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HOMOGENIZATION OF THE UNSTEADY STOKES EQUATIONS
IN POROUS MEDIA

Grégoire ALLLAIRE

0) Introduction.

In [7] J.L. Lions studied the homogenization of the evolution Stokes problem in a
periodic porous medium £, (of period €)
du,

—E—)—rﬁ-}-VpE—ezAuE-—-f , divu,=0 in Q,

Ug = 0 on aQE 4 ua(.f:(}’x) == ae(x) (0.1)

where u, and p. denote the velocity and pressure of the fluid, f the density of forces acting
on the fluid, and a, an initial condition for the velocity. By means of formal asymptotic

expansions (see [5], [12]) he derived the homogenized problem for (0.1) as € goes to zero

u(@x) = a@x)+ [AC-)f-Vpls x)ds in [0,TIXQ
0

dvu=0 inQ, un =0 on dQ 0.2)

where ¥ and p denote the limit velocity and pressure, a is an initial condition which
depends on a. and decays exponentially in time, and A(¢) is a symmetric permeability ten-
sor. Problem (0.2) is a Darcy’s law with memory which generalizes the usual Darcy’s law
obtained by homogenization of the steady Stokes equations [1], [6], [7], [12], [14].

The purpose of the present paper is to rigorously prove the convergence of the homo-
genization process, i.e. the convergence of the solutions (u¢p.) of (0.1) to the solution (u,p)
of (0.2) (see theorems 3.1 and 3.2). To this end, we use the new "two-scale convergence
method” which was first introduced by G. Nguetseng [11], and further developed by the
author [3], [4]. Loosely speaking, it is a rigorous justification of two-scale asymptotic
expansions (see [5], [6], [12]), and thus, it is an alternative to the so-called "energy method"
of L. Tartar [13]. Actually, besides the homogenization result itself, the main interest of the
present paper is to demonstrate the power and the simplicity of the two-scale convergence
method in the homogenization of a concrete example. The paper is organized as follows :
section 1 is devoted to the setting of the problem, basic facts about two-scale convergence
are introduced in section 2, while the main results are proved in section 3.



1) Setting of the problem,

As in [5], or [12], a periodic porous medium is defined by a domain Q and an associated
microstructure, or periodic cell ¥ = [0;1]” , which is made of two complementary parts : the
fluid part Y, and the solid part Y, (YUY, =Y and YiY; = D). More precisely, we
assume that € is a smooth, bounded, connected set in RV , and that Yf is a subset of ¥
which is smooth and connected in the unit torus, i.e. ¥ with periodic boundary condition
(equivalently, the Y -periodic subset of RV, of period Y, is smooth and connected). The
microscale of a porous medium is a (small) positive number €. The domain Q is covered by
a regular mesh of size € : each cell ¥;® is of the type [0;]", and is divided in a fluid part
Y and a solid part Y, ie. is similar to the unit cell ¥ rescaled to size €. The fluid part
Q. of a porous medium is defined by

N(g) N(g)

QemQ—UYSf = QﬂUYﬁ (1.1)

i=1 i=1
where the number of cells is N(g) = |Qe™ [14+0 (1)]. Throughout the present paper, we
assume that €, is a smooth, connected set in R" .

Remark 1.1.

This assumption on €2, is of no fundamental importance in the sequel, but it appeals some
comments from a technical point of view. It is automatically satisfied if the solid part Y, is
strictly included in the cell ¥, and if we removed the solid parts st which meet the boun-
dary dQ (see [12], and [14]). However, this is not the case when the solid part Y, meets the
boundary of the cell ¥ (near the boundary 0, there may be some small connected com-
ponents of €, and the boundary of Q. may be not smooth due to "wild" intersections
between JQ and 9Y . see [1]). Fortunately, the assumption on €, being smooth and con-
nected, is by no means necessary for the sequel, but, since avoiding it introduces some tech-
nicalities, we are going to use it anyway, in order to simplify the exposition.

