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The objective of this paper is to perform, by means
of Γ -convergence and two-scale convergence, a rigorous
derivation of the homogenized GIBBS-LANDAU free
energy functional associated to a composite periodic
ferromagnetic material, i.e. a ferromagnetic material in
which the heterogeneities are periodically distributed
inside the media. We thus describe the Γ -limit of the
GIBBS-LANDAU free energy functional, as the period
over which the heterogeneities are distributed inside
the ferromagnetic body shrinks to zero.

1. Introduction
The study of composites and their homogenization is
a subject with a long history, which has attracted the
interest and the efforts of some of the most illustrious
names in science (cfr. [21,24] for historical details).

Nowadays, nonhomogeneous and periodic ferromag-
netic materials are the subject of a growing interest.
Actually such periodic configurations often combine the
attributes of the constituent materials, while sometimes,
their properties can be strikingly different from the prop-
erties of the different constituents [26]. These periodic
configurations can be therefore used to achieve physical
and chemical properties difficult to achieve with ho-
mogeneous materials. To predict the magnetic behavior
of such composite materials is of prime importance for
applications [26].

From a mathematical point of view, the study of com-
posite materials, and more generally of media which
involve microstructures, is the main source of inspira-
tion for the Mathematical Theory of Homogenization which,
roughly speaking, is a mathematical procedure which
aims at understanding heterogeneous materials with
highly oscillating heterogeneities (at the microscopic
level) via an effective model [28].
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The main objective of this paper is to perform, in the framework of DE GIORGI’s notion
of Γ -convergence [14] and ALLAIRE [3] and NGUETSENG [29] notion of two-scale convergence,
a mathematical homogenization study of the GIBBS-LANDAU free energy functional associ-
ated to a composite periodic ferromagnetic material, i.e. a ferromagnetic material in which the
heterogeneities are periodically distributed inside the ferromagnetic media.

Compared to earlier works related to the subject (see for instance [12,13,16,31]) we consider
here the full GIBBS-LANDAU functional for mixtures of different materials in three-dimensional
space. The result is achieved by computing the Γ -limit of the exchange energies, and by proving
that the remaining terms continuously converge as ε→ 0. Concerning the family of exchange
energies, the asymptotic limit is derived by means of a two-scale convergence approach which
gives a rather short method to compute the homogenized exchange energy (avoiding the use
of [5]). Concerning the remaining terms in the free energy, the homogenization of the magneto-
static self-energy requires some original computation and attention. Indeed, the identification of
the asymptotic limit is obtained via the introduction of a suitable notion of weighted two-scale
convergence and the proof of two compactness results which permit to rigorously justify some
arguments used in [31] to treat a similar result.

(a) The Landau-Lifshitz micromagnetic theory of single-crystal ferromag-
netic materials

According to LANDAU and LIFSHITZ micromagnetic theory of ferromagnetic materials (see
[6,9,10,20,25]), the states of a rigid single-crystal ferromagnet, occupying a region Ω ⊆R3, and
subject to a given external magnetic field ha, are described by a vector field, the magnetization
M, verifying the so-called fundamental constraint of micromagnetic theory: A ferromagnetic body is
always locally saturated, i.e. there exists a positive constant Ms such that

|M|=Ms(T ) a.e. in Ω. (1.1)

The saturation magnetization Ms depends on the specific material and on the temperature T , and
vanishes above a temperature (characteristic of each crystal type) known as the CURIE point.
Since we will assume that the specimen is at a fixed temperature below the CURIE point of the
material, the value Ms will be regarded as a material dependent function (and therefore as a
constant function when working on single-crystal ferromagnets). Due to the constraint (1.1) in
the sequel we express the magnetization M under the form M :=Ms(T )m where m :Ω→ S2 is
a vector field which takes its values on the unit sphere S2 of R3.

Even though the magnitude of the magnetization vector is constant in space, in general it is
not the case for its direction, and the observable states can be mathematically characterized as
local minimizers of the GIBBS-LANDAU free energy functional associated to the single-crystal
ferromagnetic particle (using the notation of [6,25])

GL(m) :=

∫
Ω
aex|∇m|2 dτ +

∫
Ω
ϕan(m) dτ−µ0

2

∫
Ω
hd[Msm] ·Msm dτ−µ0

∫
Ω
ha ·Msm dτ

:= E(m) +A(m) +W(m) + Z(m). (1.2)

The first term, E(m), called exchange energy, penalizes spatial variations of m. The factor aex in
the term is a phenomenological positive material constant which summarizes the effect of (usually
very) short-range exchange interactions.

The second term, A(m), called the anisotropy energy, models the existence of preferred direc-
tions for the magnetization (the so-called easy axes), which usually depend on the crystallographic
structure of the material. The anisotropy energy density ϕan : S2 →R+ is assumed to be a non-
negative even and globally Lipschitz continuous function, that vanishes only on a finite set of unit
vectors (the easy axes).
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The third term, W(m), is called the magnetostatic self-energy, and is the energy due to the (di-
polar) magnetic field, also known in literature as the stray field, hd[m] generated bym. From the
mathematical point of view, assuming Ω to be open, bounded and with a Lipschitz boundary, a
given magnetization m∈L2(Ω,R3) generates the stray field hd[m] =∇um where the potential
um solves:

∆um =− div(mχΩ) in D′(R3). (1.3)

In (1.3) we have indicated with mχΩ the extension of m to R3 that vanishes outside Ω. LAX-
MILGRAM theorem guarantees that equation (1.3) possesses a unique solution in the BEPPO-LEVI

space:

BL1(R3) =

{
u∈D′(R3) :

u(·)√
1 + | · |2

∈L2(R3), ∇u∈L2(R3,R3)

}
. (1.4)

Moreover the stray field is a positive semidefinite operator of norm one, i.e., once denoted by
(·, ·)Ω the inner product in L2(Ω), one has:

W(m) :=−µ0
2
(hd[m],m)Ω ≥ 0 , ‖hd[m]‖Ω ≤ ‖m‖Ω ∀m∈L2(Ω). (1.5)

The physical constant µ0 denoting the vacuum permeability.
Finally, the fourth term Z(m), is called the interaction energy (or Zeeman energy), and models

the tendency of a specimen to have its magnetization aligned with the constant in space external
applied field ha ∈R3, assumed to be unaffected by variations ofm.

The competition of those four terms explain most of the striking pictures of the magnetization
that one can see in most ferromagnetic material [19], in particular the so-called domain structure,
that is large regions of uniform or slowly varying magnetization (the magnetic domains) separated
by very thin transition layers (the domain walls).

(b) The Gibbs-Landau energy functional associated to composite ferro-
magnetic materials

Physically speaking, when considering a ferromagnetic body composed of several magnetic
materials (i.e. a non single-crystal ferromagnet) a new mathematical model has to be intro-
duced. In fact, as far as the ferromagnet is no more a single crystal, the material depending
functions aex,Ms(T ) and ϕan are no longer constant on the region Ω occupied by the ferromag-
net. Moreover one has to describe the local interactions of two grains with different magnetic
properties at their touching interface [1].

From a mathematical point of view, this latter requirement is usually taken into account in two
different ways. Either one adds to the model a surface energy term which penalizes jumps of the
magnetization direction m at the interface of both grains, or, and we stick on this later on, one
simply considers a strong coupling, meaning that the direction of the magnetization does not jump
through an interface. We insist on the fact that only the direction is continuous at an interface
while the magnitude Ms is obviously discontinuous. Therefore, the natural mathematical setting
for the problem turns out to be characterized by the assumption that the magnetization direction
m is in the “weak” SOBOLEV metric space (H1(Ω, S2), dL2(Ω,S2)), i.e. on the metric subspace of
H1(Ω,R3) constituted by the functions constrained to take values on the unit sphere of R3 and
endowed with the L2(Ω) metric. It is in this framework that we will conduct our work from now
on.

