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Chapter 1

Models for incompressible fluids

1.1 Navier-Stokes equations

1.1.1 A first glance at the equation

The motion of fluids like air or water can be described in some situations by the Navier-
Stokes equations

ρ

[

∂u

∂t
+ (u · ∇)u

]

= µ∆u−∇p+ f , (1.1)

div u = 0, (1.2)

where ρ > 0 is the (constant) density of the fluid, µ > 0 its viscosity, and f the force per
unit volume applied to the fluid. The unknowns are u = (u1, u2, u3) for the velocity and
p for the pressure of the fluid.

Equation (1.1) represents the balance law (i.e. ma = F), while (1.2) reflects the
incompressibility of the fluid.

1.1.2 Forces

Only two types of forces are allowed, namely the body forces and the contact forces. Body
forces are described by a density. the typical example is the gravity in which

f = −ρge3, (1.3)

where g is the acceleration of gravity and e3 the vertical unit vector pointing upward.
Contact forces, on the other hand, represent the forces experienced by the fluid from

the exterior world at its boundary, and are given by a surface density s. The same
description is used for forces exerted on (virtual) surfaces inside the fluid. More precisely,
let S be an oriented smooth surface inside the fluid, x ∈ S and n be the positive normal
to S at x. Then s(x,n) represents the force per unit area at x exerted by the material
on the positive side of S on the material on the negative side. That s depends only on S
through its normal - and not, say, on its curvature - is an assumption called Cauchy stress
postulate. It is a working hypothesis defining a class of materials on which the theory
applies. It turns out to be a sufficiently large class to make the theory widely applicable.
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4 CHAPTER 1. MODELS FOR INCOMPRESSIBLE FLUIDS

From this, we can write the total force F acting on a region Ω occupied by the fluid
as

F =

∫

Ω

f(x) dx +

∫

∂Ω

s(x,n(x)) dσ(x). (1.4)

1.1.3 Kinematics

The field u(x, t) represents the velocity of the fluid particle occupying position x at time
t. We are interested in the acceleration of that particle in order to write Newton’s second
law. We accomplish this by labelling particles by their positions at time t = 0. Let Ω0

(resp. Ωt) be the region occupied by the fluid at time 0 (resp. time t). Usually, Ω0 is
called the “reference configuration” whereas Ωt stands for the “current configuration”.
The map χ(X, t) which gives the position at time t of the particle that was in X ∈ Ω0 at
time 0, is called “the motion” and satisfies the ODE

dχ

dt
(X, t) = u(χ(X, t), t), (1.5)

χ(X, 0) = X. (1.6)

Its inverse, defined on Ωt will be denoted by ξ. Now, the acceleration of the particle at
time t and position χ(X, t) is given by

a(χ(X, t), t) =
d

dt
u(χ(X, t), t),

=
∂u

∂t
(χ(X, t), t) +

∑

i

∂u

∂xi
(χ(X, t), t)

dχi

dt
(X, t)

which from (1.5) reduces to

a(χ(X, t), t) =
∂u

∂t
(χ(X, t), t) +

∑

i

∂u

∂xi

(χ(X, t), t)ui(χ(X, t), t),

=
∂u

∂t
(χ(X, t), t) + (u · ∇)u(χ(X, t), t).

For x ∈ Ωt, using X = ξ(x, t) in the preceding formula leads to

a(x, t) =
∂u

∂t
(x, t) + (u · ∇)u(x, t).

The same computation for an arbitrary function φ(x, t) leads to

φ̇(x, t) :=
∂

∂t
φ(x, t) + (u(x, t) · ∇)φ(x, t), (1.7)

which is sometimes called the “total time derivative”, the “material derivative” or the
time derivative of φ(x, t) at X fixed. With this notation, a(x, t) = u̇(x, t).
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1.1.4 Balance laws (Newtonian mechanics)

For any subset E of Ω0, let us call Et = χ(E, t) the region occupied by the particles
of fluid which were in E at time 0. The balance laws that control the evolution of Et,
according to Newtonian mechanics are:

• Conservation of mass,

• Balance of linear momentum,

• Balance of angular momentum.

Conservation of mass

Let us call

M(Et) =

∫

Et

ρ(x, t) dx, (1.8)

the total mass of fluid contained in Et. Conservation of mass states that M(Et) stays
constant in time. Making the change of variable x = χ(X, t)

∫

Et

ρ(x, t) dx =

∫

E

ρ(χ(X, t), t)J(X, t) dX dt, (1.9)

where J(X, t) > 0 is the jacobian determinant of χ at (X, t). Then using Euler’s lemma
(see Exercise 1)

∂J

∂t
(X, t) = J(X, t)divxu(x, t)|x=χ(X,t), (1.10)

and (1.9), conservation of mass becomes

0 =
d

dt
M(Et)

=

∫

E

ρ̇J + ρ
∂J

∂t
dX (1.11)

=

∫

E

(ρ̇+ ρdivxu)J dX

=

∫

Et

(ρ̇+ ρdivxu) dx

for every E ⊂ Ω0 (and thus for every subset Et of Ωt). As a consequence, we get

ρ̇+ ρdivxu = 0 in Ωt. (1.12)

The incompressibility constraint can be stated and handled in the same way. Namely,
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by saying that the volume of Et stays constant in time. This becomes

0 =
d

dt
vol(Et)

=
d

dt

∫

Et

1 dx

=
d

dt

∫

E

J(X, t) dX

=

∫

E

∂J

∂t
(x, t) dx

from which one infers
∂J

∂t
= 0. But since at t = 0 one has J = 1 (χ(X, 0) = X), it stays

constant in time and space. Using this in (1.10) leads to divxu(x, t) = 0 from which one
deduces (from (1.12)) that ρ̇ = 0. Therefore provided the density is constant at t = 0, it
stays constant in time (and space).

At this point we have justified that incompressibility is expressed by (1.2), and that ρ
in (1.1) is a positive constant.

Balance of linear momentum

Again, we set as before

L(Et) =

∫

Et

ρ(x, t)u(x, t) dx, (1.13)

the total linear momentum contained in Et. Balance of linear momentum is simply the
transcription of Newton’s law (F = ma) which states that the rate of change of L(Et)
equals the total force on Et. In view of (1.4), this is

d

dt
L(Et) =

∫

Et

f(x, t) dx +

∫

∂Et

s(x, t,n) dσ(x), (1.14)

where n = n(x, t) stands for the unit outward normal to ∂Et. Using Exercise 2, we get
d

dt
L(Et) =

∫

Et

ρ(x, t)u̇(x, t) dx.