We consider the unsteady Stokes equations in the fluid domain Q. with a Dirichlet
boundary condition. We denote by u. and p, the velocity and pressure of the fluid, [ the
density of forces acting on the fluid, and a, an initial condition for the velocity. We assume
that the density of the fluid is equal to 1, while its viscosity is very small, and indeed is
exactly €2 (where € is the microscale). The system of equations is

—— +Vp.—Au =f, divu,=0 inQ,

ug=0 on dQ., u(t=0x)=ayx). (1.2)



Remark 1.2,

The scaling 2 of the viscosity is not surprising : indeed it is well-known (see [6], [7], and
[12]), that it is the precise scaling which gives a non-zero limit for the velocity u, as € goes
to zero. The scaling 1 of the density is the precise one that keeps a dependence on time for
the limit problem. With these scalings, system 1.2 was studied by J.L. Lions [7], using for-
mal asymptotic expansions. A. Mikelic [10] studied (1.2) with an €? scaling for the density,
leading to a limit problem, different from ours, and with no inertial terms.

In (1.2), the force f(r,x) is given in {Lz([O,T ]XQ)}N, and the initial condition a.(x)
belongs to [H c} (.QS)]N . Furthermore, denoting by ~ the extension operator by zero in Q-Q,

we assume that 4, satisfies

el 2qy + €l Va, ”Lz(m <C and diva, =0 in Q. (1.3)

Proposition 1.3.
The Stokes equations (1.2) admits a unique solution u, € L [0,T]; H¢(Q)" ), and
pe € LA [0,T]; LXQ.)/IR ). Furthermore, the extension by zero of the velocity i, satisfies
the a priori estimates
_ o ¢
e o rizvay + & 1Vae i ~qoryz2ay < C » and =5, lexorpy <€ (14)

where the constant C does not depend on €. (The proof is left to the reader.)

Proposition 1.4,
There exists an extension P of the pressure defined in L¥ [0,T] ; LAQ)VR ) by
P.=pe inQ,, and P, = —lg— pe in each Y& (1.5)
DeA Yt
and a constant C, which does not depend on ¢, such that
I1Pell Lo iz yaym < C- (1.6)

Proof.

Proposition 1.4 is a mere combination of previous results of [14], [1], and [9]. We briefly
sketch its proof. Introducing a projection operator R, from H{J (Q)YY in H}(Q)", the
extension P is defined, a.e. in time, by
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Due to properties of the operator R ¢ (see [14] in the case of isolated obstacles, and [1] in the
case of connected obstacles), definition (1.7) makes sense. Estimate (1.6) is deduced from
(L.7) by integration by parts, and using the estimates (1.4) on the velocity. Finally, the
equivalent definition (1.5) is obtained from (1.7) by choosing suitable functions v with com-
pact support in Y¥;* and Y (see [9]). We point out that the assumption on £, being smooth
and connected, is used only here (without that assumption, the extension P, would be
merely defined and bounded in L2 (Q)).

Since (extensions of) the velocity u, and the pressure p. are bounded sequences as £
g0€s 1o zero, we can extract a subsequence such that they converge to a limit velocity u and
pressure p. The homogenization process amounts to find a system of equations (the homo-
genized problem) satisfied by # and p. For this purpose, we introduce in the next section a
new method of homogenization, called the two-scale convergence method.

2) Two-scale convergence.

Let Cy(Y') be the space of infinitely differentiable functions in RY which are periodic of
period Y. Denote by L(Y) (resp. H,\(Y)) its completion for the norm of L%Y) (resp.
HY(Y)). (Remark that LX(Y) actually coincides with the space of functions in L2(Y)
extended by Y -periodicity to the whole of RY )

Following the lead of G. Nguesteng [11], we introduce the following
Definition 2.1.

A sequence of functions u, in LX) is said to two-scale converge to a limit ug(x,y) belong-
ing to LX(QXY ) if, for any function y(x,y) in D [Q;C4(Y)], we have

lim [u (W, 2) dr = [[ ugley)yiry) dudy . @.1)
€0 & £ oy

This new notion of "two-scale convergence” makes sense because of the next compact-
ness theorem.

Theorem 2.2.