We start by recalling the basic idea of the mathematical theory of homogenization. Let Ω ⊂R3

be the region occupied by the composite material. If we assume that the heterogeneities are reg-
ularly distributed, we can model the material as periodic. As illustrated in Fig.1, this means that
we can think of the material as being built up of small identical cubes, the side length of which
being called ε. Let Q= [0, 1]3 be the unit cube of R3. We let for y ∈Q, aex(y),Ms(y), ϕan(y,m)

be the periodic repetitions of the functions that describe how the exchange constant aex, the
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Figure 1. If we assume that the heterogeneities are evenly distributed inside the ferromagnetic media Ω, we can model

the material as periodic. As illustrated in the figure, this means that we can think of the material as being built up of small

identical cubes Qε, the side length of which we call ε.

saturation magnetization Ms and the anisotropy density energy ϕan(y,m) vary over the rep-
resentative cell Q (see Fig. 1). Substituting x/ε for y, we obtain the «two-scale» functions aε(x) :=
aex(x/ε),Mε(x) :=Ms(x/ε) and ϕε(x,m) :=ϕan(x/ε,m) that oscillate periodically with period
ε as the variable x runs throughΩ, describing the oscillations of the material dependent paramet-
ers of the composite. At every scale ε, the energy associated to the ε-heterogeneous ferromagnet,
will be given by the following generalized GIBBS-LANDAU energy functional

Gε
L(m) :=

∫
Ω
aε|∇m|2 dτ +

∫
Ω
ϕε(·,m) dτ−µ0

2

∫
Ω
hd[Mεm] ·Mεm dτ−µ0

∫
Ω
ha ·Mεmdτ

:= Eε(m) +Aε(m) +
µ0
2
Wε(m) + µ0Zε(m). (1.6)

The asymptotic Γ -convergence analysis of the family of functionals (Gε
L)ε∈R+ as ε tends to 0, is

the object of the present paper.

(c) Statement of the main result
The purpose of this paper is to analyze, by the means of both Γ -convergence and two-scale

convergence techniques, the asymptotic behavior, as ε→ 0, of the family of GIBBS-LANDAU free
energy functionals (Gε

L)ε∈R+ expressed by (1.6). Let us make the statement more precise.
We consider the unit sphere S2 of R3 and, for every s∈ S2, the tangent space of S2 at a point s

will be denoted by Ts(S2). The class of admissible maps we are interested in is defined as

H1(Ω, S2) :=
{
m∈H1(Ω,R3) : m(x)∈ S2 for τ -a.e. x∈Ω

}
,

where we have denoted by τ the Lebesgue measure1 on R3. We consider H1(Ω, S2) as a metric
space endowed with the metric structure induced by the classical L2(Ω,R3) metric. We recall that
a function u :R3 →R is said to be Q-periodic if u(·) = u(·+ ei) for every ei in the canonical basis
(e1, e2, e3) of R3.

For the energy densities appearing in the family (Gε
L)ε∈R+ we assume the following hypo-

theses:

1We denote the Lebesgue measure by τ (as in [9]) to reserve the letter µ for the vacuum permeability.
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[H1] The exchange parameter aex is supposed to be a Q-periodic measurable function belonging
to L∞(Q), bounded from below and above by two positive constants cex > 0, Cex > 0,
i.e. 0< cex 6 aex(y)6Cex for τ -a.e. y ∈Q. This hypothesis guarantees that the exchange
energy density, which has the form g(y, ξ) := aex(y)|ξ|2, ξ ∈R3×3, falls into the category
of CARATHÉODORY integrands satisfying, for τ -a.e. y ∈Q, the standard quadratic growth
condition

∀ξ ∈R3×3 cex|ξ|2 6 g(y, ξ)6Cex(1 + |ξ|2). (1.7)

Then we set aε(x) := aex(x/ε).
[H2] The anisotropy density energy ϕan :R3 × S2 →R+ is supposed to be aQ-periodic measurable

function belonging to L∞(Q) with respect to the first variable, and globally Lipschitz
with respect to the second one (uniformly with respect to the first variable), i.e. ∃κL > 0

such that
ess sup
y∈Q

|ϕan(y, s1)− ϕan(y, s2)|6 κL|s1 − s2| ∀s1, s2 ∈ S2. (1.8)

We then set ϕε(x, s) :=ϕan(x/ε, s). The hypotheses assumed on ϕan are sufficiently gen-
eral to treat the most common classes of crystal anisotropy energy densities arising in
applications. As a sake of example, for uniaxial anisotropy, the energy density reads as

ϕan(y,m(x)) = κ(y)[1− (u(y) ·m(x))2], (1.9)

the spatially dependent unit vector u(·) being the easy axis of the crystal. For cubic type
anisotropy, the energy density reads as:

ϕan(y,m(x)) = κ(y)

3∑
i=1

[(ui(y) ·m(x))2 − (ui(y) ·m(x))4], (1.10)

the mutually orthogonal unit vectors ui(·) being the three easy-axes of the cubic crys-
tal. Note that the anisotropy depends on the material both in strength κ(y) and in the
direction ui(y).

[H3] The saturation magnetization Ms is supposed to be a Q-periodic measurable function
belonging to L∞(Q), and we set Mε(·) =Ms(·/ε).

The main result of this paper is the following:

Theorem 1.1. Let (Gε
L)ε∈R+ be a family of GIBBS-LANDAU free energy functionals satisfy-

ing the hypotheses [H1], [H2] and [H3]. Then (Gε
L)ε∈R+ is equicoercive in the metric space

(H1(Ω, S2), dL2(Ω,S2)). Moreover (Gε
L)ε∈R+ Γ -converges in (H1(Ω, S2), dL2(Ω,S2)) to the functional

Ghom :H1(Ω, S2)→R+ defined by

Ghom(m) := Ehom(m) +Ahom(m) +
µ0
2
Whom(m) + µ0Zhom(m). (1.11)

The four terms that appear in (1.11) have the following expressions: The homogenized exchange energy is
given by

Ehom(m) :=

∫
Ω
Ahom∇m(x) :∇m(x) dx, (1.12)

where Ahom is the «classical» homogenized tensor Ahom given by the average

Ahom := 〈aex(I +∇ϕ)T (I +∇ϕ)〉Q, ϕ := (ϕ1, ϕ2, ϕ3), (1.13)

where for every j ∈N3 the component ϕj is the unique (up to a constant) solution of the following scalar
unit cell problem

ϕj := argmin
ϕ∈H1

#(Q)

∫
Q
aex(y)[|∇ϕ(y) + ej |2] dy. (1.14)

The homogenized anisotropy energy is given by
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Ahom(m) :=

∫
Ω×Q

ϕan(y,m(x)) dy dx, (1.15)

while the homogenized magnetostatic self-energy is given by

Whom(m) :=−〈Ms〉2Q
∫
Ω
hd[m] ·m dτ +

∫
Ω×Q

|∇yvm(x, y)|2 dxdy, (1.16)

where, for every x∈Ω, the scalar function vm :Ω ×Q→R, is the unique solution of the cell problem:

m(x) ·
∫
Q
Ms(y)∇yψ(y) dy=−

∫
Q
∇yvm(x, y) · ∇yψ(y) dy,

∫
Q
vm(x, y) dy= 0 (1.17)

for all ψ ∈H1
#(Q).

