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Abstract. In this paper we describe a new implicit finite element scheme for the
discretization of Landau-Lifchitz equations. A proof of convergence of the numerical
solution to a (weak) solution of the original equations is given and numerical tests
showing the applicability of the method are also provided.

1. Introduction. Landau-Lifchitz equations describe the evolution of the magne-
tizationm (a three dimensional vectorfield) inside a ferromagnetic body Ω (typically
an open bounded subset of Rd). After adimensioning these equations write down
as [

∂tm = m×Heff − αm× (m×Heff) in Ω,
∂nm = 0 on ∂Ω, (1)

where Heff stands for the effective magnetic field, ’×’ is the three dimensional cross
product, and the magnitude of the magnetization (which is constant in space and
time) has been scaled to one

|m(x, t)| = 1. (2)

In (1), α > 0 is a damping parameter, and

Heff(m) = − ∂E
∂m

is the (opposite of the) functional derivative of the free energy E . Typical expressions
for E that are usually used in practice take into account several different physical
phenomena, and can be found in [9] for instance.

The purpose of this paper is to derive an implicit finite element scheme for solving
numerically (1). As we are only interested into the main description of the method
(and not yet into its complete physical relevance), we will focus on the case where
Heff(m) contains only its highest order term, namely

Heff(m) = ∆m.

The generalization to classical models of the method can be done by following
exactly the arguments exposed in [3].

The model Cauchy problem we have in mind therefore writes down as
 ∂tm = m× ∆m− αm× (m× ∆m) in Ω,
∂nm = 0 on ∂Ω,
m(x, 0) = m0(x),

(3)
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2 FRANÇOIS ALOUGES

where the initial data m0 ∈ H1(Ω, S2). It is easily seen that, in that case, the
energy

E(m) =
1
2

∫
Ω

|∇m|2 ,

formally decays along the trajectories thanks to the (still formal) relation

dtE(m) = −α
∫

Ω

|m× ∆m|2 = − α

1 + α2

∫
Ω

|∂tm|2 .

These equations have already been substantially studied in the literature and
solutions to (3) have been found:

• either in a strong sense [8] but only locally in time, or globally but for initial
data of small energy and in 2D;

• either in a weak sense [4, 14]. In that case, solutions to (3) are shown to
be global in time but may not be unique (explicit cases of nonuniqueness are
provided in [4]).

As far as the discretization of (3) by finite elements methods is concerned, a lot
of papers have been recently published. Besides the book by Prohl [10] where the
discretization was obtained via a penalization strategy (and convergence to local
strong solutions was proved), a completely novel approach was given in [3], where
the authors used the definition of weak solutions of (3) given in [4] to get a finite
element discretization of the problem which does not use any penalization parameter
(always difficult to tune in practice), and which satisfies the non-linear constraint
(2) at the nodes of the triangularization. Although based on an explicit scheme, the
authors have been able to prove the weak convergence of their numerical solutions
to a weak global solution of (3) when first the time step k and then the space step h
tend to 0. Later on, their convergence results have been improved in [6] by requiring

k

h1+ d
2
→ 0, (4)

where d is the dimension in which the problem is posed.
Obviously, the scheme being explicit, there exists a stability condition (like for

the heat equation) in order to get convergence of the method. To avoid this very
restrictive condition, one usually has to go to implicit schemes. Such schemes have
been proposed [7, 11], but are all based on a non-linear iteration. This non-linear
iteration is usually solved via a kind of Newton’s method for which the authors
prove the convergence under an assumption close to (4).

Therefore, there is a need for an implicit finite element scheme which would
require only to solve linear systems at each iteration, be unconditionally stable and
convergent to a weak solution of (3) when k, h → 0. This is the purpose of this
paper.

The content of this paper is as follows: Section 2 is devoted to the description
of our scheme, section 3 gives the convergence theorem, and numerical experiments
are provided in section 4.