From each bounded sequence u, in L%(2) one can extract a subsequence, and there exists a
limit uy(x,y) € Lz(QXY) such that this subsequence two-scale converges to u.

Theorem 2.2 is proved in [3], [4], [11]. The main idea of two-scale convergence is
that, if a sequence wu (x) is given as an expansion of the type
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uo(x,-g—) + eul(x,f) + ezuz(x,g) + -, where the functions u;(x,y) are Y -periodic in ¥,

then the first term of the expansion actually coincides with the two-scale limit of Ug.
Loosely speaking, two-scale convergence captures the oscillations of a sequence which are

; i 4 X ; .
in resonance with that of the test functions \y(x,—e—). For a given sequence u, there is more

information in its two-scale limit u than in its weak-L? limit u, since ug contains some
knowledge on the periodic oscillations of u,, while u is just an "average" of u,. These
claims are made rigorous in the next proposition which establishes a link between two-scale

and weak-L? convergences.

Proposition 2.3,

Let ue be a sequence of functions in L%Q) which two-scale converges to a limit
uglx,y) € Lz(QxY). Then u, converges also to u(x)=_[u0(x,y)dy in LZ(Q) weakly.
Y

Furthermore, we have
lim [|ug || 3q) 2 luoll2axry 2 llu l2q) - (2.2)
e—0

Proof.

By taking test functions W(x), which depends only on x, in (2.1), we immediately obtain
that u, weakly converges to u(x) = luo(x,y) dy in L¥). Let Y(x,y) be a smooth Y-

periodic function
J'[ue(x)—\p(x,ic-)]:Z dx = _[ue(x)z dx + f\{!(x,i)2 dx — ZJus(x)\p(x,-{) dx 2 0.
Q 2 0 Q € o} €

Passing to the limit as € goes to zero yields

lim [u () dx 2 2[[ugte,y)W(x y) dedy — [[yix y)? dady .
e300 Qv Qy

Then, using a sequence of smooth functions which converges strongly to ug in LY (QxY)
leads to the desired result.

The next theorem shows that, if a two-scale limit contains all the oscillations of a
sequence (condition (2.3)), then one obtains a corrector-type result, i.e. a strong convergence

for u(x)—u(x, —E-).



Theorem 2.4,

Let u, be a sequence of functions in L?%(Q) which two-scale converges to a limit
uglx,y) € Lz(Qxl’). Assume that

lim ||u ey = || U 23
. 0” ellz () | OHLZ(QxY) (2.3)
and that uo(x ,y) is sufﬁcienﬂy smooth (see remark 2.5), then

; x
ég%”“e()-‘)"uo(x,*g) ) = 0. (2.4)

A proof of theorem 2.4 may be found in [31, [4].

Remark 2.5.

In the definition 2.1 of two-scale convergence, we consider very smooth test functions
Y(x,y) (which are also Y-periodic in y). Their regularity can be weakened, but not too

much since w(x,%) needs to be measurable. We emphasize that this problem of measurabil-
ity is not purely technical, but is linked to possible counter-examples of the well-known con-

vergence result for periodic functions which says that \p(x,%) converges to I\;I(x y)dy in a
Y

suitable weak topology. For more details, we refer the interested reader to [4]. Here, it is
enough to know that the regularity assumption on the test function Y(x,y) in definition 2.1,
or on the two-scale limit ug(x,y) in theorem 2.4, can be, e.g., either LZ[Q;C}(Y )], or
LAY ;C ()] (roughly speaking, continuity is needed in only one variable).

Remark 2.6.

Two-scale convergence also applies to sequences u(¢,x) which depends on a dummy vari-
able ¢ (here, ¢ stands for the time variable, and dummy means that the test functions do not
oscillate with respect to ¢). Theorem 2.2 is easily generalized as follows: for any sequence
u (f,x) bounded in Lz([O,T]x.Q), there exists a function uo(tx,y) in Lz([D,T]xQxY) such
that, up to a subsequence and for any ¢(r) € C>([0,T]) and y(x,y) e D [2;Cy(Y)], one
has

T T
tim [ fu (e )0, 5) dedx = [[[ gl x,y)00 W(x ) drdxdy . 2.5)
-0 pH E oy

In the two-scale limit (2.5), the variable ¢ is merely a parameter, and the two-scale limit
uo(r x,y) does not capture any possible oscillations in ¢ of the sequence ug.



