
Non-disjunctive Numerical Domain for Array

Predicate Abstraction

Xavier Allamigeon1,2

1 EADS Innovation Works, SE/CS – Suresnes, France
2 CEA, LIST MeASI – Gif-sur-Yvette, France

firstname.lastname@eads.net

Abstract. We present a numerical abstract domain to infer invariants
on (a possibly unbounded number of) consecutive array elements using
array predicates. It is able to represent and compute affine equality rela-
tions over the predicate parameters and the program variables, without
using disjunctions or heuristics. It is the cornerstone of a sound static
analysis of one- and two-dimensional array manipulation algorithms. The
implementation shows very good performance on representative bench-
marks. Our approach is sufficiently robust to handle programs traversing
arrays and matrices in various ways.

1 Introduction

Program analysis now involves a large variety of methods able to infer complex
program invariants, by using specific computer-representable structures, such as
intervals [1], octagons [2], linear (more exactly affine) equality constraints [3],
or affine inequality constraints [4]. Each abstract domain induces an equivalence
relation: two abstract elements are equivalent if and only if they represent the
same concrete elements. In this context, an equivalence class corresponds to a set
of equivalent abstract elements, called representatives. Although all representa-
tives are equivalent, they may not be identically treated by abstract operators or
transfer functions, which implies that the choice of a “bad” representative may
cause a loss of precision. Most numerical domains (for instance, reduced prod-
uct [5]) are provided with a reduction operator which associates each abstract
element to a “good” equivalent element, which will allow gaining precision.

Unfortunately, in some abstract domains, it may not be possible to define
a precise reduction operator, because for some equivalence classes, the notion
of “good” representatives may depend on further analysis steps, or on parts
of the program not yet analyzed. This difficulty appears in abstract domains
based on universally quantified predicates ranging over (a possibly unbounded
number of) consecutive array elements (first introduced in [6]). The abstract
elements of these domains consist of a predicate p and two parameters u and
v: p(u, v) means that all the elements whose index is between u and v (both
included) contain values for which the statement p holds. These predicates are
then combined with classic numerical abstractions to bind their parameters to
the values of the program variables.



1: int i, n, p; bool t[n];

2: assert 0 <= p <= n;

3: i := 0;

4: while i < n do

5: t[i] := 0;

6: i := i+1;

7: done;

8: while i > p do

9: t[i-1] := 1;

10: i := i-1;

11: done;

12:

Fig. 1. Incrementing then decre-
menting array manipulations

int i, n; bool t[n];

i := 0;

while i < n do

t[i] := 0;

i := i+1;

done;

while ... do

if ... then

write_one();

else

write_zero();

end;

done;

write_one() {

if i > 0 then

t[i-1] := 1;

i := i-1;

end;

}

write_zero() {

if i < n then

t[i] := 0;

i := i+1;

end;

}

Fig. 2. Both incrementing and decrementing ar-
ray manipulations. The notation ... stands for a
non-deterministic condition.

Overview of the Problem. As an example, let us try to analyze the first loop of
the program given in Fig. 1, which initializes the array t with the boolean 0. For
that purpose, we introduce the predicate zero (which means that the associated
array elements contain the value 0), combined with the affine inequality domain.
Informally, the loop invariant consists in joining the abstract representations Σk

of the concrete memory states arising after exactly k loop iterations. For example,
after one loop iteration (k = 1), the instruction t[i] := 0 has assigned a zero
to the array element of index 0, so that zero(u, v), with u = v = 0, i = 1 and
n ≥ 1. Similarly, after ten loop iterations, the ten first array elements have been
initialized, thus zero(u, v), with u = 0, v = 9, i = 10 and n ≥ 10. It can be
shown that joining all the abstract states Σk with k ≥ 1, ie which have entered
the loop at least once, yields the invariant zero(u, v), with u = 0, v = i − 1,
and 1 ≤ i ≤ n. We now have to join this invariant with Σ0 to obtain the
whole loop invariant. The abstract state Σ0 represents the concrete memory
states which have not entered the loop. Since the array t is not initialized, Σ0

is necessarily represented by a degenerate predicate, ie a predicate zero(l, m)
such that l > m, which ranges over an empty set of array elements. Degenerate
predicates naturally form an equivalence class, containing an infinite number
of representatives, while non-degenerate predicates form classes containing a
unique representative. Now, choosing the degenerate predicate zero(u, v) with
u = 0, v = −1, i = 0, and n ≥ 0, to represent Σ0, yields the expected loop
invariant u = 0, v = i, and 0 ≤ i ≤ n. On the contrary, if we choose zero(u, v)
with u = 10, v = 9, i = 0, and n ≥ 0, we obtain an invariant zero(u, v) with
much less precise affine inequality relations, in which, in particular, the value
of u is not known exactly anymore (it ranges between 0 and 10). Therefore,
the representative zero(0,−1) is a judicious choice in the first loop analysis.
But choosing the same representative for the second loop analysis will lead to
a major loss of precision. The second loop partly initializes the array with the
boolean 1 between from the index n−1 to the index p. Using a predicate one to



represent array elements containing the value 1, the analysis yields the expected
invariant only if the representative one(t, s) with t = n and s = n− 1 is chosen
to represent the class of degenerate predicates one.