Finally, the homogenized interaction energy is given by

Zhom(m) =−〈Ms〉Q
∫
Ω
ha ·m dτ. (1.18)

The paper is organized as follows: The equicoercivity of the family (Gε
L)ε∈R+ is established

in Section 2; the Γ -limit of the exchange energy family of functionals (Eε)ε∈R+ is computed in
Section 3; in Section 4 it is shown that the family of magnetostatic self-energies (Wε)ε∈R+ con-
tinuously converges to Whom, while in Section 5 it is established the continuous convergence of
the family of anisotropy energies (Aε)ε∈R+ to Ahom and the continuous convergence of the family
of interaction energies (Zε)ε∈R+ to the functional Zhom. The proof of Theorem 1.1 is completed in
Section 6. In the Appendix we give a brief survey of the main mathematical concepts and results
in homogenization theory, that we need in the sequel.

2. The equicoercivity of the composite Gibbs-Landau free en-
ergy functionals

This section is devoted to the proof of the equicoercivity of the family of GIBBS-LANDAU

free energy functionals (Gε
L)ε∈R+ expressed by (1.6). Equicoercivity has an important role in

homogenization theory. In fact, the metric space in which to work, must be able to guaran-
tee the equicoercivity of the family of functionals under consideration, i.e. the validity of the
Fundamental Theorem of Γ -convergence (see Appendix A).

Proposition 2.1. The family (Gε
L)ε∈R+ of GIBBS-LANDAU energy functionals is equicoercive on the

metric space (H1(Ω, S2), dL2(Ω,S2)).

Proof. According to the hypotheses [H1], [H2] and [H3], there exist positive constants cex, Cex, Cs,
Can such that for every y ∈Q and everym∈H1(Ω, S2)

0< cex 6 aex(y)6Cex , 06Ms 6Cs , 06ϕan(y,m)6Can. (2.1)

Next we observe that since all energy terms except for Zε are non negative, and c−1
ex |Zε|6

µ0
Cs
cex

|ha||Ω|, by defining

Gε
? :=

1

cex
Gε
L +

(
1 + µ0

Cs

cex
|ha|

)
|Ω|, (2.2)

we have Gε
?(m)> ‖m‖H1(Ω) for every m in H1(Ω, S2). Moreover, the equicoercivity of Gε

? is
equivalent to the one of Gε

L, so that we can focus on Gε
? . Since ‖m‖2Ω = |Ω|, there exists a constant
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C? > 0 (depending on the previous constants, on ha and Ω) such that that for every ε > 0

‖m‖2H1(Ω) 6 Gε
?(m)6C?‖m‖2H1(Ω). (2.3)

In particular for every constant in space magnetization u one has Gε
?(u)6C?|Ω| and hence

inf
H1(Ω,S2)

Gε
? = inf

{m∈H1(Ω,S2) :Gε
?(u)6C?|Ω|}

Gε
?. (2.4)

We then observe that due to (2.3), the set on which the infimum is taken in (2.4) is included in the
set

K(Ω, S2) :=
{
m∈H1(Ω, S2) : ‖m‖2H1(Ω) 6C?|Ω|

}
(2.5)

and therefore infH1(Ω,S2) Gε
? = infK(Ω,S2) Gε

? . To finish we recall that due to RELLICH-
KONDRACHOV theorem, K(Ω, S2) is a compact subset of (H1(Ω, S2), dL2(Ω,S2)).

3. The Γ -limit of exchange energy functionals Eε
The fundamental constraint of micromagnetic theory, i.e. the fact that the domain of definition of
the family Eε is a manifold value Sobolev space, plays a fundamental role in the homogenization
process. In fact, although the unconstrained problem has been fully investigated (see [7,23,27]), it
is not possible to get full information about the manifold constrained Γ -limit by just looking at
the unconstrained one.

(a) The tangential homogenization theorem
This problem was tackled by BABADJIAN and MILLOT (see [5]) who showed that the dependence
of the Γ -limit from the tangent bundle of the manifold is taken into account via the so-called
tangentially homogenized energy density. The following result is a consequence of [5] but we give an
alternate proof, based on 2-scale convergence, which is adequate for our purposes. It is stated for
a general (smooth) manifold M which is the boundary of a convex bounded domainΘM, though
the case M= S2 allows for a more precise result that we give afterwards.

Proposition 3.1. Let M= ∂ΘM be the boundary of a smooth convex bounded domain ΘM ⊂R3 and
aex :R3 →R+ be a Q periodic function satisfying hypothesis [H1]. Then the family

Eε
M(m) :=

∫
Ω
aex(x/ε) |∇m|2 dτ (3.1)

defined in the metric space (H1(Ω,M), dL2(Ω,M)) Γ -converges to the functional

EM,hom(m) :=

∫
Ω
Tghom(m,∇m)dτ, (3.2)

where for every s∈M and ξ ∈ [Ts(M)]3,

Tghom(s, ξ) = inf
ϕ∈H1

#(Q,Ts(M))

∫
Q
aex(y) |ξ +∇ϕ(y)|2 dy (3.3)

is the tangentially homogenized energy density.

Proof. The proof will be done in the next three subsections. More precisely we observe that since
(H1(Ω,M), dL2(Ω,M)) is a separable metric space, there exists a subsequence of Eε

M which
Γ -converges. We call EM this Γ -limit, without explicitly denoting the dependence of the Γ -limit
from the extracted subsequence (as far as no confusion may arise).

We next prove (cfr. subsection (ii)) that EM 6 EM,hom, while in subsection (iii) we prove that
EM > EM,hom. Hence, EM does not depends on the extracted subsequence and the URYSOHN

property of Γ -convergence (cfr. [8]) assures that Γ -limε→0+ Eε
M = EM,hom.
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(i) The role of the tangent bundle.

Let us emphasize why the tangent bundle [T (M)]3 :=∪s∈M[Ts(M)]3 plays a role. In order to
understand this, it is convenient to develop a minimizer mε of Eε under the so-called multiscale
expansion

mε(x) =m0(x) + εm1(x, x/ε) + o(ε), (3.4)

where m0,m1 are respectively a minimizer of the Γ -limit of Eε and the null average first order
corrector. Clearly, due to the constraintmε(x)∈M for a.e. x∈Ω, we get

0≡n(mε) · ∇mε, (3.5)

where we have denoted by n the local normal field defined around mε(x)∈M. By passing to
the two-scale limit in both terms of (3.5), we formally reach the equality 0≡n(m0) · (∇m0 +

∇ym1) =n(m0) · ∇ym1, which shows that n(m0(x)) ·m1(x, y) does not depend on y. Then,
passing to the average over Q we get m1(x, y)∈ Tm0(x)(M). The rigorous formulation of the
previous idea is the object of the next result.

Proposition 3.2. Let M be a connected smooth submanifold of R3, and let (mε) be a sequence in
H1(Ω,M) that converges weakly to a limitm∈H1(Ω,R3). Then

m∈H1(Ω,M) and mε �m.

Moreover there exists a null average function v ∈L2[Ω;H1
#(Q)/R] such that, up to the extraction of a

subsequence:

∇mε �∇m+∇yv and v(x, y)∈ Tm(x)(M) for a.e. (x, y)∈Ω ×Q.

Proof. In view of Proposition A.4, we only need to prove that v(x, y)∈ Tm0(x)(M) for a.e. (x, y)∈
Ω ×Q. To this end, let us denote by n(m) the normal vector at m∈M and observe that it is
sufficient to prove that the scalar function n(m(x)) · v(x, y) does not depend on the y variable,
i.e. that in the sense of distributions on Ω × Y one has∫

Ω×Q
[n(m(x)) · v(x, y)] divy ϕ(x, y)dydx= 0 ∀ϕ∈D[Ω;C∞

# (Q)]. (3.6)

Indeed, as far as n(m(x)) · v(x, y) is independent from the y variable, since by assumption
〈v(x, ·)〉Q = 0 for a.e. x∈Ω, one has n(m(x)) · v(x, y) =n(m(x)) · 〈v(x, ·)〉Q = 0 and therefore
v(x, y)∈ Tm(x)(M) for a.e. (x, y)∈Ω ×Q.