Thanks to Cauchy’s theorem (see Exercise 3), s(x, t,n) = σ(x, t)n, where σ is the
Cauchy stress tensor. Therefore

∫

∂Et

σ(x, t)n dσ(x) =

∫

Et

divσ(x, t). (1.15)

Now, collecting terms, and using that Et is arbitrary, we get

ρu̇ = divσ + f . (1.16)

Balance of angular momentum

As we shall see, the balance law for angular momentum gives the new feature that the
Cauchy stress tensor has to be symmetric.
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Let x0 be any point. We define

A(Et) =

∫

Et

(x − x0) ∧ ρ(x, t)u(x, t) dx (1.17)

the total angular momentum with respect to x0 of the fluid contained in Et. Balance of
angular momentum states that the rate of change of A(Et) equals the total momentum
with respect to x0 of the forces acting on Et. This means

d

dt
A(Et) =

∫

Et

(x − x0) ∧ f(x, t) dx +

∫

∂Et

(x − x0) ∧ s(x, t,n) dσ(x). (1.18)

Again,
d

dt
A(Et) =

∫

Et

ρ(x, t)(x−x0)∧u̇(x, t) dx (see Exercise 2), and thus (1.18) rewrites

∫

Et

(x−x0)∧(ρu̇−f−divσ) dx = −

∫

Et

(x−x0)∧divσ dx+

∫

∂Et

(x−x0)∧σn dx. (1.19)

From the balance of linear momentum, the left-hand side vanishes, which means that σ

is symmetric (see Exercise 4).

1.1.5 Stresses in a Newtonian fluid

The validity of the balance laws of previous section is not restricted to fluids, and actually
we will use them for the modelling of solids. The type of material is specified by a
constitutive equation which relates the Cauchy stress tensor to the motion. A fluid reacts
to attempt to change its volume (with a pressure, and incompressibility is an extreme
case) and to imposed shear rates, typically with a shear force. For an incompressible
Newtonian fluid, the considered equation is

σ = −pId + 2µD(u), (1.20)

where p is the pressure of the fluid, D(u) =
1

2
(∇u + ∇uT ) is the symmetric part of the

velocity gradient (here ∇uT stands for the transpose of ∇u), and µ > 0 is a scalar called
the viscosity. The sign of µ is a consequence of positivity of dissipation as we will see
later.

On the right-hand side, the first term would describe a fluid at rest. As we shall see
later, the pressure p = −1

3
tr(σ) can be viewed as a Lagrange multiplier associated with

the incompressibility constraint divu = 0. The other term is symmetric, linear in the
gradient of the velocity, isotropic and Galilean invariant (i.e. invariant with respect to
superimposed translations and rigid rotations).

1.1.6 Navier Stokes equations

Substituting σ in (1.16) by the formula given in (1.20), and remarking that

div∇uT = ∇divu = 0, (1.21)
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gives Navier-Stokes equations






ρ

[

∂u

∂t
+ (u · ∇)u

]

= µ∆u−∇p+ f ,

divu = 0.
(1.22)

Navier-Stokes equations are a very important model for many reasons. First, they are
very fundamental. The only non-generic aspect is the linearity of the constitutive equation
(1.20), but this is at least the most generic when the velocity has only small gradients.
Then, it turns out that despite this simple constitutive equation, they model accurately
a wide range of physical phenomena (from airplane wings, to wind on suspension bridges
and skyscrapers, to ships and sail boats, to flow of water in a pipe, to swimming of
fishes and bacteria, etc.) including natural instabilities (turbulence), which poses a lot
of trouble for their numerical simulations. Eventually, they pose a severe challenge to
mathematicians so that they have been chosen as one of the seven millenium problems
selected by the Clay Mathematical Institute.

The physically relevant boundary conditions are typically of two kinds

• Prescribed velocity (in particular the no-slip condition u = 0 is applied where the
boundary is a solid at rest) ;

• Prescribed boundary forces. Calling g a known force per unit area applied to the
fluid from the environment, it writes

σn = g. (1.23)

1.1.7 Energy and dissipation in an incompressible Newtonian
fluid

By definition, the dissipation rate is equal to the difference between power expended on a
system by external forces and the rate of change of stored energy. From thermodynamics,
it is always non-negative. Here, the fluid only has kinetic energy and therefore we can
write (Et being any subset of Ωt as usual)

∫

Et

f · u dx+

∫

∂Et

σn · u dσ −
d

dt

(
∫

Et

ρ
u2

2
dx

)

≥ 0. (1.24)

Again, for the last term, one has

d

dt

(
∫

Et

ρ
u2

2
dx

)

=

∫

Et

ρu · u̇ dx. (1.25)

The second term is handled as
∫

∂Et

σn · u dσ =

∫

∂Et

σTu · n dσ =

∫

Et

div(σTu) dx, (1.26)

which using the identity
div(σTu) = divσ · u + σ : ∇u, (1.27)
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and the fact that σ is actually symmetric, reduces to
∫

∂Et

σn · u dσ =

∫

Et

div σ · u dx +

∫

Et

σ : D(u) dx. (1.28)

Collecting all terms, one arrives to
∫

Et

(f + divσ − ρu̇) · u dx +

∫

Et

σ : D(u) dx ≥ 0. (1.29)

From, the balance of linear momentum (1.16), the first term vanishes, whereas from (1.20),
one gets

∫

Et

σ : D(u) dx =

∫

Et

(−pId + 2µD(u)) : D(u) dx = 2µ

∫

Et

|D(u)|2 dx. (1.30)

The dissipation being non-negative one must have µ ≥ 0.

Remark 1 In the case where there is no body force (f = 0) and for example u = 0 at
the boundary, then the kinetic energy decreases in time providing a kind of stability to the
equations. Of course, this is formal because the reasonning relies on the smoothness of u
and the existence of sufficiently regular solutions is not known in general.

1.2 The Reynolds1 number - Stokes equations

Stokes equations are obtained as formal limits of Navier-Stokes equations (1.1,1.2) when
some terms are neglected. To make this statement more precise, we make the change of
variables and rescale the unknowns by considering

x∗ =
1

L
x, u∗ =

1

U
u , t∗ =

U

L
t, (1.31)

where L, and U respectively stand for a typical length and velocity involved in the con-
sidered flow. The equation on dimensionless variables writes

∂u∗

∂t∗
+ (u∗ · ∇∗)u

∗ −
µ

ρUL
∆u + ∇p∗ = f∗ (1.32)

where p∗ = p/(ρU2) is the adimensioned pressure, and f∗ = fL/(ρU2) the adimensioned
forcing term. The quantity

Re =
ρUL

µ

is called the “Reynolds number”. The Reynolds number is a number without dimension

which measures the intensity of the inertial forces (typically of order
ρU2

L
) over the viscous

1“Osborne Reynolds (23 August 1842 - 21 February 1912) was a prominent innovator in the under-
standing of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought
improvements in boiler and condenser design.” (Source Wikipedia).
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forces inside the fluid (of order
µU

L2
). When Re is much smaller than one, the flow is

governed by the viscosity while on the contrary for Re >> 1, viscosity is negligible and
inertia dominates.