3) Main results.

This section is devoted to the homogenization of the unsteady Stokes equations (1.2). The
proof of convergence of the homogenization process is based on the two-scale convergence
results obtained in section 2. In theorem 3.1, the limit problem is presented as a "two-scale
homogenized" problem. In theorem 3.2, the same limit problem is proved to be equivalent
to the "usual" homogenized problem combined with the cell problem. Both formulations of
the limit problem have their pros and cons as discussed in remark 3.3. All the results of this
section are proved under the assumption that the entire sequence d. (the initial conditions of
the Stokes problem (1.2)) two-scale converges to a unique limit a@o(x,y). Remark that the
only point in this assumption is the uniqueness of the two-scale limit. This is a very natural
assumption, which is automatically satisfied if a, is itself the unique solution of a steady

Stokes problem in Q. (with a given force independent of ¢).
Theorem 3.1.
The extension (#,P,) of the solution of (1.2) two-scale converges to the unique solution

(uglx,y), p(x)) of the two-scale homogenized problem

or
divyug(x,y) =0 in QxY; and div, [luo(x,y) dy} =0 in Q

() +Vypixy) + Vop () — Ajuglxy) = f(x) in [0,7 ]xQxY

upx,y) = 0 in Qx¥Y, and [juo(x,y)dyJ.n =0 on odQ (3.1)
i

Y > ugy, py Y—periodic

L uot=0) = ag(x ).

Theorem 3.2.

The extension (i P ¢) of the solution of (1.2) converges, weakly in [L Z(Q)]Nx[L 2(Q)M{], to
the unique solution (u,p) of the homogenized problem

u(tx) = a@x)+ [A@-s)f-Vplis x) ds in [0,T]xQ
0

divu(x)=0 in [0,T]xQ (3.2)
u(x)n =0 on [0T]xQ

where a(r,x) is an initial condition which depends only on the sequence a, and on the



microstructure Y¢, and A(f) is a symmetric, positive definite, (permeability) tensor which
depends only on the microstructure ¥, (their precise form is to be found in the proof of the
present theorem). Furthermore, the two-scale homogenized problem (3.1) is equivalent to

(3.2) complemented with the cell problems (3.13)~(3.14), and u (¢t x) = Juo(t,x,y) dy, while
Yf

the pressure p(f,x) is the same in (3.1) and (3.2).

Remark 3.3.

The two-scale homogenized problem is also called a two pressures Stokes system (see [7]).
The homogenized problem (3.2) is a Darcy’s law with memory (due to the convolution in
time). It is not difficult to check that both a(¢,x) and A (f,x) decay exponentially in time.
Thus, if the force f is steady (i.e. does not depend on t), asymptotically, for large time ¢,
we recover the usual steady Darcy’s law for # and p. In homogenization, the limit problem
is usually presented as (3.2) (i.e. only macroscopic variables are used). However, in the
present case, the elimination of the microscopic variable y induces a complicate, integro-
differential, type for (3.2). Thus, for establishing that the limit problem is well-posed (i.e.
existence and uniqueness of solutions), the "two-scale” form (3.1) of the limit problem is
preferable. Furthermore, compared to (3.2), (3.1) contains some supplementary informations
(namely, the so-called cell problem is included in (3.1)), which yields a corrector result for
the velocity (theorem 3.5). The two approaches (3.1) or (3.2) of the limit problem were also
discussed earlier by J.L. Lions (see chapter 2.5 in [7]).

Remark 3.4.

The homogenization of the evolution Stokes problem (1.2) can also be considered in a
domain £, with isolated obstacles Y* of size @, much smaller than the period €. Using our
previous results [2], it is easily seen that, when the obstacles are smaller than €, but also
larger than a given critical size (in 3-D, we require £ < a ¢ <€), the corresponding homo-
genized system is a time dependent Darcy’s law

3—‘:+Mu +Vp = f, divu=0 in [0,TIXQ

un = 0 on [0,TIX0Q, u(@=0x)=ax) G5

where M is a constant tensor, and @ is an initial condition. We emphasize that the two
situations (obstacles of size, either €, or much smaller than €) are completely different : in
particular, the homogcnizéd problem (3.2) can not be written under the form (3.3).