To prove (3.6) we note that since mε →m in L2(Ω), one also has n(mε)→n(m) in L2(Ω).
Therefore the family n(mε) strongly two-scale converges to n (m) and moreover 0=n(mε) ·
∇mε →n(m) · ∇m. Hence, due to Proposition A.6 we get

0 = lim
ε→0

∫
Ω
[n(mε(x)) · ∇mε(x)] · ϕ(x, x/ε)dx

=

∫
Ω×Q

n(m(x)) · [∇m(x) +∇yv(x, y)] · ϕ(x, y) dydx

=

∫
Ω×Q

[n(m(x)) · ∇yv(x, y)] · ϕ(x, y) dydx

=−
∫
Ω×Q

[n(m(x)) · v(x, y)] divy ϕ(x, y) dx,

i.e. the desired relation (3.6).
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(ii) Tangentially homogenized energy density – upper bound

Let us denote byΠM the nearest point projection on M. SinceΠM is a (Lipschitz) non-expansive
map, one has ΠM[u]∈H1(Ω,M) for every u∈H1(Ω,Θc

M), and moreover (see [4])

|∇ΠM[u]|6 |∇u| τ -a.e. in Ω. (3.7)

Let us now consider every test function m1 ∈H1[Ω;C∞
# (Q,Tm0(M))], the family mε(x) :=

m0(x) + εm1(x, x/ε) belongs to H1(Ω,Θc
M). In this hypothesis one has

ΠM[mε]→m0 in (H1(Ω,M), dL2(Ω,M)).

Therefore, taking into account the estimate (3.7) and the fact that ∇ym1 is an admissible test
function (see [3], Remark 1.11), we get (passing to the two-scale limit):

EM(m0)6 lim inf
ε→0

Eε
M(ΠM[mε])

6 lim
ε→0

∫
Ω
aex

(x
ε

) ∣∣∣∇m0(x) +∇ym1

(
x,
x

ε

)∣∣∣2 dx
=

∫
Ω

[∫
Q
aex(y)|∇m0(x) +∇ym1(x, y)|2dy

]
dx.

Since m1 ∈H1[Ω;C∞
# (Q,Tm0(M))] is an arbitrary test function, passing to the infimum we

finish with the following upper bound for the manifold constrained homogenized functional:

EM(m0)6
∫
Ω

[
inf

ϕ∈C∞
# (Q,Ts(M))

I[ξ,ϕ]
]
(s,ξ):=(m0(x),∇m0(x))

dx, (3.8)

with

I[ξ,ϕ] :=
∫
Q
aex(y)|ξ +∇ϕ(y)|2dy. (3.9)

Since the functional I[ξ, ·] :C∞
# (Q,Ts(M))→R+ is continuous with respect to theH1

#(Q,Ts(M))

norm and C∞
# (Q,Ts(M)) is dense in H1

#(Q,Ts(M)), the infimum in (3.8) can be taken over
H1

#(Q,Ts(M)), which gives
EM(m0)6 EM,hom(m0) . (3.10)

(iii) Tangentially homogenized energy density – lower bound

For the lower bound, we argue as follows. Letm0 ∈H1(Ω,M) and a family (mε)ε>0 such that

mε →m0 in (H1(Ω,M), dL2(Ω,M)).

Assume furthermore that lim infε→0 ‖mε‖H1 <+∞ (otherwise the lower bound is trivially sat-
isfied) so that one can extract a subsequence from (mε)ε>0 that weakly converges to m0 in H1

and applying Proposition 3.2, there existsm1 ∈L2[Ω,H1
#(Q)/R] such that

∇mε �∇m0 +∇ym1

withm1(x, y)∈ Tm0(x)(M) for a.e. (x, y)∈Ω ×Q. Let nowφ∈D[Ω;C∞
# (Q,R3)] be an arbitrary

test function, passing to the lim inf in∫
Ω
aex

(x
ε

) ∣∣∣∇mε(x)−∇m0(x)−∇yφ
(
x,
x

ε

)∣∣∣2 dx≥ 0

we infer, since φ is admissible,

lim inf
ε→0

∫
Ω
aex

(x
ε

)
|∇mε(x)|2 dx≥−

∫
Ω

∫
Q
aex (y) |∇m0(x) +∇yφ (x, y)|2 dydx

+ 2

∫
Ω

∫
Q
aex (y) (∇m0(x) +∇ym1 (x, y)) · (∇m0(x) +∇yφ (x, y)) dydx.
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Eventually, applying this identity with φ=φn where the sequence (φn)n≥0 converges to m1 in
L2[Ω,H1

#(Q)] and passing to the limit n→+∞ leads to

lim inf
ε→0

Eε
M(mε)≥

∫
Ω

∫
Q
aex (y) |∇m0(x) +∇ym1 (x, y)|2 dydx

≥
∫
Ω

[
inf

ϕ∈H1
#(Q,Tm0(x)(M))

∫
Q
aex (y) |∇m0(x) +∇yϕ (y)|2 dy

]
dx

= EM,hom(m0) ,

from which we deduce

EM(m0)> EM,hom(m0) , (3.11)

which together with (3.10) proves proposition 3.1.

(b) The tangentially homogenized Exchange Energy Ehom
Quite remarkably, as we prove below, when M := S2 the formula giving the Γ limit of the energy
does not depend on the tangent plane to M. This gives a simpler expression which turns out to
be the unconstrained homogenization formula. Indeed we consider the family of exchange energy
functionals, all defined in H1(Ω, S2), given by (Eε)ε∈R+ . Since [H1] holds, Proposition 3.1 en-
sures that the family (Eε)ε∈R+ Γ -converges in the metric space (H1(Ω; S2), dL2(Ω,S2)), i.e. with
respect to the topology induced on H1(Ω, S2) by the strong L2(Ω,R3) topology, to the functional

Ehom :H1(Ω, S2)→R+ , m 7→ Ehom(m) =

∫
Ω
Tghom(m,∇m)dτ, (3.12)

where for every s∈ S2 and every ξ ∈ [Ts(S2)]3,

Tghom(s, ξ) = inf
ϕ∈H1

#(Q,Ts(S2))

∫
Q
aex(y) |ξ +∇ϕ(y)|2 dy . (3.13)

Let us now consider the problem that defines the classical homogenization problem (see [7,
23,27]), namely

ghom(ξ) := inf
ϕ∈H1

#(Q,R3)

∫
Q
aex(y) |ξ +∇ϕ(y)|2 dy, (3.14)

in which the constraint to belong to the tangent plane has been removed. Our aim is to prove
that the natural extension of ghom to the tangent bundle [T (S2)]3 :=∪s∈S2 [Ts(S2)]3 coincides
with the tangentially homogenized energy density Tghom(s, ξ). To this end we observe that in
the «classical» problem (3.14), the function space among which the minimization takes place is
bigger than the one involved in the original problem (3.13), so that ghom(ξ)6 Tghom(s, ξ) for
every (s, ξ)∈ [T (S2)]3.

To prove that ghom(ξ)≡ Tghom(s, ξ) on [T (S2)]3 it is thus sufficient to show that for every
(s, ξ)∈ [T (S2)]3 there exists a function ψξ ∈H1

#(Q,Ts(S2)) such that∫
Q
aex(y)

∣∣ξ +∇ψξ(y)
∣∣2 dy 6 ghom(ξ) .

Having this goal in mind, we observe that ifϕξ is the unique (up to a constant) solution of the min-
imization problem arising in (3.14), denoting by ψξ :=ϕξ − (ϕξ · s)s the nearest point projection
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of ϕξ on [Ts(S2)]3, one has ψξ ∈H1
#(Q,Ts(S2)) and

|ξ +∇ϕξ|
2 = |ξ +∇ψξ|

2 + |s⊗∇(ϕξ · s)|
2 + 2(ξ +∇ψξ) : s⊗∇(ϕξ · s)

= |ξ +∇ψξ|
2 + |∇(ϕξ · s)|

2 + 2(ξ +∇ψξ)∇(ϕξ · s) · s

= |ξ +∇ψξ|
2 + |∇(ϕξ · s)|

2

> |ξ +∇ψξ|
2.