Depending whether the coefficients in (1.32) are small or not the corresponding terms
may be neglected or not. This gives several simplified equations which should formally
be approximations of (1.1,1.2). Namely we distinguish

• The stationary Stokes equations, in the regime Re → 0, all the other parameters
being taken as constant.

−∆∗u
∗ + ∇∗p

∗ = 0, (1.33)

div∗u
∗ = 0. (1.34)

In such flows, the viscosity dominates inertial effects, and the rate of change of loads
(or boundary conditions) is small compared to intrinsic response times of the fluid.
Whether or not gravity plays a role depends on the value of λ. Going back to the
physical quantities and units, we get the equations

−µ∆u + ∇p = f , (1.35)

div u = 0, (1.36)

• The non-stationary Euler equations, in the regime Re → +∞. Formally the viscosity
is negligible and we remain with

ρ

[

∂u

∂t
+ (u · ∇)u

]

+ ∇p = f , (1.37)

div u = 0, (1.38)

Let us emphasize that this limit is purely formal, and the actual behavior of flows governed
by Navier-Stokes equations can be very different from those governed by Euler equation.
In particular, the standard condition at a wall for NS equations is a no-slip condition,
whereas natural conditions for Euler affect the normal component only. As a consequence,
the behavior of both models near walls can be drastically different, even at very high
Reynolds numbers.

Remark 2 The description of phenomena associated to flows at high Reynolds number
goes far beyond the scope of this course, and the understanding of turbulence (which refers
to situations where complex motions occur over a large large a space scales) still raises
many open questions. Let us simply say here that high Reynolds flows can be pictured as
containing eddies over a large range of sizes, starting to the global size of the observed
phenomenon, down to much smaller scales. It is usually considered that dissipation occurs
at some space scale η (smaller size of the eddies). According to Kolmogorov’s theory, L/η
is of the order Re3/4. This formula gives a precious indication in the context of numerical
simulations. If one aims at discretizing the space in order to “capture” (i.e. represent
on the mesh) the smallest eddies, the number of mesh vertices in each direction scales
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at Re3/4, so that in 3d, the total number of vertices is Re9/4. This remark concerns Di-
rect Navier-Stokes simulations (called DNS). Other methods, like Large Eddy Simulation
(LES) method, or methods based on the so-called k − ε model, have been introduced to
limit the cost of numerical simulation by discretizing at a scale larger than η. Those
approaches rely on assumptions regarding what happens at scales smaller than the mesh
size, and involve extra unknown pertaining to those phenomena (like the kinetic energy k
associated to smaller scales in the k − ε model).

Oscillatory flows. In the case of oscillatory flows, which plays an important role in
many situations (e.g. in the swimming motion of living organisms), it is natural to follow
a slightly different approach: denoting by ω the frequency of the phenomenon which is
observed, the time is made dimensionless according to t∗ = ωt, which leads to

ω
L

U

∂u∗

∂t∗
+ (u∗ · ∇∗)u

∗ −
1

Re
∆u + ∇p∗ = f∗.

This approach decouples the time derivative and its advective counterpart, which allows
to consider situations where Re goes to 0 together with U/(Lω), which leads to the non-
stationary Stokes equations, which writes

∂u

∂t
− µ∆u + ∇p = f .

As typical numerical applications, we consider the case of a bacterium or a dolphin

swimming into water at room temperature. In these cases, we get
ρ

µ
=

103kg s−1

10−3 Pa s
=

106m−2s and

• For the dolphin, ω ∼ 1 s−1, L ∼ 1 m, U ∼ 10 m s−1, and Re ∼ 107,
ωL

U
∼ 1,

and, using f = −ρge3 (the force due to gravity), we get that the force coefficient is

of order
Lg

U2
∼ 10−1. This means that inertia plays a proeminent role compared to

viscosity. The dolphin moves mainly by accelerating the water and Stokes equations
are not a valid approximation to Navier-Stokes equations in that case. One should
rather use in this situation the Euler equations (1.37,1.38).

• For the bacterium, ω ∼ 1 s−1, L ∼ 1 µm, U ∼ 10 µm s−1, and Re ∼ 10−5, ReωL
U

∼

10−6, and Re
Lg

U2
∼ 1. In that case, the Stokes equations is a valid model, however,

the gravity cannot be neglected. A bacterium can only move by exploiting viscous
forces.

The Reynolds number distinguishes between the so-called laminar flows (Re << 1)
and turbulent flows (Re >> 1). Examples of laminar flows are given by very viscous flows,
or flows inside a glacier (see Fig. 1.2) while in turbulent flows one usually sees vortices
and non stationary regimes (see Fig. 1.2)

Remark 3 In Stokes equations, taking the divergence of (1.33) leads to

∆∗p
∗ = 0. (1.39)
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Figure 1.1: In a glacier the flow seems very smooth. Nice laminar structures appear in
the direction of the flow.

Figure 1.2: Flow around a wing or in a river. In both cases complex structures appear
and the flow is non stationnary, and turbulent.
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1.3 Equivalent writings of Navier-Stokes equations

It is very important to understand that the pressure in Navier-Stokes equations is one
of the unknowns (together with the three components of the velocity u). In particular,
using the identity (known as Bernoulli’s identity in this context)

(u · ∇)u =
1

2
∇(|u|2) − u× curl u

one can transform the original equation (1.1,1.2) into

ρ

[

∂u

∂t
− u × curl u

]

= µ∆u−∇p̃+ f , (1.40)

div u = 0, (1.41)

where the new pressure p̃ = p+
ρ

2
|u|2 is usually called the dynamical pressure.

Another writing of the non linear term is the following

(u · ∇)u =

3
∑

i=1

ui∂xi
u

=
3

∑

i=1

∂xi
(uiu)

in view of div u = 0. This latter expression is often denoted by div (u ⊗ u). With this
notation, the Navier-Stokes equations become

ρ

[

∂u

∂t
+ div (u⊗ u)

]

= µ∆u−∇p+ f , (1.42)

div u = 0, (1.43)

1.4 Some typical problems

We describe here some situations for which the exact solution cannot be given analytically.