2. A θ−scheme for Landau-Lifchitz equations. We use hereafter the following
notations for the finite element spaces. Namely, for (Th)h a regular family of con-
formal triangulations of the domain Ω parameterized by the space step h, we call
(xh

i )i the vertices of Th and (φh
i )1≤i≤Nh

the set of associated basis functions of the
so-called P 1(Th) discretization. That is to say the functions (φh

i )i are continuous
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and linear on each triangle (or tetrahedron in 3D), and satisfy φh
i (xh

j ) = δi,j the
Kronecker symbol. We also call (see also [3])

Vh =

{
u =

∑
i

uiφ
h
i , s. t. ∀i, ui ∈ R

3

}
, Mh =

{
u ∈ Vh, s. t. ∀i, ui ∈ S

2
}
,

the finite element space and the subset of Vh where the solution will be sought. For
any u =

∑
i uiφ

h
i ∈Mh, we call

Ku =

{
v =

∑
i

viφ
h
i , s. t. ∀i, vi · ui = 0

}
.

We also denote by Ih the classical interpolation operator

Ih : C0(Ω,R3) → Vh

u �→
∑

i

u(xh
i )φh

i .

In [3] the finite element scheme proposed to approximate (3) was based upon the
observation that one may (at least formally) rewrite (3) into two different equivalent
forms

∂tm+ αm× ∂tm = (1 + α2)m× ∆m, (5)

or

α∂tm−m× ∂tm = (1 + α2)(∆m− |∇m|2m). (6)

The first form is the so-called Gilbert form and is useful to define weak solutions [4]
(see also section 3) while the second one is used to build the scheme in [3]. Namely,
calling v = ∂tm, one has from (6)

α

∫
Ω

v · ψ −
∫

Ω

m× v · ψ = −(1 + α2)
∫

Ω

∇m · ∇ψ, (7)

for every test function ψ ∈ H1(Ω,R3) which furthermore verifies ψ(x) ·m(x) = 0
for a.e. x in Ω. Finding a discretized version of (7) is now straightforward [3]

Start with an initial m0 ∈Mh,
For n = 0, 1, · · · ,


Find vn ∈ Kmn such that ∀ψ ∈ Kmn ,

α

∫
Ω

vn · ψ −
∫

Ω

mn × vn · ψ = −(1 + α2)
∫

Ω

∇mn · ∇ψ,

Set mn+1 =
∑

i

mn+1
i φh

i , with ∀i, mn+1
i =

mn
i + kvn

i

|mn
i + kvn

i |
, and iterate.

(8)

Due to the construction, it is clear that mn ∈ Mh for all n ∈ N. In [3], it was
explained that this scheme follows the spirit of the explicit scheme for solving the
heat equation and in [6], it was shown that (4) is sufficient to making converge the
solution towards a (global) weak solution of (3) after suitable interpolation in space
and time (of course un ∼ u(nk)).
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We now consider the following generalization of (8). Considering a parameter
θ ∈ [0, 1], we modify the previous scheme as follows:

Start with an initial m0 ∈Mh,
For n = 0, 1, · · · ,


Find vn ∈ Kmn such that ∀ψ ∈ Kmn ,

α

∫
Ω

vn · ψ −
∫

Ω

mn × vn · ψ = −(1 + α2)
∫

Ω

∇(mn + θkvn) · ∇ψ,

Set mn+1 =
∑

i

mn+1
i φh

i , with ∀i, mn+1
i =

mn
i + kvn

i

|mn
i + kvn

i |
, and iterate.

(9)

This new scheme looks like the classical θ−scheme for solving the heat equation

and therefore, we expect that it is unconditionally stable as soon as
1
2
≤ θ ≤ 1. In

particular, θ = 0 gives back (8), θ =
1
2

gives a Crank-Nicolson like scheme while
θ = 1 is a kind of fully implicit scheme. Of course, the renormalization stage a

priori forbids the scheme to be of order 2 in time (even with θ =
1
2
).