This example illustrates that the choice of right representatives for the degen-
erate classes to avoid loss of precision, is not an obvious operation, even for simple
one-dimensional array manipulations. In [6, 7], some solutions are proposed to
overcome the problem: (i) use heuristics to introduce the right degenerate pred-
icates. This solution is clearly well-suited for the analysis of programs involving
very few different natures of loops, such as incrementing loops always starting
from the index 0 of the arrays, but is not adapted for more complex array manip-
ulations. In particular, we will see in Sect. 4 that even classic matrix manipula-
tion algorithms involve various different configurations for degenerate predicates.
(ii) partition degenerate and non-degenerate predicates, instead of merging them
in a single (and convex) representation. However such a disjunction may lead
to an algorithmic explosion, since at least one disjunction has to be preserved
for each predicate, including at control points located after loops: for example,
the expected invariant at the control point 12 in Fig. 1 is zero(u, v) ∧ one(s, t)
with u = 0, v = p − 1, s = p, and t = n − 1. Without further information on
n and p, this invariant contains non-degenerate and degenerate configurations
of both predicates zero(u, v) and one(s, t). Partitioning these configurations
yields the disjunction (n = p = 0) ∨ (n > p = 0) ∨ (p = n > 0) ∨ (0 < p < n).
And, if the program contains instructions after control point 12, the disjunction
must be propagated through the rest of the program analysis. Therefore, this
approach may not scale up to programs manipulating many arrays.3 (iii) parti-
tion traces [8], for instance unroll loops, in order to distinguish traces in which
non-degenerate predicates are inferred, from others. This solution is adapted to
simple loops: as an example, for the loop located at control point 4 in Fig. 1,
degenerate predicates occur only in the trace which does not enter the loop.
But, in general, it may be difficult to automatically discover well-suited trace
partitions: for example, in Fig. 2, traces in which the functions write_one and
write_zero are called the same number of times, or equivalently, i = n, should
be distinguished from others, since they contain a degenerate form of the pred-
icate one. Besides, if traces are not ultimately merged, trace partitioning may
lead to an algorithmic explosion for the same reasons as state partitions, while
merging traces amounts to the problem of merging non-degenerate and degen-
erate predicates in a non-disjunctive way.

As we aim at building an efficient and automatic static analysis, we do not
consider any existing solution as fully satisfactory.

Contributions. We present a numerical abstract domain to be combined with ar-
ray predicates. It represents sets of equivalence classes of predicates, by inferring
affine invariants on some representatives of each class. In particular, the right

3 However, some techniques could allow merging disjunctions in certain cases. We will
see at the end of Sect. 3 that these techniques coincide with the join operation that
we develop in this paper.



representatives are automatically discovered, without any heuristics. As it is built
as an extension of the affine equality constraint domain [3, 9], it does not use any
disjunctive representations. Several abstract transfer functions are defined, all
are proven to be sound. This domain allows the construction and the implemen-
tation of a sound static analysis of array manipulations. It is adapted to array
predicates ranging over the elements of one-dimensional or two-dimensional ar-
rays. Our work does not focus on handling a very large and expressive family of
predicates relative to the content of the array itself, but rather on the complex-
ity due to the automatic discovery of affine relations among program variables
and predicate parameters, hence of right representatives for degenerate pred-
icates. Therefore, the analysis has been experimented on programs traversing
arrays and matrices in various ways. In all cases, the most precise invariants are
discovered, which proves the robustness of our approach.

Section 2 presents the principles of the representation of equivalence classes
of array predicates. Section 3 introduces the domain of formal affine spaces to
abstract sets of equivalence classes of array predicates by affine invariants on
some of their representatives. In Sect. 4, the construction of the array analysis
and experiments are discussed. Finally, related work is presented in Sect. 5.

2 Principles of the Representation

As explained in Sect. 1, array predicates are related by an equivalence rela-
tion, depending on their nature (degenerate or non-degenerate): for an one-
dimensional array predicate p, two representations p(u, v) and p(u′, v′) are
equivalent if and only if both are degenerate, ie u > v∧u′ > v′, or they are equal
(u = u′∧v = v′). More generally, given predicates with p parameters, we assume
that there exists an equivalence relation ∼ over R

p, defining the equivalence of
two numerical p-tuples of predicate parameters.

Given a program with n scalar variables, a memory state can be represented
by an element of R

n+p, where each scalar variable is associated to one of the
n first dimensions, and array predicate parameters are mapped to the p last
ones. Then, the equivalence relation ∼ can be extended to R

n+p to characterize
memory states which are provided with equivalent predicates: two memory states
M, N in R

n+p are equivalent, which is denoted by M ≃ N , if and only if M and
N coincide on their n first dimensions, and if the p-tuples formed by the p last
dimensions are equivalent w.r.t. ∼. We adopt the notation [M ] to represent the
equivalence class of M , ie the set of elements equivalent to M .

We have seen in Sect. 1 that the representation of equivalence classes by
arbitrarily-chosen representative elements may lead to a very complex invariant,
possibly not precisely representable in classic numerical domains. Our solution
consists in representing an equivalence class by a formal representative instead:
it consists in a (n+p)-tuple, whose n first coordinates contain values in R, while
the p last ones (related to predicate parameters) contain formal variables, taken
in a given set X . A formal representative R is provided with a set of valuations
over X : each valuation ν maps R to a point Rν of R

n+p, by replacing each



formal variable x in R by the value ν(x) ∈ R. Then, an equivalence class C

can be represented by a formal representative R and a set of valuations V such
that for any ν ∈ V , the element Rν is in the class C. In other words, a formal
representative can represent several elements of a same equivalence class.