1.4.1 Flow around an obstacle

A great amount of computational strategies to approximate solutions to the Navier-Stokes
equation have been developed during the last decades to address the following problem
(represented in the two dimensional setting by Fig. 1.3): consider a flow of a viscous fluid
around a fixed obstacle B, one is interested in estimating the forces exerted by the fluid on
the obstacle. The problem consists in solving incompressible Navier-Stokes equations in
the fluid part Ω, with no-slip conditions on the boundary γ of the obstacle. The question
of boundary conditions on the outer boundary raises some interesting issues. A first model
consists in assuming that the outer boundary is far enough from ω, so that the flow there
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B γ

Ω

Figure 1.3: Flow around an obstacle

is not affected by the presence of the obstacle. In this case, it is reasonable to assume the
velocity to be fixed on Γ = ∂Ω, equal to a “velocity at infinity” U∞. The approach may
lead to a large exterior domain, and thereby high computational costs. A great amount
of investigations has been undertaken to propose alternative strategies to overcome this
problem, by elaborating appropriate boundary conditions on the outer boundary.

In the case where ω represent an airfoil, quantities of interested are the lift force
(portance in french) Fy, and the drag (trâınée) Fx

Fy = −ey ·

∫

γ

σn , Fx = −ex ·

∫

γ

σn.

The lift force maintains the aircraft in the air (it balances the total weight of the flying
plane), whereas drag is opposed to motion, thereby conditioning the price to pay to make
the plane flying.

1.4.2 Some simple fluid-structure interaction problems

In real life application, one is commonly interested in modeling the way a fluid interacts
with another medium, like an elastic structure. This problem raises issues which are still
the object of active research, both on the theoretical and numerical aspects. We present
here here two situations where the number of degrees of freedom for the structure is finite.

Spring-mass-fluid system. We consider the situation represented in Fig. 1.4 (left).
The domain Ω is bounded on the right side by a piston with mass m, attached to a spring
with stiffness k > 0. Despite its formal simplicity, this example calls for a special care
of boundary conditions : as the motion of the piston is not compatible with the no-slip
condition on the lateral boundary, we shall assume that the fluid may slip freely along
this part of the boundary. Assuming the fluid sticks to the piston, the global problem
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Ω Ω

BΓ0

Γ0

Γin Γm

Γℓ

Γℓ

γ

k

U

ω

Figure 1.4: Interaction with a rigid structure

may be written

ρ (∂tu + (u · ∇)u) − µ∆u + ∇p = 0 in Ω(t)

∇ · u = 0 in Ω(t)

u = 0 on Γ0

σn = 0 on Γin

u · n = 0 , t · σn = 0 on Γℓ

u = ẋ ex = 0 on Γm

supplemented by Newton’s law for the piston:

m
d2x

dt2
= −k(x− x0) −

∫

Γm

σn.

Fluid particle flow. In this second example (see Fig. 1.4, right), we consider a rigid
disc flowing freely in a viscous fluid. Denoting by ρs the density of the solid, and by m
its mass, the fluid problem can be written in the form of incompressible Navier-Stokes
equations in the moving domain Ω(t) (with right-hand side ρg, supplemented by two types
of coupling conditions:

1. Kinematic coupling. No-slip condition on the boundary of the body writes

u = U + ω ∧ r on γ.

2. Dynamic coupling. Newton’s law for the particle translational and angular velocity
write

m
dU

dt
= −

∫

γ

σn +mg , J
dω

dt
= 0,

where J is the moment of inertia of the disc.

The problem is written here for a single particle, but it can be extended straightforwardly
to the many-body situation (with 3 degrees of freedom per particle, together with a three
dimensional coupling between each particle and the fluid).
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1.4.3 Flow in complex geometries: example of the bronchial tree

The bronchial tract can be seen as a network of interconnected pipes following a tree-like
structure, with 23 levels of bifurcations. It is a typical example of a situation where a
full computation of the fluid flow in the overall domain is out of reach. A careful look at
the Reynolds number throughout the tree, during normal breathing, reveals that inertial
effects are predominant in the first generations only, whereas Reynolds number decreases
to very small values at the end of the tree. As a consequence, it is natural to consider
Navier-Stokes for the upper part of the tree, for the N first generations, couple the 2N

outlets to equivalent resistances (which account for the truncated subtrees), and finally
plug those resistances onto a spring mass system (which accounts for the lung - thoracic
cage system). The obtained multi-compartment system is represented in Fig. 1.5.

Ω Γi

Γℓ

Γ0

m

Ri

Pa

k

Figure 1.5: Three compartment lung

We introduce a pressure Πi for each outlet i (this pressure is assumed to be constant
over each section), and one write Poiseuille’s law for each subtree, which expresses the
linear dependence between flux and pressure drop:

Πi − Pa = Ri

∫

Γi

u · n, Ri ≥ 0 .

The global system is obtained by eliminating auxiliary pressures Πi.
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ρ
∂u

∂t
+ ρ(u · ∇)u− µ△u + ∇p = 0 , dans Ω ,

∇ · u = 0 , dans Ω ,
u = 0 , sur Γℓ ,

µ∇un − pn = −P0n sur Γ0 ,

µ∇un − pn = −Pan −Ri

(
∫

Γi

u · n

)

n , sur Γi ,

mẍ+ kx = fext + SPa ,

Sẋ =
N

∑

i=1

∫

Γi

u · n = −

∫

Γ0

u · n.

(1.44)

1.5 Exercises

Exercise 1 Prove Euler’s lemma

Exercise 2 Prove that conservation of mass implies

d

dt

∫

Et

ρ(x, t)φ(x, t) dx =

∫

Et

ρ(x, t)φ̇(x, t) dx. (1.45)

Hint: Use formula (1.11)

Exercise 3 Prove Cauchy’s theorem

Exercise 4 By expanding the computation, prove that −
∫

E
(x−x0)∧div σ dx+

∫

∂E
(x−

x0) ∧ σn dx = 0 for all E if and only if σ is symmetric.
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Chapter 2

Analysis of the Stokes equations

2.1 The Poisson problem, minimization

We first consider the so-called Dirichlet problem posed on a bounded regular domain Ω,
for a right-hand side f ∈ L2(Ω)

[

−∆u = f in Ω,
u = 0 on ∂Ω.

(2.1)

The variational equation is obtained by taking a test function v that vanishes over Γ = ∂Ω.
One obtains

∫

Ω

∇u · ∇v =

∫

Ω

fv.