We also remark that, as for (8), the problem that needs to be solved at each
iteration is always linear and can be written as:

Find vn ∈ Kmn , such that ∀ψ ∈ Kmn , a(vn, ψ) + bn(vn, ψ) = Ln(ψ), (10)

where the bilinear forms

a(φ, ψ) = α

∫
Ω

φ · ψ + θk(1 + α2)
∫

Ω

∇φ · ∇ψ, bn(φ, ψ) = −
∫

Ω

mn × φ · ψ

are respectively symmetric positive definite, and skew symmetric on Kmn , and the
linear form Ln is defined by

Ln(ψ) = −(1 + α2)
∫

Ω

∇mn · ∇ψ.

Therefore, the problem (10) possesses a unique solution vn ∈ Kmn .
The renormalization stage has been extensively used for related problem. In [1]

for instance, it was one of the fundamental arguments to build a finite element
scheme for the problem of finding minimizing harmonic maps into the unit sphere.
Moreover, it was also remarked that for maps w ∈ H1(Ω,R3), such that |w(x)| ≥ 1
a.e. x ∈ Ω, one has ∫

Ω

∣∣∣∣∇ w

|w|

∣∣∣∣
2

≤
∫

Ω

|∇w|2 , (11)

and hence this renormalization stage is expected to be energy decreasing. Other
applications more related to finite element approximation of micromagnetic config-
urations can be found in [2].

However, if (11) holds for H1 maps, it does not necessary hold at the discrete
level: if v =

∑
i viφ

h
i ∈ Vh is such that ∀i ∈ {1, · · · , Nh}, |vi| ≥ 1, do we have∫

Ω

∣∣∣∣∇Ih

(
v

|v|

)∣∣∣∣
2

≤
∫

Ω

|∇v|2 ? (12)

This particular question has been studied in [5], and the following result was
proven.
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Theorem 1. [5] For the P 1 approximation, if

∀i 	= j,

∫
Ω

∇φh
i · ∇φh

j ≤ 0, (13)

then (12) holds.

Theorem 1 is remarkable, since it relates a condition on the mesh to an analytic
property. In particular, there were given in [5] a map v and a mesh for which (12)
does not hold. Moreover, it turns out that (13) is related to discrete maximum
principle and is satisfied in the two following cases [13].

• In 2D, when the mesh is of Delaunay type,
• In 3D when all dihedral angles of the tetrahedra are smaller than π/2.

As most of the mesh generators are building Delaunay meshes, this is therefore not
a serious constraint (at least in 2D).

3. The convergence result. Before stating the convergence theorem, we recall
the definition of a weak solution of (3).

Definition 1. Let m0 ∈ H1(Ω)3 be such that |m0| = 1 a.e., we say that m is a
weak solution to (3) if for all T > 0

1. m ∈ H1(QT )3 (QT = Ω × (0, T )); |m| = 1 a.e.;
2. for all φ in H1(QT )3, there holds :∫

QT

∂tm · φ dx dt + α

∫
QT

(m× ∂tm) · φ dx dt

= −(1 + α2)
d∑

i=1

∫
QT

(m× ∂xim) · ∂xiφ dx dt. (14)

3. m(x, 0) = m0(x) in the trace sense ;
4. we have the energy inequality

1
2

∫
Ω

|∇m(T )|2 dx+
α

1 + α2

∫
QT

|∂tm|2 dx dt ≤ 1
2

∫
Ω

|∇m0|2 dx. (15)

We also need to interpolate in time the discrete solutions constructed via algo-

rithm (9). We therefore introduce T > 0, and J =
[
T

k

]
.

Definition 2. The discrete solutions are interpolated in time in different ways: for
all x ∈ Ω and all t ∈ [0, T ], calling j ∈ {0, · · · , J} such that t ∈ [jk, (j+1)k), we set

mh,k(x, t) =
t− jk

k
mj+1(x) +

(j + 1)k − t

k
mj(x),

m−
h,k(x, t) = mj(x), vh,k(x, t) = vj(x).