Multiplying by aex and integrating over Q immediately leads to∫
Q
aex(y)|ξ +∇ψξ(y)|

2dy 6
∫
Q
aex(y)|ξ +∇ϕξ(y)|

2dy= ghom(ξ) . (3.15)

which is the desired inequality from which we may deduce ghom(ξ) = Tghom(s, ξ). In particular
Tghom(s, ξ) does not depend on s, and is given by (3.14).

Remark 3.1. The fact that tangential homogenization energy density Tghom(s, ξ) reduces to the «clas-
sical» one (i.e. ghom), which does not depend from the s-variable, is a quite remarkable fact. Indeed, it is
possible to build elementary examples where the dependence on the s-variable in the tangential homogeniz-
ation energy density is explicit (cfr. [5]). The independence from the s-variable in our framework, is mainly
due to the very particular situation that for every y ∈R3, the Carathéodory function g(y, ·) = aex(y)| · |2

is invariant under the rotation group of the manifold under consideration (the 2-sphere S2).

To complete the proof concerning the exchange energy part stated in Theorem 1.1, it is suffi-
cient to recall that ghom is a quadratic form in ξ (see [7,23]), i.e. that there exists a symmetric and
positive definite matrix Ahom ∈R3×3 such that for every ξ ∈R3×3

ghom(ξ) =Ahomξ : ξ (3.16)

with Ahom expressed as

Ahom := 〈aex(·)(I +∇ϕ(·))T (I +∇ϕ(·))〉Q , ϕ := (ϕ1, ϕ2, ϕ3) , (3.17)

where for every j = 1, 2, 3 the component ϕj is the unique (up to a constant) solution of the scalar
unit cell problem

ϕj := argmin
ϕ∈H1

#(Q,R3)

∫
Q
aex(y)|∇ϕ(y) + ej |2dx. (3.18)

4. The periodic homogenization of the demagnetizing field
This Section is devoted to show that the family of magnetostatic self-energies (Wε)ε∈R+ con-
tinuously converges to Whom. To this end, let us first recall some essential facts concerning the
demagnetizing field operator.

(a) The BEPPO-LEVI space and the variational formulation for the demag-
netizing field

From the mathematical point of view, assuming Ω to be open, bounded and with a Lipschitz
boundary, a given magnetization m∈L2(Ω,R3) generates the stray field hd[m] =∇um where
the potential um solves:

∆um =− div(mχΩ) in D′(R3). (4.1)

In (4.1) we have denoted bymχΩ the extension ofm to R3 that vanishes outside Ω.
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Once introduced the weight ω(x) = (1 + |x|2)−1/2, and the weighted Lebesgue space
L2
ω(R3) := {u∈D′(R3) : uω ∈L2(R3)}, we define the BEPPO-LEVI space

BL1(R3) :=
{
u∈D′(R3) : u∈L2

ω(R3) and ∇u∈L2(R3,R3)
}
. (4.2)

Using the POINCARÉ-HARDY type inequality ‖uω‖R3 6 2‖∇u‖R3 , it is well known that BL1(R3)

equipped with the norm ‖u‖BL1(R3) := ‖∇u‖R3 is a Hilbert space.
After that, it is straightforward to show, by the means of LAX-MILGRAM theorem, the existence

and uniqueness of the solution of the variational formulation associated to equation (4.1): namely
to prove the existence of a potential um ∈BL1(R3) such that for all ϕ∈BL1(R3)

(um, ϕ)BL1(R3) :=

∫
R3

∇um · ∇ϕdτ =−
∫
R3
m · ∇ϕdτ =: Fm[ϕ]. (4.3)

Thus, for every m∈L2(R3) there exists a unique um ∈BL1(R3) such that (4.3) holds.
Moreover, the following stability estimate holds:

‖um‖BL1(R3) ≡ ‖∇um‖2Ω 6 sup
ϕ∈BL1(R3)
‖∇ϕ‖Ω=1

|Fm[ϕ]|6 ‖m‖L2(R3). (4.4)

The quantity hd[m] :=∇um is what is referred to as the demagnetizing (or stray) field, and it can
be viewed as a linear and continuous operator from L2(R3,R3) into L2(R3,R3).

(b) Weighted two-scale convergence
The aim of the section is to make use of the notion of two-scale convergence, to characterize
the behavior of the demagnetizing field operator under two-scale convergence. More precisely,
we suppose to have a bounded sequence (mε) in L2(R3) which two scale converges to some
m∞(x, y)∈L2 and we want to understand if the two-scale limit of the sequence hd[mε] exists,
and in the affirmative case to characterize in some analytic sense such a limit.

This problem has already been treated in [31] but without justifying the use of two-scale com-
pactness results in weighted space. This is something that requires some work and that is why
we start this subsection by proving two compactness results concerning two-scale convergence in
the weighted spaces L2

ω(R3) and BL1(R3).
The first one is a «weighted» variant of the compactness result stated in Proposition A.3, and

shows that a notion of two-scale convergence in L2
ω(R3) makes sense.

Proposition 4.1. Let (uε) be bounded sequence in L2
ω(R3). There exists a function u∈L2

loc(R
3 ×Q)

such that 〈u〉Q ∈L2
ω(R3) and, up to the extraction of a subsequence,

lim
ε→0

∫
R3

uε(x)ϕ(x, x/ε)dx=

∫
R3×Q

u(x, y)ϕ(x, y)dydx (4.5)

for all ϕ∈D[R3;C∞
# (Q)]. In this case we say that the sequence (uε) L2

ω-two-scale converges to u.

Proof. Since (uε) is bounded in the Hilbert space L2
ω(R3), there exists an element u∞ ∈L2

ω(R3)

and a sequence (uε(n))⊆ (uε) such that

uε(n)⇀u∞ weakly in L2
ω(R3). (4.6)

This implies that for every bounded domain Ω ⊆R3, one has uε(n)⇀u∞ weakly in L2(Ω). We
now consider a sequence of bounded domain (Ωi)i∈N covering R3. Let us start with the index
i= 1, i.e. with Ω1. According to the two-scale compactness result (see Proposition A.3), there
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exists a subsequence uε(nk1
) and an element u1 ∈L2(Ω1 ×Q) such that

uε(nk1
) � u1 in L2(Ω1 ×Q). (4.7)

Now we consider i= 2, i.e. Ω2. Since uε(nk1
)⇀u∞ weakly in L2

ω(R3), it is possible to extract

a further subsequence (uε(nk2
)) from uε(nk1

) such that uε(nk2
) � u2 in L2(Ω2 ×Q) for some

suitable u2 ∈L2(Ω2 ×Q). Moreover, due to the unicity of the two-scale limit, one has

u1|(Ω1∩Ω2)×Q ≡ u2|(Ω1∩Ω2)×Q (4.8)

whenever Ω1 ∩Ω2 6= ∅. Proceeding in this way, we find for every i∈N a subsequence uε(nki
)

such that

nki
⊆ nki−1

and uε(nki
) � ui (4.9)

for some ui ∈L2(Ωi ×Q). We then define the diagonal sequence of indices defined by

nk∞(1) := nk1(1), nk∞(2) := nk2(2), . . . , nk∞(i) = nki(i), . . . . (4.10)

From (4.9) we get that for every i∈N, up to the first i− 1 terms, the sequence of indices nk∞ is
included in nki

, and this means that for every i∈N

uε(nk∞ ) � ui in L2(Ωi ×Q). (4.11)

By observing again that ui|(Ωi∩Ωj)×Q ≡ uj|(Ωi∩Ωj)×Q if Ωi ∩Ωj 6= ∅, from the «principe du re-
collement des morceaux» (cfr. [32]) there exists a unique distribution u∈L2

loc(R
3 ×Q) such that

u|Ωi×Q ≡ ui, and therefore

lim
k∞→∞

∫
R3

uε(nk∞ )(x)ϕ(x, x/ε)dx=

∫
R3×Q

u(x, y)ϕ(x, y)dydx (4.12)

for every ϕ∈D[R3;C∞
# (Q)]. Moreover since

uε(nk∞ )⇀u∞ in L2
ω(R3) (4.13)

and

∀i∈N uε(nk∞ )⇀ 〈u(x, y)〉Q in L2(Ωi) (4.14)

we get also 〈u(x, y)〉Q ≡ u∞ ∈L2
ω(R3). This completes the proof.

