. From left to right, the microstructural features increase in complexity and a
highly-interconnected distribution of materials (white and black) is observed. These
kinds of minimizing sequences are converging to the theoretical limit in which ev-
ery point in the domain is occupied by the prescribed volume fraction of materials.
For example, if a resource constraint with a volume fraction of 50% of one mate-
rial (white) and 50% of another material (black) was specified, the optimal solution
would be a domain in which every material point is comprised of 50% of each
material (the domain would look completely grey). Numerically, the minimizing
sequences exhibit features that become vanishingly small while still respecting the
required fixed volume fractions of materials at every point in the domain.

Figure 6 illustrates schematically how introducing a fictitous interface of con-
stant width (in grey) can stop a minimizing sequence for the bi-material problem
(black and white) with a 50-50 resource constraint. Figure 6 presents, from left to
right, an initial design, three intermediate profiles, and the optimal design obtained
at convergence with the fictitious interface removed. In this case, the interface is
understood as a minimal distance constraint for the members of the projected phase



Topological Optimization with Interfaces 11

(in black) [43]. As a result, significant oscillations of the boundary are prevented
and the optimization process converges smoothly. The role of the interface here is
purely geometric and it is assumed to have the same properties as the weaker ma-
terial (in white). In this way, an extremely simple, although indirect, way to control
manufacturing complexity is achieved.

Fig. 5 A minimizing sequence of a bi-material distribution converging weakly to a constant that
respects a resource constraint ratio of 50% of each material at each iteration.

Fig. 6 Using a fictitious interface of constant thickness (in grey) to avoid a minimizing sequence.

4 Considering material interfaces in topology optimization
Beyond numerical reasons, interfaces can be considered in T.O. to represent real
material observations. As depicted in Figure 7, the interaction of atoms close to the
interface of two phases or materials can result in a region that exhibits properties
that are vastly different from the bulk phases or materials. The transition from one
phase to another can be monotonic or not, also having a great impact on the optimal
configuration.
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Fig. 7 Left: sharp interface; right: smooth interface with various interpolation schemes.

In order to account for interface effects in T.O., one has to find an appropriate
mathematical formulation. The mathematical background presented in [34] for han-
dling smooth interpolation profiles provided the formalism to efficiently treat any
kind of regular interpolation scheme. The two key ingredients in this formalism are:

• The use of the signed-distance function in the interface interpolation scheme and
• The use of the co-area formula to obtain a shape derivative.

Using the signed-distance function to interpolate a physical quantity like the Young’s
modulus, E(x), follows the general form:

E(x) = E0 +hε (dΩ)(E1−E0), where hε (dΩ) =

0 if dΩ <−ε

h(dΩ) if − ε ≤ dΩ ≤ ε

1 if dΩ > ε ,
(6)

where h(dΩ) is a smooth and differentiable function. This formulation requires that
the interpolation width (width of the interface zone) remains constant during the
optimization process (equal to 2ε). More specifically, if the level-set function, φ , is
used instead of dΩ in equation 6, the algorithm could try to enlarge or shrink the
interface zone during the shape evolution (see Figure 8) and optimization process
in order to improve the objective. This is undesirable for two reasons. First, a great
part of the final shape may contain intermediate values for the mechanical proper-
ties, eliminating the benefit of using a geometric method. Second, re-initializing the
level-set function, φ , to the signed-distance function to the domain changes the val-
ues of the functionals. As a result, a descent direction is not guaranteed. For more
detailed information about this issue, see Allaire et al. [34] and Section 3.
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Fig. 8 Interpolation of physical properties using: the signed-distance function dΩ (left); the level-
set function φ (right).

The choice of dΩ in equation 6 comes at the cost of complexity in the shape
derivation [34]. This key point has been neglected in previous publications using
similar interpolations [19], leading to erroneous formulations. Intuitively, the inter-
face profile considered should have an impact on the advection velocity, and there-
fore also on the shape derivative. This intuition is substantiated and guaranteed when
the correct shape derivation is applied. As explained in [34], using the co-area for-
mula, one can split a volume integral defined in a domain, D, into a surface integral
on the internal interface, ∂ Ω, and two one-dimensional integrals along the normal
lines emerging from every point y ∈ ∂ Ω (the so-called rays, see Figure 9). Thus, all
of the information associated with the interface zone is taken into consideration in
the final shape derivative.

Ω
1

Cartesian integration

Coarea integration

x

y n
t

Fig. 9 Rays emerging from the internal intermediate interface, ∂ Ω1.

4.1 Some applications
The influence of incorporating internal material interface zones with distinct mate-
rial properties in T.O. was first examined in [46] for macroscopic structures. The au-
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thors presented the impact of various interface zone interpolation profiles with elas-
tic and thermoelastic example problems. The tendency to augment the total interface
perimeter, whenever it is beneficial for the optimization problem, was highlighted
and directions for further work to resolve manufacturing issues were proposed.

A similar work in the framework of the SIMP method has also recently appeared
in [28] for the design of coated structures. In order to define a notion like an interface
using a density approach, the authors deployed a double-projection scheme coupled
with a regularization equation. The first projection serves to create a nearly 0− 1
shape. Then, the regularization equation smoothes the density field and the coeffi-
cients of the equation are chosen so as to control the regularization width (coating
thickness). Lastly, a second projection scheme is applied to obtain the final density
distribution.

In this way, two different and powerful approaches for T.O. have recently evolved
to address new materials-based design issues. They are now equipped to advance
the field of architectured materials and structures by incorporating more interface
effects.

In fact, following the work in [46], there is an ongoing effort to understand inter-
face effects in optimal materials design using inverse homogenization [47, 48] (see
Figure 10). The research focuses on how interfacial interactions between different
phases may affect optimal shapes and material distributions (see Figure 11) in the
design of bio-inspired architectured materials.