Theorem 2. Let m0 ∈ H1(Ω, S2). Suppose m0 → m0 in H1(Ω) as h→ 0, and θ ∈
(
1
2
, 1]. If the regular sequence of conformal triangulations (Th)h satisfies condition

(13), then (mh,k) converges (up to the extraction of a subsequence) weakly in H1(Ω×
(0, T )) to a weak solution m of (3) as h and k tend to 0.

Proof. As we have already observed, the variational formulation (10) possesses a
unique solution vn. Taking φ = vn, leads then to the following estimate

α

1 + α2

∫
Ω

|vn|2 + θk

∫
Ω

|∇vn|2 = −
∫

Ω

∇mn · ∇vn.
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Now, using the fact that Th satisfies (12) leads to
1
2

∫
Ω

∣∣∇mn+1
∣∣2 ≤ 1

2

∫
Ω

|∇(mn + kvn)|2

≤ 1
2

∫
Ω

|∇mn|2 + k

∫
Ω

∇mn · ∇vn +
k2

2

∫
Ω

|∇vn|2

≤ 1
2

∫
Ω

|∇mn|2 − αk

1 + α2

∫
Ω

|vn|2

−
(
θ − 1

2

)
k2

∫
Ω

|∇vn|2 . (16)

Summing this inequality from n = 0 to n = j − 1 gives (since θ >
1
2
)

1
2

∫
Ω

|∇mj |2 +
α

1 + α2

j−1∑
n=0

k

∫
Ω

|vn|2 ≤ 1
2

∫
Ω

|∇m0|2. (17)

Now, we use the fact that

∀n ≤ J, ∀i ∈ {1, · · · , Nh},
∣∣∣∣mn+1

i −mn
i

k

∣∣∣∣ ≤ |vn
i |,

and since there exists c > 0 such that for all 1 ≤ p < +∞ and all φh ∈ Vh there
holds

1
c
||φh||pLp(Ω) ≤ hd

∑
i

|φh(xh
i )|p ≤ c||φh||pLp(Ω), (18)

we obtain that ∥∥∥∥mn+1 −mn

k

∥∥∥∥
L2

≤ c2||vn||L2 .

Hence, from the bound (17), mh,k is uniformly bounded in H1(QT ), and vh,k is
bounded in L2(QT ). Extracting possibly subsequences, there exist m ∈ H1(QT )
and v ∈ L2(QT ) such that

mh,k ⇀(h,k)→0 m weakly in H1(QT ), (19)

mh,k →(h,k)→0 m strongly in L2(QT ), (20)

vh,k ⇀(h,k)→0 v weakly in L2(QT ). (21)

Now, since for all j = 0, · · · , J and all t ∈ [jk, (j + 1)k)

|mh,k(x, t) −m−
h,k(x, t)| =

∣∣∣∣(t− jk)
(
mj+1(x) −mj(x)

k

)∣∣∣∣ ≤ k |∂tmh,k(x, t)| ,

we get
||mh,k −m−

h,k||L2(QT ) ≤ k ‖∂tmh,k‖L2(QT ) →(h,k)→0 0.
Therefore

m−
h,k →(h,k)→0 m strongly in L2(QT ).

Moreover, on any triangle (tetrahedron in 3D) K of Th, and any u ∈ Mh one has,
xh

i being any vertex of K ∣∣|u(x)| − |u(xh
i )|

∣∣2 ≤ Ch2|∇u|2,
(recall that ∇u is constant on K), from which one deduces (since |m−

h,k(xh
i )| = 1)∫

QT

∣∣∣1 − |m−
h,k|

∣∣∣2 ≤ Ch2||∇m−
h,k||2L2(QT ), (22)
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which shows that |m(x, t)| = 1 a.e. (x, t) ∈ QT .
Eventually, from the fact that ∀i ∈ {1, · · · , Nh}

|mn+1
i −mn

i − kvn
i | = |mn

i + kvn
i | − 1 ≤ 1

2
k2|vn

i |2,

we have ∣∣∣∣mn+1
i −mn

i

k
− vn

i

∣∣∣∣ ≤ 1
2
k|vn

i |2,

which using (18) leads to

‖∂tmh,k − vh,k‖L1(QT ) ≤ c2k||vh,k||2L2(QT ) →(h,k)→0 0.