Let us illustrate the principle of formal representative with the program in
Fig. 1, with n = 3 scalar variables i, n, and p. Consider the equivalence class of
a memory state at control point 4 which has not yet entered the loop, thus
in which the predicate zero(u, v) is degenerate, and in which, for instance,
i = 0, n = 10, and p = 5. It can be represented by the formal representa-
tive R = (0, 10, 5, x, y) (written as a row vector for reason of space) and the set
of valuations V = {ν | ν(x) > ν(y)}: indeed, each representative Rν corresponds
to a predicate zero(u, v) such that u > v. In that case, all the equivalent nu-
merical configurations for the degenerate predicate zero(u, v) are represented in
the formal representative.

Therefore, formal representatives allow keeping several representatives for a
given class C instead on focusing on only one of them. In the following sec-
tions, we define formal affine spaces, which extend the affine equality domain to
range over formal representatives. These formal affine spaces are combined with
sets of valuations represented by affine inequality constraints over X , giving the
right values for the representatives. Besides, we describe how to compute the
formal affine spaces, so as to automatically discover affine invariants on some
representatives of distinct equivalence classes.

3 Formal Affine Spaces

We now formally introduce the abstract domain to represent sets of equivalence
classes of array predicates. We follow the abstract interpretation methodology [1],
by defining a concretization operator, and then abstract operators such as union.

Let ∆ be the set of equivalence classes w.r.t the equivalence relation ≃, and
∆(X ) be the set of formal representatives. Formally, ∆(X ) is isomorphic to
the cartesian product of R

n, representing the set of memory states over scalar
variables, with X p. Given a formal representative M , π1(M) represent the n-
tuple consisting in the n first coordinates. This element of R

n is called the real

component of M . Besides, the p last coordinates of M forms π2(M), called
formal component of M . Similarly, the ith coordinate of M is said to be real

(respectively formal) if i ≤ n (resp. i > n).

While the affine equality domain was initially introduced using conjunctions
of equality constraints [3], affine spaces can be represented by means of gen-
erators as well [9]. An affine generator system E + Ω is given by a family
E = (ei)1≤i≤s of linearly independent vectors of R

n, and a point Ω ∈ R
n. It

is associated to the affine space defined by:

Span(E + Ω) =

{

Ω +

s
∑

i=1

λiei | λ1, . . . , λs ∈ R

}

, (1)



π1

8

<

:

π2



2

6

6

6

6

4

0

B

B

B

B

@

0
1
0
x1

x2

1

C

C

C

C

A

,

0

B

B

B

B

@

0
0
1
y1

y2

1

C

C

C

C

A

3

7

7

7

7

5

+

0

B

B

B

B

@

0
0
0
z1

z2

1

C

C

C

C

A

¦ V

where V = {x1 = x2 ∧ y1 = y2 ∧ z1 >

z2}

π1

8

<

:

π2



2

6

6

6

6

4

0

B

B

B

B

@

0
1
0
x′

1

x′

2

1

C

C

C

C

A

,

0

B

B

B

B

@

0
0
1
y′

1

y′

2

1

C

C

C

C

A

3

7

7

7

7

5

+

0

B

B

B

B

@

1
0
0
z′

1

z′

2

1

C

C

C

C

A

¦ V
′

where V ′ = {x′

1 = x′

2 = 0 ∧ y′

1 = y′

2 =
0 ∧ z′

1 = z′

2 = 0}

Fig. 3. Two formal affine spaces for n = 3 and p = 2

corresponding to the set of the points generated by the addition of linear combi-
nations of the vectors ei to the point Ω. Affine generator systems are equivalent
to sets of affine constraints. Indeed, the elimination of the λi in the combinations
given in Eq. (1) yields an equivalent set of affine constraints over the coordinates
of the points.

Formal affine spaces are defined by extending affine generator systems of R
n

with p formal coordinates: generators are now elements of ∆(X ), provided with
a set of valuations.

Definition 1. A formal affine space E + Ω ¦ V is given by a family E =
(e1, . . . , es) of vectors of ∆(X ), a point Ω of ∆(X ) verifying:

– the (π1(ei))1≤i≤s are linearly independent,

– any two formal variables occurring in (π2(ei))i and π2(Ω) are distinct,

and an affine inequality constraint system V over the formal variables occurring

in (π2(ei))i and π2(Ω).

Figure 3 gives an example of formal affine spaces. We abusively denote by
ν ∈ V the fact that the valuation ν satisfies the constraint system V . Similarly
to “classic” affine generator systems, a formal affine space E +Ω ¦V generates a
set of formal representatives, written as combinations Ω +

∑

i λiei. As explained
in Sect. 2, each formal representative R, provided with the set of valuations
satisfying V , represents a set of several representatives which belong to a same
equivalence class C: for any ν ∈ V , C = [Rν]. Following these principles, the
concretization operator γ maps any formal space E + Ω ¦ V to the set of the
equivalence classes represented by the generated formal representatives:

γ(E + Ω ¦ V )
def
= {C | R ∈ Span(E + Ω) ∧ ∀ν ∈ V. C = [Rν]} , (2)

where Span(E + Ω) consists of the combinations Ω +
∑s

i=1 λiei, for λi ∈ R.