The problem in this form fits into the following abstract framework

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V is a Hilbert space

a(·, ·) bilinear form on V × V , ϕ ∈ V ′

Find u ∈ V such that ,

a(u, v) = 〈ϕ , v〉 ∀v ∈ V.

(2.2)

As we shall see, the Lax Milgram theorem asserts well-posedness of this problem, under
some assumptions on the bilinear form a(·, ·). In the present case, a(·, ·) is symmetric, and
the problem takes a simpler form: it consists in representing a linear functional (ϕ ∈ V ′)
by an element of V , with respect to a(·, ·). As soon as this bilinear form can be taken
as a scalar product on V , the Riesz theorem (Th. ??) gives existence and uniqueness of
such a element. To fit the problem within this representation theorem, the Hilbert space
in which the problem will be set has to be chosen in accordance with the bilinear form
∫

∇u · ∇v.

Let us introduce the Sobolev space

H1(Ω) =
{

u ∈ L2(Ω) such that ∇u ∈ L2(Ω)
}

, (2.3)

19
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where the gradient ∇u is taken in the sense of distributions on Ω. When equipped with
the scalar product (·, ·)H1(Ω) and the associated norm || · ||H1(Ω) defined by

||u||2H1(Ω) =

∫

Ω

|u(x)|2 dx+

∫

Ω

|∇u|2 dx

(u, v)H1(Ω) =

∫

Ω

u(x)v(x) dx+

∫

Ω

∇u(x) · ∇v(x) dx

the space H1(Ω) is a Hilbert space. The boundary condition on the Dirichlet problem
(2.9) is taken into account by considering the subspace H1

0 (Ω) of H1(Ω) defined as the
closure of D(Ω) in H1(Ω) (with respect to the H1 norm). The Poincaré inequality

∃C (= C(Ω)), s.t. ∀u ∈ H1
0 (Ω), ||u||L2(Ω) ≤ C

∫

Ω

|∇u(x)|2 dx (2.4)

permits to show that

|u|21 :=

∫

Ω

|∇u(x)|2 dx (2.5)

is a norm on H1
0 (Ω) which is equivalent to the usual H1 norm. As a consequence, we

have:

Proposition 1 Let Ω be a bounded domain, and f ∈ L2(Ω). The problem

Find u ∈ H1(Ω) ,

∫

Ω

∇u · ∇v =

∫

Ω

fv ∀u ∈ H1
0 , (2.6)

admits a unique solution u, which is also the unique minimizer of

J(v) =
1

2

∫

Ω

|∇v|2 −

∫

Ω

fv.

Proof : It is a straightforward application of Riesz theorem in the Hilbert space V =
H1

0 (Ω).

A solution to (2.6) is called a weak solution to Problem (2.9). The link between the
original equation and the variational formulation is clear, but not yet formalized (the path
followed to establish the variational formulation is informal). It is necessary to complete
the process by establishing in what sense the original equation stands. This step can
be very delicate, as it raises regularity issues (H1 regularity is not sufficient to give a
classic sense to the Laplace operator). If we admit here that the solution provided by
Proposition 1 is H2, which is the case if one assumes that the domain is bounded and
regular (twice differentiable), or if it is a convex polyhedron, we may proceed as follows:
For any v ∈ D(Ω),

∫

Ω

∇u · ∇v =

∫

Ω

fv.

As u is twice differentiable in the Sobolev sense (its second derivatives are L2 functions),
we may use Green’s formula to obtain

∫

Ω

(−∆u− f) v = 0,
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so that −∆u = f almost everywhere. The Dirichlet boundary condition, which was part
of the initial problem, is “included” in the space where the well-posedness theorem was
obtained. For this reason, such a condition is called essential.

Non homogeneous Dirichlet conditions.
Before considering such conditions, let us say a few words on traces. The notion of

trace of a function (more precisely of a class of functions, as we consider that two functions
in the classical sense identify as soon as they are equal almost everywhere) extends the
notion of restriction for regular functions (in a proper sense). If a function is continuous
in R2, its restriction to a regular curve Γ is well-defined. If one considers now a function
in L2, this “restriction” does not make sense as Γ has zero measure. Yet, under some
additional regularity assumptions, even if the considered functions are not continuous
(so that pointwise values might not be well-defined), it is possible to extend this notion
of restriction. In particular for functions in H1(Ω), where Ω is a bounded domain with
smooth boundary Γ, one can define a trace v 7→ γ(v) which maps H1 onto L2(Γ). Actually
trace functions are more regular than L2, the range of the trace operator is denoted by
H1/2(Γ), which means informally that half a derivative is in L2 (which can be expressed
straightforwardly in the Fourier setting). In what follows, we shall denote by v|Γ, or even
v when no confusion is possible, what should be denoted by γ(v).

When the value at which u is set on the boundary, the problem takes the following
form

[

−∆u = f in Ω,
u = g on ∂Ω,

(2.7)

where g belongs is (the trace on the boundary of) a H1 function g̃. Indeed, writing
u = g̃+ ũ we are looking for ṽ ∈ H1

0 (Ω) solution of the variational formulation associated
with the problem

Find ũ ∈ H1
0 (Ω), s.t. ∀v ∈ H1

0 (Ω),

∫

Ω

∇ũ · ∇v =

∫

Ω

fv −

∫

Ω

∇g̃ · ∇v. (2.8)

This variational formulation is then solved thanks to Lax-Milgram theorem since

v 7−→

∫

Ω

∇g̃ · ∇v

is a continuous linear functional on H1
0 . Note that it is sufficient to assume that g is the

trace of a function in H1 (i.e. that g is in H1/2(Γ)) to obtain existence and uniqueness
of a weak solution in H1(Ω), but a better regularity (like the H2 regularity, which will
be needed to obtain optimal convergence for first order finite element approximations)
necessitates stronger assumptions on g.

Remark 4 The problem can also be written as follows1: Find u in the affine space

{w ∈ H1(Ω) , w = g on Γ},

such that
∫

Ω

∇u · ∇v =

∫

Ω

fv ∀v ∈ H1
0(Ω).

1The discrete variational formulation will be written in this spirit in the FreeFem++ framework.
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Neuman boundary conditions. Other types of boundary conditions, namely Neuman
boundary conditions, can be considered. In the context of the heat equation, they consist
in prescribing the flux (whereas for Dirichlet conditions the value of the temperature itself
is prescribed). We consider the following problem





u− ∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω.

(2.9)

The variational formulation is
∫

Ω

uv +

∫

Ω

∇u · ∇v =

∫

fv ∀v ∈ H1(Ω).