This is sufficient to conclude that v = ∂tm in (21).
It remains now to prove that m satisfies both (14) and (15). For (15), we simply

rewrite (17) as ∀j ∈ {0, · · · , Nh}
1
2

∫
Ω

|∇mh,k(jk)|2 +
α

1 + α2

∫
Ω×(0,jk)

|vh,k|2 ≤ 1
2

∫
Ω

|∇m0|2,

Passing to the weak convergence on the left-hand side and strong convergence on
the right-hand side leads the result (recall that m0 is a finite element approximation
of the initial data m0).

As far as (14) is concerned, we take a smooth test function Ψ ∈ C∞
0 (QT ), and test

for all t ∈ [nk, (n+1)k), the weak formulation in (9) with ψ = Ih(m−
h,k ×Ψ(x, t)) ∈

Kmn . We get after suitable integration in time and summation on n∫
QT

(αvh,k −m−
h,k × vh,k) · Ih(m−

h,k × Ψ)

= −(1 + α2)
∫

QT

∇(m−
h,k + θkvh,k) · ∇Ih(m−

h,k × Ψ). (23)

Now, we use that in dimension d ≤ 3, for any function ϕ ∈ H2(Ω) ⊂ C0(Ω̄), one has

||ϕ− Ih(ϕ)||H1(Ω) ≤ Ch||∇2ϕ||L2(Ω). (24)

This leads, taking any triangle (tetrahedron in 3D) K ⊂ Th, to

||m−
h,k(·, t) × Ψ(·, t) − Ih

(
m−

h,k(·, t) × Ψ(·, t)
)
||2H1(K)

≤ Ch2||∇2(m−
h,k(·, t) × Ψ(·, t))||2L2(K)

≤ Ch2||m−
h,k(·, t)||2H1(K)||Ψ||2W 2,∞(K), (25)

since m−
h,k is linear on each triangle. Summing over all the triangles of Th, and

integrating in time gives

||m−
h,k × Ψ − Ih(m−

h,k × Ψ)||L2([0,T ],H1) ≤ Ch||m−
h,k||H1(QT )||Ψ||W 2,∞(QT ), (26)

Using (24) and (26) into (23) leads to∫
QT

(αvh,k −m−
h,k × vh,k) · (m−

h,k × Ψ) + θk(1 + α2)
∫

QT

∇vh,k · ∇(m−
h,k × Ψ)

+(1 + α2)
∫

QT

∇m−
h,k · ∇(m−

h,k × Ψ) = O(h). (27)

We now examine each term separately. From (20) and (21), we get∫
QT

(αvh,k −m−
h,k×vh,k) · (m−

h,k×Ψ) →(h,k)→(0,0)

∫
QT

(α∂tm−m× ∂tm) · (m×Ψ).
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For the third term, we have∫
QT

∇m−
h,k · ∇(m−

h,k × Ψ) =
∫

QT

∇m−
h,k ·m−

h,k ×∇Ψ

→
∫

QT

∇m ·m×∇Ψ,

as (h, k) → (0, 0) from (19) and (20). Eventually, the second term is slightly more
subtle. Going back to (16), we get(

θ − 1
2

)
k2

∫
Ω

∣∣∇vj
∣∣2 +

1
2

∫
Ω

∣∣∇mj+1
∣∣2 +

αk

1 + α2

∫
Ω

∣∣vj
∣∣2 ≤ 1

2

∫
Ω

∣∣∇mj
∣∣2

Summing from j = 0 to J leads to(
θ − 1

2

)
k

∫
QT

|∇vh,k|2 +
α

1 + α2

∫
QT

|vh,k|2 ≤ 1
2

∫
QT

∣∣∇m0
∣∣2 ,

from which we deduce that (
√
k∇vh,k) is bounded in L2(QT ). We then deduce∣∣∣∣k

∫
QT

∇vh,k · ∇(m−
h,k × Ψ)

∣∣∣∣ ≤
√
k||

√
k∇vh,k||L2 ||m−

h,k||L2(0,T ;H1)||Ψ||W 1,∞

→ 0, (28)

as (h, k) → (0, 0) which ends the proof.