Exactly with the same diagonal argument, it is possible to prove the weighted variant of the
compactness result stated in Proposition A.4.

Proposition 4.2. Let (uε) be bounded sequence in BL1(R3) weakly convergent to u∞. Then uε
L2
ω-two-scale converges to u∞ ∈L2

ω(R3) and there exists a function v ∈L2[R3;H1
#(Q)/R] such that,

up to the extraction of a subsequence:

∇uε �∇u∞ +∇yv. (4.15)

Proof. We start by observing that since uε(n)⇀u∞ weakly in BL1(R3), uε(n)⇀u∞ in L2
ω(R3),

and therefore, according to the previous proposition, there exists a function u∈L2
ω(R3 ×Q) such

that, up to a subsequence,

uε(n) � u(x, y) in L2
ω(R3 ×Q)

uε(n)⇀u∞(x)≡ 〈u(x, y)〉Q in L2
ω(R3).

(4.16)

We now consider a sequence of bounded domain (Ωi)i∈N. Proceeding as in the proof of the pre-
vious Proposition 4.1, one proves that for every i∈N there exists a subsequence uε(nki

) such
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that

nki
⊆ nki−1

and uε(nki
) � u∞(x)≡ 〈u(x, y)〉Q ≡ u(x, y) in L2(Ωi ×Q). (4.17)

We then define the diagonal sequence of indices defined by the position nk∞(i) = nki(i). From
(4.17) we get that for every i∈N, up to the first i− 1 terms, the sequence of indices nk∞ is
included in nki

, and this means that for every i∈N

uε(nk∞ ) � u∞(x)≡ 〈u(x, y)〉Q ≡ u(x, y) in L2(Ωi ×Q). (4.18)

Thus u≡ u∞ ∈L2
ω(R3) in R3.

Next, we observe that since uε(n)⇀u∞ weakly in BL1(R3) we have ∇uε(n)⇀∇u∞ and
(∇uε(n)) bounded in L2(R3). Thus, according to the classical two-scale compactness result (see
Proposition A.4) there exists a function κ∞ ∈L2(R3 ×Q) such that, up to a subsequence,

∇uε �κ∞ in L2(R3,R3). (4.19)

Thus, for any test function [ϕ⊗ ψ#](x, y) :=ϕ(x)ψ#(y)∈D[R3;C∞
# (Q)] with divy ψ#(y) = 0

one has ∫
R3
uε(x) divx[ϕ⊗ ψ#](x, x/ε)dx=−

∫
R3

∇uε(x) · [ϕ⊗ ψ#](x, x/ε)dx. (4.20)

Passing to the two-scale convergence on both sides we get that for a.e. x∈R3 and for every ψ# ∈
C∞
# (Q) such that divy ψ#(y) = 0 in Q.∫

Q
[κ∞(x, y)−∇u∞(x)] · ψ#(y)dy= 0. (4.21)

Since the orthogonal complement of the divergence-free functions is the space of gradients, for
a.e. x∈R3 there exists a unique function v(x, ·)∈H1

#(Q)/R such that ∇yv(x, y)≡κ∞(x, y)−
∇u∞(x). Thus ∇yv ∈L2(R3 ×Q) and v(x, ·)∈H1

#(Q)/R, i.e. v ∈L2[R3, H1
#(Q)/R]. This com-

pletes the proof.

(c) The two-scale limit of the demagnetizing field
We are now ready to prove the two-scale convergence of the demagnetizing field operator.

Proposition 4.3. Let (mε)ε∈R+ be a bounded family in L2(R3,R3) that two-scale converges tom(x, y).
Then the two-scale limit of (hd[mε])ε∈R+ ∈L2(R3,R3) exists and is given by

hd(x, y) = hd[〈m(x, ·)〉Q] +∇yvm(x, y) (4.22)

where for every x∈R3 the scalar function vm(x, ·) is the unique solution in H1
#(Q) of the cell problem

∆yvm(x, y) =−divym(x, y) in H1
#(Q)/R (4.23)

and therefore of the variational cell problem∫
Q
m(x, y) · ∇yψ(y)dy=−

∫
Q
∇yvm(x, y) · ∇yψ(y)dy,

∫
Q
vm(x, y)dy= 0 (4.24)

for all ψ ∈H1
#(Q).

Proof. Since (mε) is bounded in L2(R3), due to the stability estimate (4.4), the sequence of
magnetostatic potentials (uεm) solution of the problem ∆uεm =−div(mε), remains bounded in
BL1(R3). This means that, up to a subsequence, (uεm)⇀um weakly in BL1(R3) for some suit-
able um ∈BL1(R3). Thus, according to Proposition 4.2, there exist functions um ∈BL1(R3) and
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vm ∈L2[R3;H1
#(Q)/R] such that

(uεm)� um in L2
ω and ∇uεm(x)�∇um(x) +∇yvm(x, y). (4.25)

In view of the previous limit relations, uεm is expected to behave as um(x) + εvm(x, x/ε). This
suggest to use, in the variational formulation of the magnetostatic problem expressed by equation
(4.3), test functions having the form ϕ(x) + εψ(x, x/ε), with ϕ∈D(R3) and ψ ∈D[R3;C∞

# (Q)].
This yields ∫

R3
∇uεm ·

(
∇ϕ+ ε∇ψ

(
x,
x

ε

)
+∇yψ

(
x,
x

ε

))
dx

=−
∫
R3
mε ·

(
∇ϕ+ ε∇ψ

(
x,
x

ε

)
+∇yψ

(
x,
x

ε

))
dx.

From the second of the two limit relations (4.25), we get∫
R3×Q

(∇um(x) +∇yvm(x, y)) · (∇ϕ+∇yψ(x, y))dydx

=−
∫
R3×Q

m(x, y) · (∇ϕ+∇yψ(x, y))dydx. (4.26)

In particular, by choosing ψ≡ 0 we get

−
∫
R3

〈m(x, y)〉Q · ∇ϕ(x)dx=
∫
R3×Q

(∇um(x) +∇yvm(x, y)) · ∇ϕdydx

=

∫
R3

∇um(x) · ∇ϕ(x), (4.27)

where the last equality follows from the fact that 〈∇yvm(x, y)〉Q = 0. Thus, we reach the conclu-
sion that the weak limit um satisfies the variational formulation (4.27), i.e. is a solution of the
«homogenized» equation

um(x) =− div〈m(x, y)〉Q in BL1(R3). (4.28)

On the other hand by choosing ϕ≡ 0 and ψ(x, y) =ψ1(x)ψ2(y) in (4.26) we get∫
R3

〈(∇um(x) +∇yvm(x, y)) · ∇yψ2(y)〉Qψ1(x)dx

=−
∫
R3

〈m(x, y) · ∇yψ2(y)〉Qψ1(x)dx ,

and hence the so-called cell problem

−
∫
Q
m(x, y) · ∇yψ2(y)dy=

∫
Q
(∇um(x) +∇yvm(x, y)) · ∇yψ2(y)dy

=

∫
Q
∇yvm(x, y) · ∇yψ2(y)dy , (4.29)

where, again, the last equality follows from the fact that 〈∇yψ2(y)〉Q = 0. Note that the variational
formulation (4.29) can be more concisely expressed in the form

∆yvm(x, y) =− divym(x, y) in H1
#(Q)/R, (4.30)

and the well-posedness of the previous variational problem is again a direct consequence of
LAX-MILGRAM theorem.