Theorem 3.5.

Assume that the initial condition satisfies 1'_11:3 J'I&E(x) |2dx = Iﬂao(x ) |?dxdy . Then, the
e Qy

_ : X
convergence of the velocity is improved : lim ||u (¢t x) — ug(t x,= = ),
g ty p e_)0“ g(tx) — ugt x 8)||L2([0,T}xn)

The remaining part of this section is devoted to the proofs of the previous results. In view
of the estimates (1.4) on the velocity u,, we can state the following

Lemma 3.6.

There exists a limit ug(t x,y) € Lz([U,T]XQ 3 H#I(Y)N) such that, up to a subsequence, the
sequences ., £Vilg, and dit /ot two-scale converge to u, V,uo, and duydr respectively.

Furthermore, u satisfies

J divyuo(t,r,y)z{) in QxY, and divx[i[uo(r,x,y)dy]no in Q

3.4
uplt x,y)=0 in QxY, , and [Juo(t,x,y) dyln =0 on Q. 4
¥

Proof.

By application of theorem 2.2 and remark 2.6, there exists three functions uoft x,y),
Eo(t x,y), and Lo(t ,x,y) in LA([0,TIXQXY ) such that

-

T T
fim [ fuele )90, 7) didx = [[[ ugle xy).00)0x,y) drdxdy
-0 pn € oqy

T T

| lim [JeVuett 0).00080, ) drax = Y)0)ER,Y) d .
einolg';e et x).9()3(x E) 1 MQO(M Y).0()E(,y) drdxdy 3.5)

T d T
il_% ‘”_.51:_(‘ X ).00 y(x ,‘g-) didx = ‘[iu: ot x )0 )y (x,y) dedxdy
Ui 0

for any y(x,y) € D [Q;C;"(Y)]N, Ex,y)e D [Q;C;"(Y)]Nz, and ¢(t) € D([0,T]). Integrat-
ing by parts and passing to the two-scale limit in the two last lines of (3.5) yields

i~

T T :
Lim [ [uo4(t).div, S(x, %) didx =~ [[[ Eo.0(t)E(xy) dedxdy = [[] uod()div,Ex ) dedxay
) e-0 50 £ 00y oay

T T T
coorf 90@) o x S _ oh(t)
lim Qlue- S VD) dedx = M’ Lo 0 )W (x,y) dedxdy = Q; ! uo S Y ) drdxdy
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Desintegrating by parts leads to &, = V,uq and {y = duy/dr. Moreover, the incompressibil-
ity condition div uy = 0 yields divyuy(x,y) = 0 and div, [Iuo(x,y)dy] = 0, by integrating by
¢

parts the first line of (3.5) with y(x,y) successively equal to V),G(x,y) and V,08(x). The
other properties (3.4) are also easily obtained by a proper choice of test functions in (3.5).

Proof of theorem 3.1.
Let ¢(z) € C™([0,T]) with ¢(T)=0. Let yx,y)e D[IQC, (V) with wx,y)=0 in
QxY, (thus, W(x,i:‘) e [H 01 (QE)]N ).  Multiplying equation (1.2) by ed(r )‘*’(x%) and

integrating by parts in the space variable x gives a single non-zero term when passing to the

limit |
H X

Lim || P 0(¢)divy, y(x,~) drdx = 0. 3.6

HOQ;EQJ() yWE, ) (3.6)

Since P is a bounded sequence in L%([0,T] ; L%Q)/R) (see proposition 1.4), it admits a
two-scale limit p o(f ,x,y). Passing to the limit in (3.6), we deduce

T
[I] pott x )0t )div, yix ) drdxdy = o,
1,9} 4

which implies that p, does not depend on y in Y,. Using the particular form (1.5) of the
extension P in Q-Q, we obtain the same result in ¥, namely Polt x,y)=p(@x).