Example 1. Consider the formal affine space E + Ω ¦ V on the left-hand side of
Fig. 3. Any combination in Span(E +Ω) is a formal representative R of the form
(0, λ, µ, λx1 + µy1 + z1, λx2 + µy2 + z2) (written as a row vector for reason of
space) where λ, µ ∈ R. Suppose that the dimensions respectively represent the



scalar variables i, n, p, and the parameters u and v of a predicate zero(u, v).
Then R represents the equivalence classes of memory states in which i = 0, n

and p have independent values, and for any valuation ν ∈ V ,

u = λν(x1) + µν(y1) + ν(z1) > λν(x2) + µν(y2) + ν(z2) = v , (3)

or equivalently, the predicate zero(u, v) is degenerate. In particular, E + Ω ¦ V

allows abstracting the memory states at control point 4 in Fig. 1 which have
not yet entered the loop. Besides, it represents several representatives for the
degenerate predicate zero(u, v), while a “classic” affine invariant would select
only one of them. Similarly, the formal affine space F + Ω′

¦ V ′ on the right-
hand side of Fig. 3 yields formal representatives R′ corresponding to classes of
memory states such that i = 1, n and p are arbitrary, and u = v = 0, since for
i ∈ {1, 2}, λν′(x′

i)+µν′(y′
i)+ ν′(z′i) = 0 for any valuation ν′ ∈ V ′. Then, it is an

abstraction of the memory states after the first iteration of the first body loop
in Fig. 1: the first element of the array t (index 0) contains the value 0. ⊓⊔

3.1 Joining Two Formal Spaces

We wish to define a union operator ⊔ which provides an over-approximation of
two formal affine spaces E +Ω¦V and F +Ω′

¦V ′. Let us illustrate the intuition
behind the definition of ⊔ by sufficient conditions.

Suppose that G + O ¦W is the resulting formal space. A good start is to
require ⊔ to be sound w.r.t. the underlying real affine generator systems: if
π1(G + O) denotes the real affine generator system obtained by applying π1 on
each vector gi of G and on the origin, then π1(G + O) has to represent a larger
affine space than those generated by π1(E + Ω) and π1(F + Ω′). To ensure this
condition, let us build G + O ¦W by extending the sum system of the two real
systems π1(E +Ω) and π1(F +Ω′).4 More precisely, if Gr +Or denotes the sum
system, we add p fresh formal variables to each vector of Gr and to Or, which
yields G + O.

Then, to ensure γ(E +Ω ¦V ) ⊆ γ(G+O¦W ), we require Span(E +Ω) to be
“included” in Span(G + O). Although the inclusion already holds for their real
components (Span(π1(E+Ω)) ⊆ Span(π1(G+O))), Span(E+Ω) and Span(G+O)
can not be directly compared since they may contain different formal variables.
Therefore, we build a substitution σP over the formal variables occurring in
π2(E + Ω), such that for any R ∈ Span(E + Ω), we have RσP ∈ Span(G + O).
This substitution is induced by the change-of-basis matrix P from π1(E +Ω) to
π1(G+O), which verifies mat(π1(E+Ω)) = mat(π1(G+O))×P (mat(π1(E+Ω))
is the matrix whose columns are formed by the vectors (π1(ei))i and π1(Ω)).
The matrix P expresses the coefficients of the (unique) decomposition of each
π1(ei) and π1(Ω) in terms of the π1(O) and (π1(gk))k. It allows to express the

4 The sum system is obtained by extracting a free family Gr from the vectors (π1(ei))i,
(π1(fi))j , and π1(Ω

′)−π1(Ω), and choosing Or = π1(Ω). Then, Gr+Or generates the
smallest affine space greatest than the affine spaces represented by both π1(E + Ω)
and π1(F + Ω′).



P =

0

B

B

@

0 0 0
1 0 0
0 1 0
0 0 1

1

C

C

A

Q =

0

B

B

@

0 0 1
1 0 0
0 1 0
0 0 1

1

C

C

A

∀i ∈ {1, 2}.

8

>

<

>

:

σP (xi) 7→ yi

σP (yi) 7→ zi

σP (zi) 7→ ti

8

>

<

>

:

σQ(x′

i) 7→ yi

σQ(y′

i) 7→ zi

σQ(z′

i) 7→ ti + xi

Fig. 4. Change-of-basis matrices and their associated substitutions

π2(ei) and π2(Ω) in terms of the π2(O) and (π2(gk))k as well, by defining σP by

σP (mat(π2(E + Ω)))
def
= mat(π2(G + O)) × P .

Now, it suffices that W be a stronger system of constraints than V σP , the
system obtained by applying the substitution σP on V . Indeed, for any class
C ∈ γ(E + Ω ¦ V ), there exists R ∈ Span(E + Ω) such that for any ν ∈ V ,
C = [Rν]. Then, for any ν′ ∈ W , we have ν′ ∈ V σP , so that there exists a
valuation ν ∈ V such that ∀x.(σP (x))ν′ = ν(x). This implies (RσP )ν′ = Rν,
hence C = [(RσP )ν′]. A similar reasoning can be performed for F + Ω′

¦ V ′,
which leads to the following definition of ⊔:

Definition 2. The union (E + Ω ¦ V ) ⊔ (F + Ω′
¦ V ′) is defined as the formal

space G+O¦W where π1(G+O) is the sum of π1(E+Ω) and π1(F +Ω′), yielding

two change-of-basis matrices P and Q respectively, and W is the conjunction of

the two systems of constraints V σP and V ′σQ.