Remark 1. 1. When θ ∈ [0, 1
2 ] one has to bound the term

∫
Ω
|∇vn|2 in (16).

Since, on regular sequences of triangulations there exists c > 0 such that

∀v ∈ Vh,

∫
Ω

|∇v|2 ≤ c

h2

∫
Ω

|v|2,

one has

− αk

1 + α2

∫
Ω

|vn|2 −
(
θ − 1

2

)
k2

∫
Ω

|∇vn|2 ≤ − αk

(1 + α2)
(1 − c(h, k))

∫
Ω

|vn|2

where c(h, k) = c 1+α2

α (1
2 − θ) k

h2 . This gives the following theorem which
already improves the result of [6] in dimension 3 for instance.

Theorem 3. Let m0 ∈ H1(Ω, S2). Suppose m0 → m0 in H1(Ω) as h →
0, and θ ∈ [0,

1
2
]. If the regular sequence of conformal triangulations (Th)h

satisfies condition (12), then provided
k

h2
tends to zero as h and k go to 0,

(mh,k) converges (up to the extraction of a subsequence) weakly in H1(Ω ×
(0, T )) to a weak solution m of (3) as h and k tend to 0.

2. In the case of Crank-Nicolson scheme (θ = 1
2 ), everything is identical but the

proof of (28) which is wrong in this way since there is no more bound on
∇v. However, using the remark (that was proposed by the unknown referee)
||k∇v||L2(QT ) ≤ k

h ||v||L2(QT ), one obtains the same result (convergence to a
weak solution) as soon as k

h tends to 0 as k and h go to 0.
3. The same method applies with only slight modifications to closely related

problems like the heat-flow of harmonic maps into spheres.
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4. Numerical experiments. We propose here a few numerical experiments in
2D. The code has been written using a MATLAB finite element toolbox devel-
oped by the author and the linear systems have been solved using the MINRES
technique [12] (the system is not symmetric). A typical mesh of the domain
Ω = B(0, 1) is given in Fig. 3, and the scheme was initialized with m0(x, y) =(
−y
r

sin
(πr

2

)
,
x

r
sin

(πr
2

)
, cos

(πr
2

))
, where r =

√
x2 + y2. The time step used

was k = 0.01 and the energy was plotted in Fig. 1 for different values of α and
θ = 1 (fully implicit). The same pictures obtained for θ = 0.5 are shown in Fig. 2.
We see that as expected from the convergence proof and (16), the closer θ to 0.5,
the less diffusive the scheme (recall that for α = 0 the energy should be conserved).
Although the proof we have given fails in many points for P 2 approximation (in
particular (13) is wrong in P2), we show the same cases but in P 2 in Fig. 3. There
is no instability, but the improvement is unclear on this test-case.
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Figure 1. Energy versus time for P 1 elements, θ = 1, α = 1 (left),
and α = 0.0001 (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

ENERGY  T: 1.000000, FE: P1, time step: 0.010000, alpha: 1.000000

t

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

ENERGY  T: 1.000000, FE: P1, time step: 0.010000, alpha: 0.000100

t

E

Figure 2. Energy versus time for P 1 elements, θ = 0.5, α = 1
(left), and α = 0.0001 (right).

5. Conclusion. We have given a new implicit finite element formulation for Landau-
Lifshitz equations. A convergence theorem is also given improving known results
in the literature. Numerical experiments are also provided showing the practical
applicability of the method.
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Figure 3. Mesh used and Energy versus time for P 2 elements,
θ = 0.5, α = 0.0001.
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