Next, we add to the previous assumptions on Y(x,y) the incompressibility condition
div,y(x,y) = 0. Multiplying equation (1.2) by ¢( )\;!(x,%), integrating by parts, and passing

to the two-scale limit yields

T
[] aox )-0@)wx y) drdy — [[[ ugttx,y ).%E(r)w(x ) drdxdy 3.7)
ay oy t

T T
- I” p (. x)(t )div, y(x y) drdxdy + ”1[ Vyuolt x.y).00 WV, W(x,y) drdxdy
oQY 9)

T
= [[[ £ @.000)w(x y) dedxdy.
(119} ¢

Since (3.7) holds for any functions ¢, with ¢(T') = 0, and Y, with Y(x,y) = 0 in QxY, and
div, Y(x,y) = 0, and recalling that the orthogonal of divergence-free vector-functions is the
set of all gradients (see lemma 3.8), there exists a pressure p (¢ ,x,y ) such that
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d
%(IJ.)') +Vypitxy) + Vop(ex) — Ajugle xy) = f(tx) in [0,TIXQXY; . (3.8)

Together with (3.4) equation (3.8) is just the two-scale homogenized system (3.1). If (3.1)
admits a unique solution, then the entire sequence ( &P, ) converges to its unique solution

(uox,y),px)). Thus, the proof of theorem 3.1 is completed by the next lemma 3.7.

Lemma 3.7.
There exists a unique solution (uqp p 1) of the two-scale homogenized system (3.1).
Proof.

Denote by H (}ﬁ (Ys) the subspace of H,,I(Yf) composed of the functions which are zero on
0¥, oY, . Let us define the Hilbert spaces

V= {v )L QH gy (Y, V) 1 divyv=0, div, [ [ vdy =0, [ vdy).n,=0 on an} (3.9)
¥y Y,

H , the completion of V in [L%(QxY;)}", and, denoting by V’ the dual space of V,

E ={v (tx,y) /v e L¥[0,T]V), %t"- = LZ([O,T];V’)}, and E0={v cE/v(T)= 0]».

Multiplying the equation (3.1) by a function v € E, and integrating by parts leads to

T T T

!}sz I{ V,uoV,v drdxdy - (j} i[z 1{ u&%"t— dtdxdy = i:jnj, f.v drdxdy + :Jujf ao.v(0) dxdy. (3.10)
Since the left hand side of (3.10) is coercive on E o0» by application of the Lions lemma (see
theorem 1.1, chapter 3, [8]), there exists a unique solution ug in ENC ([0,T1;H) of the vari-
ational formulation (3.10). Furthermore, since age Vand f € [Lz([O,T]xQ)]N , the regu-
larity of the solution is improved : ug € L¥([0,TXQHA(Y; V) and duy/dr e LX([0,T;H).
It remains to prove that the variational formulation (3.10) is actually equivalent to the two-
scale homogenized problem (3.1). The only difficulty is to obtain the two pressures
V.p(@x)+ Vyp 1{¢ x,y) when desintegrating by parts (3.10) : this is the purpose of the next

lemma 3.8.



Lemma 3.8.
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The orthogonal V! of the Hilbert space V, defined in (3.9), has the following characteriza-

tion

vi ={v(x,y) =V, 0(x) + V,0,(x,y) with¢ e H(Q), and ¢, € LAQ;LA(Yy ))}. (3.11)

Proof.

Remark that V = V"V, with

:{v(x,y) € LAQH G N) 1 divyy = 0}

Vz—-{v(x,y) € LZ(Q,HO#(Yf)N)!dtv [J'vdy] =0, [Ivdy]n =0 on BQ}
f !

It is a well-known result (see, e.g., [15], [16]) that

vl ={Vy¢1(x,y)f¢le Lz(Q;L#Z(Yf))}, and V,1 ={Vx¢(x)!¢e HI(Q)}.