The following proposition states that the union operator is sound.

Proposition 1. The union (E + Ω ¦ V ) ⊔ (F + Ω′
¦ V ′) over-approximates the

union of the sets of classes represented by E + Ω ¦ V and F + Ω′
¦ V ′.

Example 2. Consider the formal spaces E +Ω ¦V and F +Ω′
¦V ′ introduced in

Ex. 1. The sum of the two real affine generator systems π1(E+Ω) and π1(F +Ω′)
is a system in which i, n, and p are all independent, so that:

G + O
def
=

i

n

p

u

v

























1
0
0
x1

x2













,













0
1
0
y1

y2













,













0
0
1
z1

z2

























+













0
0
0
t1

t2













. (4)

The corresponding change-of-basis matrices P and Q are given in Fig. 4. In par-
ticular, these matrices represent the relation π1(Ω

′) = π1(O) + π1(g1), which
generates the substitutions z′1 7→ t1 + x1 and z′2 7→ t2 + x2. The associated
substitutions σP and σQ are then defined in Fig. 4. Applying them on the con-
straint systems V and V ′ yields: V σP = {y1 = y2 ∧ z1 = z2 ∧ t1 > t2} and
V ′σQ = {y1 = y2 = 0 ∧ z1 = z2 = 0 ∧ t1 + x1 = t2 + x2 = 0}, so that:

W = {x1 = −t1 ∧ x2 = −t2 ∧ y1 = y2 = 0 ∧ z1 = z2 = 0 ∧ t1 > t2} . (5)

It can be intuitively verified that G+O¦W contains the formal spaces E+Ω¦V

and F + Ω′
¦ V ′:



– when i = 0, we have u = t1 + λy1 + µz1 and v = t2 + λy2 + µz2 for some
λ, µ ∈ R, so that for any ν ∈ W , uν = ν(t1) > ν(t2) = vν. Then the
predicate zero(u, v) is degenerate.

– when i = 1, we have u = t1 + x1 + λy1 + µz1 and v = t2 + x2 + λy2 + µz2,
hence uν = vν = 0 for any valuation ν ∈ W . In that case, the predicate
zero(u, v) ranges over the first element of the array.

The resulting formal space G + O ¦W is an over-approximation of the memory
states arising at control point 4 in Fig. 1, after at most one loop iteration.

We could show that joining E + Ω ¦ V with the formal space resulting from
the loop body execution on G+O¦W , yields the affine space G+O¦W ′, where
W ′ = {x′

1 = 0 ∧ x′
2 = 1 ∧ y′

1 = y′
2 = 0 ∧ z′1 = z′2 = 0 ∧ t′1 = 0 ∧ t′2 = −1}.

It could be also verified that this affine space is a fixpoint of the loop transfer
function. It represents the expected invariant u = 0 and v = i− 1. In particular,
the computation automatically discovers the right representative zero(0,−1)
(obtained with i = 0) among all the representatives zero(u, v) such that u > v

contained in E + Ω ¦ V . ⊓⊔

Definition 2 and Ex. 2 raise some remarks. Firstly, when considering in-
creasing formal affine spaces, the underlying real affine generators are logically
growing, while the sets of valuations become smaller (the constraint system be-
comes stronger). Intuitively, this corresponds to an increasing determinism in
the choice of the representatives in the equivalence classes abstracted by the for-
mal space. In particular, when considering formal spaces obtained by iterating
an increasing transfer function to compute a global invariant, two cases (among
possibly more) are singular: when the set of valuations is reduced to a singleton,
and when this set is empty. In the former, the formal affine space coincide with
an affine generator system over R

n+p: in other words, some representatives in
the over-approximated equivalence classes are bound with program variables by
an affine invariant. This situation happens at the end of Ex. 2, in which u = 0
and v = i − 1 in the affine space over-approximating the loop invariant. In the
latter case, the discovery of an affine invariant failed: by definition of γ, the
concretization of the formal space is the entire set ∆.

Secondly, consider the two abstract memory states that we tried to join in
Sect. 1 to compute an invariant of the first loop in Fig. 1: on the one hand,
a degenerate predicate zero(u, v) with i = 0, and on the other hand, a non-
degenerate one zero(u, v) with u = 0, v = i− 1, and 1 ≤ i ≤ n. We could verify
that joining the two representations by means of formal spaces, and in particular,
computing the conjunction of the two corresponding constraint systems V σP and
V ′σQ, exactly amounts to check whether the affine relations u = 0 and v = i− 1
match the degenerate condition u > v when i = 0. More generally, when it
succeeds, the approach based on matching degenerate condition coincides with
the operations performed when joining two formal spaces. The major advantage
of formal affine spaces is that it is adapted to any program or coding style,
while matching degenerate conditions may fail. For example, let us consider the
piece of program i := n-1; if ... then t[i] := 0; i := i-1; fi;. The
matching approach would check if the non-degenerate invariant zero(u, v)∧u =



v = i + 1 = n − 1 match the degenerate condition when i = n − 1, which is
obviously false.