If one applies Lax-Milgram theorem (or Riesz theorem) on H = H1(Ω) (and not

H1
0 (Ω)) with a(u, v) = (u, v)H1(Ω), and 〈ϕ , v〉 =

∫

Ω

fv as usual, we obtain that there

exists a unique u ∈ H1(Ω) such that for all v ∈ H1(Ω),
∫

Ω

uv +

∫

Ω

∇u · ∇v =

∫

Ω

fv. (2.10)

The unique solution u can be shown to verify the initial boundary value problem. Admit-
ting again that the solution is in H2(Ω) (which is indeed the case as soon as the domain
is bounded and regular), we can use the variational formulation with test functions in
D(Ω), and integrate by part to obtain

∫

Ω

(u− ∆u− f)v = 0 ∀v ∈ D(Ω),

so that u − ∆u = f a.e. (as a function of L2(Ω)). Considering now test functions which
do not vanish on the boundary, integrating by parts, and using the equation which has
been established in Ω, one obtains

∫

Γ

∂u

∂n
v = 0,

so that ∂u/∂n (which is well defined as u ∈ H2) vanishes almost everywhere on Γ.
A variation between Dirichlet and Neumann boundary conditions is also possible.

Namely, we consider ΓD a part of the boundary on which we apply a Dirichlet boundary
condition, and ΓN = ∂Ω \ ΓD:







−∆u = f in Ω,
u = g on ΓD,

∂u

∂n
= h on ΓN .

(2.11)

In that case the variational formulation will be
∫

Ω

∇ũ · ∇v −

∫

ΓN

hv =

∫

Ω

fv −

∫

Ω

∇g̃ · ∇v.
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2.2 Stokes equations

In the case of Stokes equations, the unknown is the velocity-pressure couple (u, p). As we
shall see in this section, the pressure field p can be interpreted as a Lagrange multiplier
associated to the constraint ∇ · u = 0. We consider the Stokes problem in a bounded,
regular domain Ω, with homogeneous Dirichlet boundary conditions (we take µ = 1 for
simplicity):











−∆u + ∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on Γ = ∂Ω .

(2.12)

As far as the velocity is concerned, this problem can be studied straightforwardly by
writing the variational formulation with divergence free test functions (this approach is
followed in MAP431 [1]). It writes

∫

Ω

∇u : ∇v =

∫

f · v,

which fits into the framework of Lax-Milgram (or Riesz) theorem, as the set

K = {v ∈ H1(Ω)d , ∇ · v = 0}

is a Hilbert space when endowed with the H1 norm (and scalar product). It provides
existence and uniqueness of a velocity field u, which is a solution of the original problem
in some sense. The pressure field can be recovered by use of the De Rham theorem (see
again [1]), which asserts existence of a unique pressure field p ∈ L2(Ω) with zero mean
value such that

∫

Ω

p∇ · v = 〈ψ , v〉,

as soon as ψ ∈ V ′ vanishes against any divergence free field. Taking

〈ψ , v〉 =

∫

f · v −

∫

Ω

∇u : ∇v

in the De Rham theorem allows to obtain well-posedness in terms of pressure. We shall
follow another approach here, based on a saddle point formulation of the problem, which
will constitute the basis of mixed finite element method (see Chapter 3).

Firstly, note that uniqueness cannot be expected for the Stokes problem with homo-
geneous Dirichlet boundary conditions, as the pressure p is obviously defined up to a
constant. We shall handle this indeterminacy by prescribing an extra constraint on the
pressure, namely zero mean over the domain. The variational formulation of this problem
is obtained as follows. Consider test functions v and q for velocity and pressure, respec-
tively, with v = 0 on Γ, we multiply the first equation by v, the second one by q, and we
integrate over the domain to obtain















∫

Ω

∇u · ∇v −

∫

Ω

p∇ · v =

∫

Ω

f · v ,

∫

Ω

q∇ · u = 0 .

(2.13)



24 CHAPTER 2. ANALYSIS OF THE STOKES EQUATIONS

This leads to the following abstract formulation







a(u, v) + b(v, p) = 〈ϕ , v〉 ∀v ∈ V ,

b(u, q) = 0 ∀q ∈ X .
(2.14)

Here a(·, ·) and b(·, ·) are bilinear forms over V × V and V ×X, with V = H1(Ω)d and

X = L2
0 =

{

q ∈ L2(Ω) ,

∫

Ω

q = 0

}

.

This abstract form can also be written in terms of operators. We introduce A ∈ L(V, V ′)
and B ∈ L(V,X) defined by

〈Av,w〉 = a(v, w) ∀w ∈ V , (Bv, q) = b(v, q) ∀q ∈ X.

Eq.(2.14) can then be written







Au+B∗p = ϕ ,

Bu = 0 .
(2.15)

The well-posedness theorem for Stokes equations relies on a so called saddle-point2

formulation of the following problem :

{

u ∈ K = kerB,

J(u) = inf
v∈K

J(v),
(2.16)

where J is defined by

J(v) =
1

2
a(v, v) − 〈ϕ , v〉.

Before detailing the abstract framework, let us give a overview of the situation: the
minimization problem above is obviously well-posed under reasonable assumptions (in
particular a(·, ·) is supposed to be coercive), it admits a unique minimizer u. Expressing
the fact that u minimizes J over K, i.e. J(u+ v) ≤ J(u) for any v ∈ K, one obtains that
∇J is in K⊥ = kerB⊥. In the finite dimensional setting (B can be seen as a matrix),
kerB⊥ = R(B⋆) implies existence of p ∈ X such that ∇J +B⋆p = 0, i.e. Au+B⋆p = ϕ,
which provides existence of a solution to Problem (2.15). Uniqueness for the Lagrange
multiplier p is obtained as soon as B⋆ is injective, i.e. B is surjective.

2This name is due to the fact that Problem (2.15) is equivalent to: (u, p) is a saddle-point for the
function (called the Lagrangian)

L(v, q) = J(v) + (Bv, q) ,

which means that

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀v ∈ V , ∀q ∈ X.
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When the dimension is infinite (which is the case for the Stokes problem), kerB⊥ =
R(B⋆) is replaced by the weaker property

(kerB)⊥ = R(B⋆).

As a consequence, if one assume that B⋆ has a closed range (or equivalently, B has
a closed range), one obtains existence of a couple (u, p) solution to the saddle-point
formulation (2.16), and uniqueness as soon as B is surjective.

In the following we shall consider the following set of assumptions and notations.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V and X Hilbert spaces,

a(·, ·) bilinear continuous symmetric coercive on V × V , ϕ ∈ V ′

B ∈ L(V,X),

K = kerB = {v ∈ V , Bv = 0}

J(v) =
1

2
a(v, v) − 〈ϕ, v〉 , u = arg min

K
J,







































(2.17)

Let us express rigorously the informal considerations above.