Periodic domain
Periodicity cell

Y domain

ε

ε

Effective cell

Homogenized continum

C(x), α(x), A(x)

C  , α  , A  * * *

e1

e2

Fig. 10 Inverse homogenization concept: design of a microstructure for target effective properties.

In concert with the advance of T.O. methods, recent progress in additive manu-
facturing (AM) is expected to significantly broaden the range of T.O. applications.
This is due to the extreme design flexibility that additive manufacturing methods
afford. The capability to realize increasingly complex geometries allows designers
to take full advantage of T.O. and impose fewer manufacturing constraints. As more
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Fig. 11 Optimal microstructure for target elastic and thermoelastic coefficients using a monotone
(left) and a non-monotone (right) interpolation scheme.

research is focused on AM techniques and understanding the control of processing
features, it is becoming increasingly necessary to tailor T.O. methods to specific AM
techniques [49, 50]. For example, several additive manufacturing technologies are
known to produce anisotropic properties, or parts with unintended property grada-
tions that are related to the build orientation, build speed, thermal history, and to the
in-fill pattern followed during the build process.

One example is that, due to the presence of carbon fibers in some of the printing
inks for Fused Deposition Modelling (FDM) printers, the outer structural perimeter
or solid/void interfacial layer at the part boundary is characterized by a physical
and finite zone where material properties may vary greatly from the interior infill
regions. These perimeter zones may have anisotropic properties that result in the
stiffness being much greater in one direction relative to the perimeter than another
(see Figure 12). The properties of the perimeter zone may play an important role
in the overall performance of a printed part, and the anisotropy should be modelled
and considered in the optimal design process. This topic is also related to coatings
in materials and structures and is the subject of ongoing research.

5 Discussion
The above examples illustrate some of the rich opportunities for including inter-
face effects in topology optimization. In addition to offering a better model of many
physical or actual multi-material problems, including interface effects also offers
new functionality by leading optimal designs in new directions. Including interface
effects may allow optimizers to identify configurations that differ from those iden-
tified with classical sharp or monotonic interface modelling. Certainly, for a fixed
design domain, these differences become more significant as the presence of the
interface zone increases.

One could argue that the area occupied by the interface zone could also be mod-
elled as a third material. The main difference between the interface zone and a third
material is that the interface zone, by definition, is always surrounded or in contact
with both of the other two materials. Simply introducing a third material does not
guarantee or adequately represent this physical feature of interface zones. Neverthe-
less, this concern is valid and especially relevant when the existence of the interface
zone is beneficial for the problem at hand. In this beneficial case, the tendency to
promote and create tortuous paths for interface zones puts into question the notion
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Fig. 12 Schematic of anisotropic perimeter (crust) properties in Fused Deposition Modelling
(FDM).

of calling this an interface or interface zone at all. Interfaces, by definition, should
also have an associated length scale that is much smaller than the dominant struc-
tural feature of the design domain of interest. For example, in Figure 13, one can
see how a region of fictitiously high Young’s modulus can be assembled by small
material islands that approach each other. These islands effectively create an inter-
face network. This artifact is shown in more detail in Figure 14. A non-monotone
interface of fixed width is considered between the phase in blue and the one in the
grey color. However, since the size of the feature in grey is smaller than the interface
width, one can argue that there is no longer an interface between the two phases, but
instead a third material with elastic properties defined via the interpolation function.

dΩ E( d  )Ω

0

, dΩ E( d  )Ω,

Fig. 13 Interface network resulting in a fictitous overestimation of stiffness.

However, since the position of the interface zone depends on the intermediate
interface between the two bulk phases or materials, it is not correct to claim that the
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Fig. 14 Another interface network resulting in a fictitous overestimation of stiffness.

interface is simply a third material. Of course, in order to be physically meaningful,
geometric constraints are required. Geometric constraint could be applied through
a minimum feature size [43] or by using a fictitous interface approach [45]. For
example, a projection scheme could be used in order to ensure a minimal distance
between structural members and avoid the artifact shown in Figure 13. This could
be achieved by offsetting the interpolation scheme (eqn. 6) by a desired distance, d0
(see Figure 15).

ε-ε 0
matter

ε

-ε
0

matter

void

d  +d0Ω E( d   + d0 ), Ω

-ε
0

d  +d0Ω E( d  + d0 ), Ω

-ε
0
 ε

Fig. 15 Imposing a minimal distance d0 between structural features via a projection method (off-
setting the interpolation scheme).

Finally, another topic of interest that is introduced by including interface effects
in T.O. is the optimization of the interface property profile itself. There may also be
new interface phenomena of interest for T.O. in considering other phases of mat-
ter (liquid/gas and solid/liquid interfaces). In all of these cases, instead of imposing
prescribed property profiles across interface zone transitions, let the optimization
protocol determine optimal property profiles. In theory, it is not difficult to glob-
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ally parametrize the interface profile and to proceed with a parametric optimization
derivation. One could also consider the interface thickness, as well as the intermedi-
ate property value at the center of the interface zone as optimization variables while
employing a combined shape and parametric optimization. However, implementa-
tion becomes far more complicated when one is interested in locally optimizing the
interface profile and a detailed explanation is out of the scope of this chapter.

6 Conclusions
By accounting for interfaces, topology optimization is poised to advance the de-
sign and aid the understanding of architectured materials and structures. Whether in
nature or in engineering, architecture is allowing designs to capitalize on property
differences to extract new or improved performance. Capturing these interface fron-
tiers and transitions across boundaries offers many opportunities and challenges for
materials scientists, mathematicians, designers, and engineers. It is suggested that
all of these issues are best understood in a holistic context that takes inspiration from
nature, manufacturing processes, and performance targets into account.
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