3.2 Precision and Further Abstract Operators

All usual abstract operators can be defined on formal affine spaces. For reason of
space, we only give an enumeration. First, a partial order ⊑, defined in a similar
way to the union operator, can be introduced. Then, the concretization γ can
be shown to be monotonic, and the union ⊔ is the best possible join operator
w.r.t. the order ⊑. Furthermore, the definition of guard, constraint satisfiability,
and assignment operations closely follows the definition of the same primitives
on real affine generator systems [3, 9], thus their design is simple. The main
difference is that guards, satisfiability and assignments over predicate parameters
involve operations on both the family of generators and the system of constraints
representing the sets of valuations. For the latter, only usual operators, such
as assignments or extracting a valuation satisfying the set of constraints, are
necessary. All the operators on formal affine spaces are proven to be conservative.
Moreover, exactness holds for guards, satisfiability, and invertible assignments,
when they are applied to a formal affine space whose system of constraints
representing the valuations is satisfiable.

4 Application to the Analysis of Array Manipulations

Formal affine spaces has been implemented to analyze array manipulation pro-
grams. The analysis computes abstract memory states consisting in a finite se-
quence of predicates, and a formal affine space over the program variables and
the predicate parameters. Note that a reduced product of formal affine spaces
with convex polyhedra [4] over scalar variables is used to increase precision, since
affine generator systems do not precisely handle inequality guards.

Array assignments (ie assignments of the form t[i] := e) introduce new
predicates in the abtract state (intuitively, non-degenerate predicates of the
form p(u, v) with u = v = i). Then, some predicates may represent contigu-
ous memory areas of a same array, and thus can be merged in a single predicate.
The situations in which two predicates p and q can be merged correspond to
simple geometric configurations. Two of these configurations for one- and two-
dimensional are depicted respectively at the top and the bottom of Fig. 5. All
these situations can be expressed as conjunctions of affine equality constraints
over the parameters of the two predicates. When these constraints are satisfied, a
new predicate pgq is introduced in the abstract state. The statement pgq itself
over-approximates p and q: it expresses a property on the values of the array
element which is weaker than those expressed by p and q. And its parameters
are initialized to fit the whole area obtained by concatenating the memory areas
corresponding to p and q. Finally, the predicates p and q and their parameters
are removed from the abstract state.



u1 v1 u2 v2

y

x

Fig. 5. Merging two contiguous
predicates

y

x

O1 O2

O3O4

1 . . . i . . . n − 1

0

i − 1

...

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

Fig. 6. Example of a two-dimensional predicate

One-dimensional Predicates. Two kinds of predicates are used to analyze array
manipulations, depending on the type of arrays.

For arrays whose elements take their values in a finite set of cardinal K (such
as booleans or C enumerations), we consider one predicate c per possible value.
Then c(u, v) states that the array contains the value c between the indices u

and v. We allow at most K pairwise distinct predicates c1, . . . , cK per array.
The merging operations are applied only to predicates representing the same
constant. Besides, if two predicates c(u1, v1) and c(u2, v2) ranging over the same
array can not be merged, they are simply removed from the abstract state.
Although this choice is very strict, it offers a tractable analysis, which is precise
enough to handle the examples given in Figs. 1 and 2, as reported in Table 1.

For integer arrays, conjunctions of interval and bounded difference constraints
(ie of the form c1 ≤ x ≤ c2 or c1 ≤ x − y ≤ c2) between the array content and
the scalar variables are used. For instance, the predicate 〈0 ≤ t ≤ n − 1〉 (u, v)
represents the fact that the elements of the array t located between the indices u

and v all contain values between 0 and n−1 (n being a program scalar variable).
Such predicates are implemented under the form of n+1 intervals: one to bound
the array values in an interval, n to bound the differences with the n scalar vari-
ables. Then, the analysis allows at most one predicate per array. If a predicate
associated to an array is introduced during the computation while this array
already has a predicate, both are merged if possible, or simply removed if not.
Moreover, to ensure termination, the statement p g q is obtained by pointwise
widening the intervals contained in p and q.

Two-dimensional Predicates. We use two-dimensional predicates which range
over convex quadrilateral areas of two-dimensional arrays. Predicates are of the
form p(O1, O2, O3, O4), and have now eight parameters, corresponding the x-
and y-coordinates of the associated vertices O1, O2, O3, and O4. Degenerate



Table 1. Analysis benchmarks

Programs Invariants (by default, at the end of the program) Time

Fig. 1 zero(0, p − 1) ∧ one(p, n − 1) ∼ 0.6 s
Fig. 2 outer loop invariant: zero(0, i − 1) ∧ one(i, n − 1) ∼ 0.7 s
full_init i. and d. 〈0 ≤ t ≤ n − 1〉 (0, n − 1) < 0.2 s
range_init i. and d. 〈p ≤ t ≤ q − 1〉 (p, q − 1) < 0.2 s
partial_init i. 〈0 ≤ t ≤ n − 1〉 (0, j − 1) and d. 〈0 ≤ t ≤ n − 1〉 (j, n − 1) ∼ 0.2 s
partition i. 〈ge ≥ 0〉 (0, gelen − 1) ∧ 〈lt ≤ −1〉 (0, ltlen − 1) ∼ 0.4 s

d. 〈ge ≥ 0〉 (gelen, n − 1) ∧ 〈lt ≤ −1〉 (ltlen, n − 1) ∼ 0.5 s
full_matrix r. 〈m = 0〉 ((0, 0), (0, n − 1), (n − 1, n − 1), (n − 1, 0)) 12.9 s