Proposition 2 Let (u, p) verify (2.15). Then u is a solution to the minimization prob-
lem (2.16)

Proof : As Au + B⋆p = ϕ, we have Au − ϕ ∈ kerB⊥ = K⊥, i.e. (∇J, v) = 0 for any
v ∈ K. As J is a quadratic functional, it implies that u minimizes J over K.

Proposition 3 If the range of B is closed, then Problem (2.15) admits a solution (u, p).

Proof : This is a direct consequence of the fact that, as B has closed range, so does B⋆

(see Theorem ??, page ??). By Theorem ??, kerB⊥ = R(B⋆), which gives the existence
of p ∈ X such that B⋆p = ϕ− Au.

Proposition 4 If B is surjective, then Problem (2.15) admits a unique solution (u, p).

Proof : As kerB⋆ = R(B)⊥ = {0}, the Lagrange multiplier of the previous proposition is
unique.

Surjectivity of B can expressed with the so called inf-sup (or LBB) condition (see
Prop. ??, page ??):

inf
q∈X

sup
v∈V

|(q, Bv)|

|v| ‖q‖
≥ β > 0.

Back to Stokes equation. Stokes problem fits into the framework defined by (2.17),
with

V = H1(Ω)d , X = L2
0 =

{

q ∈ L2(Ω) ,

∫

Ω

q = 0

}

, a(u, v) =

∫

Ω

∇u : ∇v
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and B is defined by v 7−→ Bv = −∇ · v, K = kerB. Note that well-posedness of the
constrained minimization problem is straightforward, so that existence and uniqueness of
u, solution to the Stokes problem in some way, is not an issue. To obtain well-posedness
for the mixed formulation, one needs to verify the main assumption of Prop. 4, i.e. that
B maps H1

0 (Ω)d onto L2
0(Ω) in a surjective way.

Theorem 1 Let Ω be a bounded, regular domain. The variational form of the Stokes
problem 2.13 admits a unique solution (u, p).

Proof : As already mentioned, the well-posedness of the constrained minimization problem
is straightforward: there exists a unique velocity field u which minimizes

J(v) =
1

2

∫

Ω

|∇v|2 −

∫

Ω

f · v.

To establish existence and uniqueness of a pressure field p, we use Prop. 4. To that
purpose, we need to establish that B is surjective from V = H1

0 (Ω)d onto X = L2
0(Ω).

Consider q ∈ L2
0(Ω), and the Poisson problem:

−∆ψ = q,

with Neuman boundary conditions. As q has 0 mean value, it admits a solution ψ. As
the domain is regular, this solution belongs to H1

0 ∩H2. The field v = ∇ψ is such that
Bv = −∇ · v = −∆ψ = q, v · n = 0, and |v|1 ≤ C |q|0. The proof is not completed, as v
is not in H1

0 (its tangential component on the boundary does not vanish). The last step
of the construction, which we do not detail here, consists in introducing a divergence free
field w wich identifies to −v on ∂Ω (which is purely tangential). We refer to [10] or [16]
for details on this construction, and the fact that the H1 semi-norm of w controlled by
that of v.

To recover Stokes equations in a strong sense (i.e. as identity between functions) , one
needs to have some regularity.

Theorem 2 Let Ω be a bounded domain. We assume that the boundary of Ω is C2. Then
the solution (u, p) to the variational Stokes problem belongs to H2(Ω) ×H1(Ω).

Proof : The regularity of solutions to the Stokes problem is a delicate issue, which we
shall not address here in details (references). If we admit H2 × H1 regularity for the
velocity-pressure couple, Stokes equations in the form (2.12) can be recovered by a simple
integration by parts.

2.3 Exercises

Exercise 5 Prove that if H is a separable Hilbert space, then H possesses a hilbertian
basis.

Exercise 6 Show that Lemma ?? is a consequence of Rellich’s lemma.



Chapter 3

Finite Element Approximation of
Stokes equations

We now turn to the numerical approximation of the solutions of Stokes equations by
the finite element method. This chapter is divided into four parts. We first recall the
fundamental principles of the finite element method for the model problem, and then focus
on the peculiarities of the method for Stokes equations. This leads to the so-called mixed
finite element formulation for which we provide the reader with the principal results. We
then apply the method to some standard flows, using the software FreeFem++, and
end this chapter with computational considerations, like numerical methods for solving
the underlying linear system.

3.1 The classical finite element method

The finite element method is a numerical method intended to solve partial differential
equations. Among its main features are the fact that it has the flexibility of being easily
adaptable on quite general domains, and that the unknowns are really functions defined on
Ωh the approximation of the domain Ω (in contrast for instance with the finite differences
method where the solution only exists at discretization points).

To start with, let us consider the model problem

[

−∆u = f in Ω ,
u = 0 on ∂Ω .

(3.1)

As we have recalled in Section 2.1, the variational formulation that is used to solve
(3.1) reads

Find u ∈ V, such that a(u, v) = 〈ϕ , v〉, (3.2)

where the Hilbert space V = H1
0 (Ω), a is the continuous bilinear form on V

a : V × V → R

(u, v) 7→

∫

Ω

∇u(x) · ∇v(x) dx

27
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and l is the linear continuous form defined by

l : V → R

v 7→

∫

Ω

f(x)v(x) dx

A finite element formulation of the problem is obtained by finding a finite dimensional
subspace Vh ⊂ V and solve the approximate variational formulation

Find uh ∈ Vh, such that a(uh, vh) = 〈ϕ , v〉 . (3.3)

3.1.1 Céa’s Lemma

Without further precision, one can estimate the error between u solution of (3.2) and uh

solution of (3.3) through the Céa’s lemma

Lemma 1 (Céa’s lemma) There exists a constant C such that

‖u− uh‖V ≤ C inf
vh∈Vh

‖u− vh‖V . (3.4)

Proof : Since a is V coercive, one has

α‖u− uh‖
2
V ≤ a(u− uh, u− uh) .

Moreover, since u and uh solve (3.2) and (3.3) respectively, one deduces

∀vh ∈ Vh, a(u− uh, uh − vh) = 〈ϕ , uh − vh〉 − 〈ϕ , uh − vh〉 = 0 . (3.5)

Summing with the preceding equation, one obtains ∀vh ∈ Vh

α‖u− uh‖
2
V ≤ a(u− uh, u− uh) + a(u− uh, uh − vh)

= a(u− uh, u− vh)

≤ M‖u− uh‖V ‖u− vh‖V

from which we deduce ‖u− uh‖V ≤
M

α
‖u− vh‖V for all vh ∈ Vh which gives (3.4).