(d) The continuous limit of magnetostatic self-energy functionals Wε

In what follows we will make use of Proposition 4.3, to prove the following
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Proposition 4.4. The family of magnetostatic self-energies

Wε :m∈L2(Ω,S2) 7→ −(hd[Mεm],Mεm)Ω (4.31)

continuously converges to the functional

Whom :m∈L2(Ω,S2) 7→ −〈Ms〉2Q(hd[m],m)Ω + ‖∇yvm‖2Ω×Q (4.32)

where for every x∈Ω the scalar function vm :Ω ×Q→R is the unique solution of the following
variational cell problem:

m(x) ·
∫
Q
Ms(y)∇yψ(y)dy=−

∫
Q
∇yvm(x, y) · ∇yψ(y)dy, (4.33)

∫
Q
vm(x, y)dy= 0, (4.34)

for all ψ ∈H1
#(Q).

Proof. We know (see Proposition A.2) that |Mεm|2 ≡ |Mε|2⇀ 〈|Mε|2〉Q weakly∗ in L∞(Ω). In
particular, by choosing |m|2 ∈L1(Ω) as a test function we get

‖Mε‖2Ω = (|Mεm|2, |m|2)Ω → (〈|Mε|2〉Q, |m|2)Ω = |Ω|〈|Mε|2〉Q

= ‖Ms(y)m(x)‖2Ω×Q

and therefore Mε(x)m(x)�Ms(y)m(x) strongly.
Next, since hd[Mεm] ·Mεm is bounded in L2(Ω), from Proposition A.6 and Proposition 4.3,

we get

lim
ε→0

−(hd[Mεm],Mεm)Ω

=−〈Ms〉2Q(hd[m],m)Ω −
∫
Ω×Q

∇yvm(x, y) ·Ms(y)m(x)dxdy. (4.35)

Now, we observe that for every x∈Ω the scalar function vm(x, ·) is the unique solution of the
variational cell problem (4.24), therefore setting ψ(·) := vm(x, ·) in (4.24) we get

−m(x) ·
∫
Q
Ms(y)∇yvm(x, y)dy=

∫
Q
|∇yvm(x, y)|2dy (4.36)

and therefore

lim
ε→0

−(hd[Mεm],Mεm)Ω =−〈Ms〉2Q(hd[m],m)Ω + ‖∇yvm‖2Ω×Q =:Whom(m). (4.37)

Now we show that the family Wε continuously converges to Whom. This amounts to prove that

lim
(m,ε)→(m0,0+)

Wε(m) =Whom(m0). (4.38)

To this end, we split:

|Wε(m)−Whom(m0)|6 |Wε(m)−Wε(m0)|+ |Wε(m0)−Whom(m0)|. (4.39)

From (4.37) we already know that |Wε(m0)−Whom(m0)| → 0 when (m, ε)→ (m0, 0
+). There-

fore to finish it is sufficient to prove that

lim
(m,ε)→(m0,0+)

|Wε(m)−Wε(m0)|= 0, (4.40)

and this is a consequence of the following estimate (uniform with respect to ε):

|Wε(m)−Wε(m0)|6 |(hd[Mεm],Mε(m−m0))Ω + (hd[Mε(m−m0)],Mεm0)Ω |

6 2‖Ms‖∞|Ω|1/2‖m−m0‖Ω .
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5. The homogenized anisotropy and interaction energies
This section is devoted to the proof of the continuous convergence of the family of anisotropy
energy functionals Aε and of the family of interaction energy functionals Zε, respectively to Ahom

and Zhom, whose expression is given by (1.15) and (1.18).

(a) The continuous limit of the anisotropy energy functionals Aε

Proposition 5.1. If the anisotropy energy density ϕan :R3 × S2 →R+ is Q-periodic with respect to the
first variable and globally Lipschitz with respect to the second one (uniformly with respect to the first
variable) then the family Aε of anisotropy energies continuously converges to the homogenized anisotropy
energy

Ahom :m∈L2(Ω, S2) 7→
∫
Ω×Q

ϕan(y,m(x))dydx. (5.1)

Proof. We have to prove that for everym0 ∈L2(Ω, S2) one has

lim
(m,ε)→(m0,0+)

Aε(m) =Ahom(m0). (5.2)

For everym,m0 ∈L2(Ω, S2) we write

|Aε(m)−Ahom(m0)|6 |Aε(m)−Aε(m0)|+ |Aε(m0)−Ahom(m0)|. (5.3)

Due to generalized RIEMANN-LEBESGUE lemma (cfr. Proposition A.2) one hasϕan(x/ε,m0(x))⇀

〈ϕan(y,m0(x))〉Q weakly∗ in L∞(Ω); therefore in particular |Aε(m0)−Ahom(m0)| → 0 as
(m, ε)→ (m0, 0

+). To finish the proof it remains to prove that

lim
(m,ε)→(m0,0+)

|Aε(m)−Aε(m0)|= 0. (5.4)

But this is an immediate consequence of the the global and uniform Lipschitz continuity of ϕan

and CAUCHY-SCHWARZ inequality; indeed one has∫
Ω×Q

|ϕan(x/ε,m(x))− ϕan(x/ε,m0(x))|dydx 6 cL

∫
Ω
|m(x)−m0(x)|dx

6 cL|Ω|1/2‖m−m0‖Ω .

This concludes the proof.

Corollary 5.1. (Uniaxial anisotropy energy density). If ϕan(y,m) = κ(y)|m(x) ∧ u(y)|2 then

Ahom(m) =

∫
Ω
〈κ〉Q − 〈κu⊗ u〉Q :m⊗mdτ.

(b) The continuous limit of interaction energy functionals Zε

The convergence of (Zε)ε∈R+ to Zε is straightforward. Indeed this energy term is expressed by
the product, with respect to the L2(Ω) scalar product, of the constant function ha and the weakly
converging sequence (Mεm)ε∈R+ ⇀ 〈Ms〉Q weakly∗ in L∞(Ω) (cfr. Proposition A.2). Therefore
repeating the same argument given in the previous subsection:

Zε
Γcont−−−−→
ε→0

Zhom with Zhom(m) :=−〈Ms〉Q
∫
Ω
ha ·mdτ.

6. Proof of Theorem 1.1 completed
It is now easy to complete the proof of Theorem 1.1. Indeed the equicoercivity of the family of
GIBBS-LANDAU free energy functionals (Gε

L)ε∈R+ expressed by (1.6) has been proved in Sec-
tion 2. It is therefore sufficient to recall the stability properties of the Γ -limit under the sum of
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a continuously convergent family of functionals. In fact, what has been proved in the previous
subsections, can be summarized by the following convergence scheme

Eε
Γ−→

ε→0
Ehom , Wε

Γcont−−−−→
ε→0

Whom , Aε
Γcont−−−−→
ε→0

Ahom , Zε
Γcont−−−−→
ε→0

Zhom. (6.1)

Thus, Proposition A.1 completes the proof.