Since V| and V, are two closed subspaces, it is equivalent to say Vinvyl =v, 1 4 v,1

or Vi+V,=V,+V, Indeed, we are going to prove that V,+ V, is equal to
L*(Q;H g4 (Y5, which establishes that V; + V., is closed, and thus (3.11).

For1<i <N,

problem

denote by v;(y) the unique solution in [H (}#(Yf )]N of the steady Stokes

V.S'f "'AV" = Epuy div v; =0 in Yf
vi =0 on dYyIY; , s;, v; Y—periodic.

For a given v(x,y) € L*Q:H é# (Yf YY), there exists a unique solution p(x) in H I(Q)f'R of
the Neuman problem

-

4

Remark that the

_[v #; —J'Vv Vy;
Yy

div, [ fv (y)dy -aa(x)— J'v(x,y)dy} = in Q

=1Y, ox; ¥,

i=1Y,

[ZIV O)dy —P—(x)- Iv(x.y)dy] =0 ondQ

constant matrix (Iv,-(y) dy )<y i positive definite since
Y,

. Then, decomposing v as
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N
ap -5 (y){—(x) (3.12)
i= l i=1 Xj

vix,y) =

it is easy to see that the first term in the right hand side of (3.12) belongs to V;, while the

second one belongs to V.

Q.ED.

Proof of theorem 3.2.

First, by virtue of proposition 2.3, the sequence (@t ,P.) converges to ( Juo(x Yy ,p(x))
Y

(the average, with respect to y, of its two-scale limit) in [LZ(Q)}N x[Lz(Q)HR] weakly.
Second, to obtain the homogenized problem (3.2), we separate the variables x and y in the
two-scale homogenized problem (3.1). We decompose its solution Ug In two parts u + u,
where u; is just the evolution (without any forcing term) of the initial condition ao. Thus

u1 is the unique solution of

5

ou
S tx )+ Vyq@xy) - Ajuytxy) = 0 in OxY,

A

divyul(t,x,y) =0 in Qfo

up =0 on oY;oY, , y = uy,q Y—periodic (.13)

w;(t=0x,y) = aplx.y).

The average of uy in y is just a (¢ x) (the initial condition in the homogenized system (3.2)).
On the other hand, u, is given by

Uyt xy) = j Ui - —f’—](s,x)——(r—s,y)ds (3.14)

0i=1

where, for 1 £i <N, w; is the unique solution of the cell problem

oW,
o E)FVyq:0y) = Aywity) = ¢ in ¥

< divyw; =0 in Y
L - (3.15)
w; =0 on dY;n9Y; , y > w;, q; Y-periodic

Wi(f=0.)’)=0

Introducing the matrix A defined by

a”’l' *
Aj@) = erg-(r,y)e,- dy, (3.16)
F
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we deduce (3.2) from (3.1), by averaging u, and u, with respect to y (actually, (3.1) is
equivalent to (3.2) combined with (3.13)-(3.16)). Eventually, using semi-group theory, one
can prove that A is symmetric, positive definite, and decays exponentially in time.

Proof of theorem 3.5.

Multiplying the Stokes equation (1.2) by u, leads to
. q T T
5[1!‘13(1”) P Eﬂ&s 1>+ €¥[[|va, |? = [[ra,. (3.17)
Q Q 0Q 02

Multiplying the two-scale homogenized equation (3.1) by ug yields

T T
%J}ﬂug(ﬂ |2 - %Jwao 12 + grj;ﬂvyuo | = mf,uo : (3.18)

The right hand side of (3.17) converges to that of (3.18), and by assumption so does ﬂ&s [#
Q

to Iﬂao |2. Thus, as € goes to zero,
Qy

T T
—;-s_[fﬁE(T)]2+32££|Vﬁ£|2 = %AgudT)|2+££ﬂVyuo[z. (3.19)

By virtue of proposition 2.3, the limit of each term on the left hand side of (3.19) is greater
than its corresponding term in the right hand side. Thus

y_gnoijllwr)lz = i];ﬂuo('f)‘z-

By application of theorem 2.4, we obtain the desired result.

Note added in proof. After this work has been completed, I learned that similar results have
been recently and independently obtained by M. Avellaneda and A. Mikelic.
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