
1

Variational Methods for Computational Fluid Dynamics

Année 2013 - 2014, X 2011.

PC 3 (TP)

The aim of this practical session is to simulate moving domains filled of fluids. We first
consider the case of a low Reynolds number flow, and then study a free surface flow with the
full Navier-Stokes equations.

Exercise 1. Training.

Take a 2d meshed domain (e.g. a square). Construct a second mesh deduced from the first by
deforming it. Use for that the move mesh FreeFem++ command, and try various deformation
functions.

mTh = movemesh(Th,[x+vx,y+vy]);

constructs a new mesh mTh obtained from the Th by displacing the nodes along the vector field
(here (vx,vy)).

Exercise 2. The melting loukoum.

We consider the Stokes problem

[

−∆u+∇p = f ,
div u = 0 ,

on a domain which is initially a square. At initial time the domain of fluid is supposed to touch a
flat floor. All the bottom part is assumed to be fixed while the three other parts of the boundary
are free surfaces.

1. Solve the previous Stokes problem where f is the gravity, and assuming Neumann boundary
condition on the free surfaces that can be either

µ∇u · n− pn = −Pextn ,

or

µ
(

∇u+ t∇u
)

· n− pn = −Pextn .

(Notice that without restriction, one can take Pext = 0.) Do both a P 1 bubble / P 1, and
a P 2/P 1 approximation.

2. Make the mesh move according to the velocity found in the preceding step. Use for this
the movemesh FreeFem++command and the deformation vector (dt*ux,dt*uy).

3. Notice the difference of the results of the simulation according to the Neumann boundary
condition used.

4. Notice also that eventually the simulation breaks down after a while due to a poor mesh
and badly oriented triangles.



2

σn = 0

u = 0

u · n = 0

Figure 1: Fluid in a container.

Exercise 3. ALE for wave motion.

We consider a fluid filling a glass. The situation depicted in the following picture implies
that the fluid stays in the domain

Ω = {(x, y) ∈ R
2 , | 0 < x < L , 0 < y} .

1. Write a Navier-Stokes solver using the method of characteristics for the convection. Use
for this the FreeFem++command convect and adding in the variational formulation the
following line:

+int2d(Th)(-convect([pux,puy],-dt,pux)*tux -convect([pux,puy],-dt,puy)*tuy)

where [pux,puy] is the previous velocity. The argument -dt means that the field is
integrated backward in time during δt. Use also the boundary conditions:

• u = 0 at the bottom y = 0 part of the fluid domain ;

• u1 = 0 and σ21 = 0 at the left and right parts of the boundary(x = 0 and x = L).
(The fluid will be allowed to slip on the boundary, but only vertically. Notice that
σ21 is also σn · t on these boundaries.

• σn = −Pextn = 0 on the free surface.

Use also the parameters: µ = 0.001, ρ = 1, g = 5, L = 6, δt = 0.02 and the initial profile
is given by

h(x) = 1 +
1

2
exp

(

−

(

x− 3

0.7

)

2
)

.

2. Write a Lagrangian solver for the free surface. That means move the mesh according to
the computed velocity u as for the previous exercise. Show that the computation does not
last for a long time.

3. Implement an ALE approach. In that aim, one can move the mesh only vertically according
to a vertical displacement c = (0, cy). The only constraint for cy is that it must be
consistent (which means one has

c · n = u · n on the boundary.



3

A possible choice (though not the unique one) is to solve











∆cy = 0 ,

cy =
u · n

ny

on the free surface and on the bottom ,

∂cy

∂n
= 0 everywhere else.

4. Move the mesh according to the vector field (0, cy) and transport all quantities on the
new mesh before solving again Navier-Stokes equations. This is done using the following
FreeFem++ syntax

real[int] tmp(ux[].n); //tmp is an array of the same size than ux

tmp=ux[]; pux=0; pux[]=tmp ;

tmp=uy[]; puy=0; puy[]=tmp ;

tmp=cx[]; cx=0; cx[]=tmp ;

tmp=cy[]; cy=0; cy[]=tmp ;

These complicated commands are meant to transport the old variables on the new mesh.
Strictly speaking they do nothing (copy the variable into a temporary array and then copy
it back). However if one does not do this kind of command, FreeFem++would by default
interpolate the old variable on the new mesh which is not what is desired.