7. Conclusions
We have given in this paper a complete theory for periodic microstructured magnetic materials.
Obtained through a process of Γ−convergence the model derives rigorously the energy terms
from the parameters of each constituent of the sample and the mixing geometry of the differ-
ent materials in the unit periodic cell. We believe that the result applies to most of magnetic
composites that are nowadays considered, e.g. those obtained from a mixing of hard and soft
phases [17,33] or the multilayer magnetic materials [18,30]. In this latter case, the formula ob-
tained further simplifies since the exchange coefficient can be analytically computed. We leave
the exploration of potential applications to a forthcoming work.
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A. Γ -convergence, Two-scale convergence and related results
The purpose of this section is to fix some notations and to give a survey of the concepts and
results that are used throughout this work. All results are stated without proof as they can be
readily found in the references given below.

(a) Γ -convergence of a family of functionals
We start by recalling DE GIORGI’s notion of Γ -convergence and some of its basic properties (see
[11,14]). Throughout this part we indicate with (X, d) a metric space and, for every m∈X , with
Cd(m) the subset of all sequences of elements of X which converge to m.

Definition A.1. (Γ -convergence of a family of functionals) Let (Fn)n∈N be a sequence of functionals
defined on X with values on R. The functional F :X→R is said to be the Γ -lim of (Fn)n∈N with respect
to the metric d, if for every m∈X we have:

∀(mn)∈ Cd(m) F(m)6 lim inf
n→∞

Fn(mn) (A 1)

and
∃(m̄n)∈ Cd(m) F(m) = lim

n→∞
Fn(m̄n). (A 2)

In this case we write F = Γ - limn→∞ Fn.
If (Fε)ε∈R+ is a family of functionals, we say that F :X→R is the Γ -lim of (Fε)ε∈R+ as ε→ 0, if

for every εn ↓ 0 one has F = Γ - limn→∞ Fεn . In this case we write F = Γ - limε→0 Fε.

One of the most important properties of Γ -convergence, and the reason why this kind of vari-
ational convergence is so important in the asymptotic analysis of variational problems, is that
under appropriate compactness hypotheses it implies the convergence of (almost) minimizers of
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a family of equicoercive functionals to the minimum of the Γ -limit functional. To this end we first
recall the notion of equicoerciveness (sometimes referred to as equi-mildly coerciveness [7]):

Definition A.2. A family (Fε)ε∈R+ of functionals defined on X with values on R is said to be
equicoercive in X , if there exists a compact subset K ⊆X such that

inf
X

Fε = inf
K

Fε ∀ε∈R+.

We then have (cfr. [7]):

Theorem A.1. (Fundamental Theorem of Γ -convergence) If (Fε)ε∈R+ is a family of equicoer-
cive functionals Γ -converging on X to the functional F . Then F is coercive and lower semicontinuous
(therefore there exists a minimizer for F on X) and we have the convergence of minima values

min
m∈X

F(m) = lim
ε→0

inf
m∈X

Fε(m). (A 3)

Moreover, given εn ↓ 0 and (mn)n∈N a converging sequence such that

lim
n→∞

Fεn(mn) = lim
n→∞

( inf
m∈X

Fεn(m)), (A 4)

its limit is a minimizer for F on X . If (A 4) holds, the sequence (mn)n∈N is said to be a sequence of
almost-minimizers for F .

Let us recall now that given two families of functional (Fε)ε∈R+ and (Gε)ε∈R+ Γ -converging
respectively to F and G, it is in general not the case (see [11]) that Γ -limε→0(Fε + Gε) =F + G . A
sufficient condition for that property to hold is that at least one of the two families of functionals
satisfies a stronger type of convergence:

Definition A.3. We say that a family of functionals (Gε)ε∈R+ is continuously convergent in X to a

functional G :X→R, and we will write Gε
Γcont−−−−→G, if for every m0 ∈X

lim
(m,ε)→(m0,0)

Gε(m) = G(m0).

We then have (see [11] for a proof):

Proposition A.1. Let F = Γ - limε→0 Fε. Suppose that the family of functionals (Gε)ε∈R+ continuously
converges to G, and that Gε and G are everywhere finite on X . Then G = Γ - limε→0 Gε and

Γ - lim
ε→0

(Fε + Gε) =F + G.

In particular if Z :X→R is a continuous functional then Γ - limε→0(Fε + Z) =F + Z and Z is called
a continuous perturbation of the Γ -limit.

(b) Two-scale convergence
The aim of this section is to present in a schematic way the main properties of two-scale conver-
gence, a notion that is first due to NGUETSENG [29], developed as a methodology by ALLAIRE [3]
and further investigated by many others (see [2] and references therein for instance).

We denote by C∞
# (Q) the set of infinitely differentiable real functions over R3 that are

Q-periodic and define H1
#(Q) as the closure of C∞

# (Q) in H1
loc(Ω). Obviously any element of

H1
#(Q) has the same trace on the opposite faces of Q.
A generalized version of the RIEMANN-LEBESGUE lemma holds for the weak limit of rapidly

oscillating functions. For a proof we refer the reader to [15].
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Proposition A.2. Let Ω ⊂R3 be any open set. Let 16 p <∞ and t > 0 be a positive real number. Let
u∈Lp(Q) be a Q-periodic function. Set uε(x) := u(x/ε) τ -a.e. on Ω. Then, if p <∞, as ε→ 0

uε⇀ 〈u〉Q :=
1

|Q|

∫
Q
u dτ weakly in Lp(Ω).

If p=∞, one has

uε⇀ 〈u〉Q :=
1

|Q|

∫
Q
u dτ weakly∗ in L∞(Ω).

Definition A.4. Let Ω be an open set Ω ⊂R3, and let (εk)k∈N be a fixed sequence of positive real
numbers (when it is clear from the context we will omit the subscript k) converging to 0. The sequence
of functions (uε)∈L2(Ω) is said to two-scale converge to a limit u∈L2(Ω ×Q), if for any function
ϕ∈D[Ω;C∞

# (Q)] we have

lim
ε→0

∫
Ω
uε(x)ϕ(x, x/ε) dx=

∫
Ω×Q

u(x, y)ϕ(x, y) dy dx (A 5)

In this case we write uε � u. We say that (uε) in L2(Ω) strongly two-scale converges to a limit
u∈L2(Ω ×Q) if uε � u and moreover

‖u‖Ω×Q = lim
ε→0

‖uε‖Ω .

The importance of this new notion of convergence relies on the following compactness results.

Proposition A.3. For each bounded sequence (uε) in L2(Ω), there exists an u∈L2(Ω ×Q) such that,
up to a subsequence, uε � u.

Moreover, for bounded sequences in H1(Ω) we have the following result:

Proposition A.4. Let (uε) be a sequence in H1(Ω) that converges weakly to a limit u∈H1(Ω). Then
uε � u and there exists a function v ∈L2[Ω;H1

#(Q)/R] such that, up to a subsequence:

∇uε �∇u+∇yv.

Next we recall that if the sequence (uε) is bounded in L2(Ω), it is possible to enlarge the class
of test functions used in the definition of two-scale convergence.

Proposition A.5. Let (uε) be a bounded sequence in L2(Ω) which two-scale converges to u∈L2(Ω ×
Q). Then

lim
ε→0

∫
Ω
uε(x)ϕ(x, x/ε) dx=

∫
Ω×Q

u(x, y)ϕ(x, y) dy dx

for every ϕ∈L2[Ω;C#(Q)].

Finally we recall a simple criteria that permits to «bypass» the problem concerning the
convergence of the product of two L2(Ω)-weakly convergence sequences (cfr. [3,22]).

Proposition A.6. Let (uε) and (vε) be sequences in L2(Ω) that respectively two-scale converge to u and
v in L2(Ω ×Q). If at least one of them strongly two-scale converges, then

uεvε � uv.

In particular, if (uεvε) is bounded in L2(Ω), from the previous proposition, we have∫
Ω
uε(x)vε(x)ϕ(x, x/ε) dx=

∫
Ω×Q

u(x, y)v(x, y)ϕ(x, y) dy dx

for every ϕ∈L2[Ω;C#(Q)].
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