c.. 〈m = 0〉 ((n − 1, 0), (0, 0), (0, n − 1), (n − 1, n − 1)) 13.4 s
lower_triang r. 〈m = 0〉 ((0, 1), (0, n − 1), (i − 1, n − 1), (i − 1, i)) 12.6 s
(outer loop c. 〈m = 0〉 ((0, 1), (0, 1), (0, j − 1), (j − 2, j − 1)) 14.7 s
invariants) dg. 〈m = 0〉 ((0, 1), (0, k − 1), (n − k, n − 1), (n − 2, n − 1)) 11.3 s
upper_triang r. 〈m = 0〉 ((1, 0), (1, 0), (i − 1, i − 2), (i − 1, 0)) 14.6 s
(outer loop c. 〈m = 0〉 ((n − 1, 0), (1, 0), (j, j − 1), (n − 1, j − 1)) 13.1 s
invariants) dg. 〈m = 0〉 ((n − 1, 0), (n − k + 1, 0), (n − 1, k − 2), (n − 1, 0)) 15.0 s

and non-degenerate predicates are distinguished by the rotation direction of the
points O1, O2, O3, and O4. We use the convention that the interior of the polygon
O1O2O3O4 is not empty if and only if O1, O2, O3, and O4 are ordered clockwise,
as in Fig. 6. The shape of the polygons O1O2O3O4 is restricted by requirements,
not fully detailed here, but implying in particular that the coordinates of the Oi

are integer, and the lines (OiOi+1) are either horizontal, vertical, or diagonal.
These requirements are weak enough to express the invariants used in the tar-
geted algorithms. Moreover, they allow characterizing degenerate polygons by a
condition consisting of several affine inequalities over the predicate parameters.

The analysis allows for each matrix at most two predicates: one is one-
dimensional, while the other is two-dimensional. Indeed, the matrix algorithms
we wish to analyze performs intermediate manipulations on rows, columns, or
diagonals. Thus, the former predicate is used to represent the invariant on the
current one-dimensional structure, while the latter collects the information on
the older structures, which form a two-dimensional shape. The predicates prop-
agate bounded difference constraints relative to the matrix content.

Benchmarks. Table 1 reports the invariants discovered by our analyzer, imple-
mented in Objective Caml (5000 lines of code), and the time taken for each
analysis on a 1 Gb RAM laptop using one core of a 2 GHz Intel Pentium Core
Duo processor. The first six programs involve only one-dimensional arrays. The
two first programs are successfully analyzed using constant predicates, and the
right array shape is discovered. The third one, full_init, initializes each ele-
ment t[i] of the array t of size n with the value i. It results in a fully initialized
array with values ranging between 0 and n− 1. The program range_init has a
similar behavior, except that it performs the initialization between the indices
p and q only. The programs partial_init and partition are taken from [7]
and [10] respectively. The former copies the value i in t[j] when the values of
two other arrays a[i] and b[i] are equal, and then increments j. The latter
partitions the positive or null and strictly negative values of a source array a into



the destination arrays ge and lt respectively. The three last programs involve
matrices. The first one, full_matrix, fully initializes a matrix m of size n × n.
The two last ones only fill the upper- and lower-triangular part of the matrix
with the value 0. Each program contains two nested loops. As an illustration, the
invariant of the outer loop of the column-after-column version of lower_triang
discovered by the analysis is given in Fig. 6. The reader can verify that the final
invariant obtained for i = n−1 corresponds to a lower-triangular matrix. Several
versions of each program are analyzed: for one-dimensional array manipulation
algorithms, incrementing (i.) or decrementing (d.) loops (except for the programs
in Figs. 1 and 2 which already use both versions of loops), and for matrix ma-
nipulation loops, row-after-row (r.), column-after-column (c.), or diagonal-after-
diagonal (dg.) matrix traversal.5 All the examples involving one-dimensional
arrays only are successfully analyzed in less than a second. Analysis time does
not exceed 15 s on programs manipulating matrices, which is a good result, con-
sidering the complexity of the merge conditions for two-dimensional predicates,
and the fact that these programs contain nested loops. These benchmarks show
that the analysis is sufficiently robust to discover the excepted invariant for sev-
eral stategies of array or matrix manipulations programs. In particular, the right
representatives for degenerate predicates are automatically found out in various
and complex situations. As an example, the degenerate predicates discovered
for the programs lower_triang (obtained with i = 0, j = 1, and k = 1) and
upper_triang (obtained with i = 1, j = 0, and k = 1) all represent different
configurations of interior-empty quadrilateral shapes. Furthermore, although not
reported in Table 1, the analysis handles simple transformations (such as loop
unrolling) on the experimented programs, without any loss of precision. Finally,
for one-dimensional predicates, we have experimented, with formal affine spaces,
the manual substitution of the general degenerate condition u > v by the right
degenerate configurations for each program. In that case, operations on formal
affine spaces roughly coincide with operations in a usual equality constraint
domain. We have found that the additional cost in time due to formal affine
spaces is small (between 8% and 30%), which suggests that this numerical ab-
stract domain has good performance, while it automatically discovers the right
representatives.

5 Related Work

Several static analyses use predicates to represent memory shape properties:
among others, [11–15] infer elaborate invariants on dynamic memory structures,
such as lists and trees. Most of these works do not involve a precise treatment
of arrays. Some abstract interpretation based analyzers [16–18] precisely handle
manipulations of arrays whose size is exactly known. Besides, [17] can represent
all the array elements by a single abstract element (array smashing). Albeit not
very precise, it could also represent an unbounded number of array elements.

5 The source code of each program is available at http://www.lix.polytechnique.

fr/Labo/Xavier.Allamigeon.



To our knowledge, only [19, 6, 7, 20, 10, 21] handle precise properties ranging
over an unbounded number of one-dimensional array elements. Most of them
involve the predicates presented in this paper, and some other expressing more
properties on the values of the array elements, such as equality, sorting or pointer
aliasing properties. The approach of [19, 20, 10] differs ours in the use of a theo-
rem prover in order to abstract reachable states in [19], and of counterexample-
guided abstraction refinement in [20, 10]. They share with our analysis common
benchmarks: for example, [20, 10] analyzes the program full_init in respec-
tively 1.190 s and 0.27 s, and partition in 7.960 s and 3.6 s.6 The returned
invariants are the same as those given in Table 1. The other works [6, 7, 21]
use the abstract interpretation framework. The analysis developed in [21] in-
volves predicates on arrays and lists, and allows expressing invariants of the
form E ∧

∧

j ∀Uj(Fj ⇒ ej), where E, Fj and ej are quantifier-free facts. This
approach is more general than ours, since it automatically discovers universally
quantified predicates, while we explicitely define the family of predicates (uni-
or two-dimensional) in our analysis. The drawback is that it requires under-
approximation abstract domains and associated operators because of the uni-
versal quantification. In constrast, our concretization operator (defined in (2))
involves a universal quantifier over valuations ν ∈ V , which can be shown to
commute with the existential quantifier ∃R ∈ Span(E + Ω). Then, exact op-
erations on the inequality constraint systems representing the valuations, such
as intersections or assignments, yield sound and precise results (see Sect. 3.2).
In [21], full_init and partition are respectively analyzed in 3.2 s and 73.0 s
on a 3 GHz machine, yielding the same invariants than with our analysis. In [6],
semantic loop unrolling and introduction by heuristics of well-chosen degenerate
predicates (called tautologies) are combined. It handles array initialization algo-
rithm (the exact nature of the algorithm, partial, incrementing, decrementing,
etc, is not mentionned), and bubble sort and QuickSort algorithms. In [7], array
elements are distinguished according to their position w.r.t. to the current loop
index (strictly before, equal to, or strictly after). This yields a partition of the
memory configurations into distinct categories, which are characterized by the
presence or the absence of array elements having a certain position w.r.t. to a
loop index. The program partial_init is analyzed in 40 s on a 2.4 GHz ma-
chine, and yields a partition of four memory configurations corresponding to the
invariant given in Table 1. Finally, as far as we know, no existing work reports
any experiments on two-dimensional array manipulation programs.

6 Conclusion

We have introduced a numerical abstract domain which allows to represent sets
of equivalence classes of predicates, by inferring affine invariants on some rep-
resentatives of each class, without any heuristics. Combined with array predi-
cates, it has been experimented in a sound static analysis of array and matrix
manipulation programs. Experimental results are very good, and the approach is

6 A 1.7 GHz machine was used in both works.



sufficiently robust to handle several array traversing stategies. Future work will
focus on the extension of the abstraction to other systems of generators, such as
convex polyhedra, in order to incorporate the reduced product implemented in
the analysis into the abstraction of equivalence classes.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL’77,
Los Angeles, California, ACM Press, New York, NY (1977)

2. Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001. IEEE,
IEEE CS Press (2001) 310–319

3. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6 (1976)
4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL’78, Tucson, Arizona, USA, ACM Press (1978)
5. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2–3) (1992) 103–179
6. Cousot, P.: Verification by abstract interpretation. In: Proc. Int. Symp. on Verifi-

cation – Theory & Practice, Springer Verlag (2003)
7. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array oper-

ations. SIGPLAN Not. 40(1) (2005)
8. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based

Static Analyzers. In: ESOP’05. (2005)
9. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: ICALP. Volume 3142

of LNCS., Springer (2004)
10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:

PLDI’07, New York, NY, USA, ACM Press (2007)
11. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3–valued logic.

In: POPL’99. (1999)
12. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-

straction of C programs. SIGPLAN Not. 36(5) (2001)
13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation

logic. In: TACAS 2006. LNCS, Springer (2006)
14. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,

H.: Shape analysis for composite data structures. In: CAV’07. (2007) To appear.
15. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: CAV’06.

Volume 4114 of LNCS., Springer-Verlag, Berlin (2006)
16. Venet, A., Brat, G.: Precise and efficient static array bound checking for large

embedded C programs. In: PLDI ’04, New York, NY, USA, ACM Press (2004)
17. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTRÉE Analyser. In: ESOP’05. LNCS 3444, Springer (2005)
18. Allamigeon, X., Godard, W., Hymans, C.: Static Analysis of String Manipulations

in Critical Embedded C Programs. In: SAS’06. LNCS 4134, Springer (2006)
19. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In:

POPL’02, New York, NY, USA, ACM Press (2002)
20. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: CAV’07. Volume

4590 of LNCS., Springer (2007)
21. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified

logical domains. In: POPL’08 (to appear). (2008)