What is remarkable in Céa’s lemma is that it relates the approximation error (i.e. the
error made by the method, the left hand side of (3.4)) to the interpolation error, i.e. the
error made by the fact that Vh does not a priori contain the exact solution u. In this
latter error, the problem that we aim at solving is not important, only the fact that Vh

contains a map which is close to the exact solution.



3.1. THE CLASSICAL FINITE ELEMENT METHOD 29

Figure 3.1: A conformal mesh of the unit disk in 2D.

3.1.2 The Lagrange finite element P k

The finite element method is a canonical way of finding convergent approximations, which
are furthermore practically tractable (i.e. with the help of a computer, one can compute
the approximation uh). This is classically done by considering a family of conformal
meshes {Ωh}h>0 of Ω, and building a family of finite dimensional spaces {Vh}h>0. Although
there are other possibilities1, typical meshes are built with simplices, which are nothing
but triangles in 2D or tetrahedra in 3D. Therefore the meshes we consider in this book
are all triangular in 2D and tetrahedral in 3D. Both the families {Ωh}h>0 and {Vh}h>0

are parameterized by h which usually measures the coarseness of the mesh (h is typically
the biggest edge-length in the mesh Ωh. For all k ≥ 0, the P k approximation consists in
taking

Vh =
{

uh ∈ V such that ∀K ∈ Ωh, uh|K ∈ P k(K)
}

(3.6)

where P k is the space of polynomials of degree less than or equal to k.

Calling Nh the dimension of Vh, it is very common to describe Vh by giving one of
its basis (φk)1≤k≤Nh

. Although there are infinitely many ways to do this, there exists a
canonical one which is given hereafter.

3.1.3 Degrees of freedom and basis functions

On a simplex K functions of P k(K) are obtained as interpolations of their values on a
standard regular lattice of points defined on K. This lattice depends on the chosen degree
k used for the P k approximation, and is such that for any set of values, one for each point
of the lattice, there exists a unique function f ∈ P k(K) which interpolates these values in
K. As a consequence, the number of points of the lattice has to be equal to the dimension
of the corresponding P k(K). The lattices used for the P k, k = 1, 2, 3 approximation are

1See [1] for instance.
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shown in Fig. 3.1.3 while their corresponding 3D versions are given in Fig. 3.1.3. We
easily check that in 2D, we have

P 1(K) = Span{1, x, y},

P 2(K) = Span{1, x, y, x2, xy, y2},

P 3(K) = Span{1, x, y, x2, xy, y2, x3, x2y, xy2, y3},

which are of dimension 3, 6 and 10 respectively, exactly as the number of points of the
corresponding lattice. Similarly, in 3D, one has

P 1(K) = Span{1, x, y, z},

P 2(K) = Span{1, x, y, z, x2, y2, z2, xy, yz, xz},

P 3(K) = Span{1, x, y, z, x2, y2, z2, xy, yz, xz, x3, y3, z3, x2y, xy2, x2z, xz2, y2z, yz2, xyz},

of dimensions 4, 10, 20 respectively.

Figure 3.2: The lattices in 2D, respectively for the P 1, P 2, and P 3 approximation.

Figure 3.3: The lattices in 3D, respectively for the P 1, P 2, and P 3 approximation. Notice
that the trace of the 3D k−lattice on each face of the tetrahedron is a 2D k−lattice.

Merging together all the lattice points of all the simplices of Th gives a set of points
called (xk)1≤k≤Nh

in the sequel. Such typical sets, for P 1 and P 2 approximation are shown
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Figure 3.4: A triangular mesh of the unit square (in blue) with the P 1 (left) and p2 (right)
degrees of freedom (in red). There are many more degrees of freedom in P 2 than in P 1.

in Fig. 3.1.3. The value that a function of Vh takes at the points (xk)1≤k≤Nh
are called

the degrees of freedom meaning that for any possible values (u1, · · · , uNh
) ∈ R

Nh, there
exists a unique function uh ∈ Vh such that

∀1 ≤ k ≤ Nh, uh(xk) = uk .

In order to solve in practice the approximate problem (3.3) within the P k approxima-
tion defined by (3.6), a natural choice consists in taking for the basis functions (φk)1≤k≤Nh

the function of Vh which satisfies

φk(xl) = δkl , ∀(k, l) ∈ {1, · · · , Nh}
2 ,

where δkl stands for the Kronecker symbol. A typical basis function (also called hat
function in this context) is shown for the P 1 approximation in Fig. 3.1.3.

3.1.4 Estimation of the approximation error

Cea’s lemma 1 relates the error between computed and exact solutions to the approxima-
tion error

inf
vh∈Vh

|vh − u| .

We describe in this section how this approximation error can be estimated. This estima-
tion is based on the explicit definition of an operator which maps linearly a smooth field
onto an element of the finite element space, in a way that the difference between both
can be evaluated according to various norms.

The approach we follow here can be decomposed onto three steps:

1. An general stability estimate for a general class of linear operators acting on spaces
of functions defined over a simplex K. It can be seen as a generalization of the so
called Poincaré-Wirtinger, which asserts that

|v −m(v)|0,K ≤ |v|1,K .
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Figure 3.5: A basis function in P 1 approximation defined on the mesh of a unit disc.

The latter inequality expresses that, if one controls the norm of the gradient and
something (here the mean value, but it could be anything) which handles the con-
stant functions, one controls the L2 norm. An extension can be expressed as follows:
if one controls the H2 semi norm, and something that controls the affine functions,
one controls all norms weaker than H2 (i.e. L2 and H1). The estimate (3.7) below
generalizes this principle.

2. The second step is crucial, yet based on simple arguments : it consists in transposing
the previous stability estimate onto simplices of any size and shape. In particular,
we shall see that, if we consider simplices of size h, a factor hβ will appear in the
estimate

3. The last step, which is elementary in the setting we consider, will consists in sum-
ming up all local errors (for simplices) to obtain an error overall the domain.

Step 1. (Stability estimate)

Proposition 5 Let K ⊂ Rd be a non-degenerated simplex, m ≤ k ≤ 1, and IK a linear
operator from Hk+1 onto Hm which preserves polynomials of degree ≤ k.

|v − IKv|m,K ≤ C |v|k+1,K ∀v ∈ Hk+1(K) (3.7)

Proof : We prove this property by contradiction: assume that there exists (vn) such that

|vn − IKvn|m,K > nC |vn|k+1,K .

On choose vn in (P k)⊥ (which is possible, as we can add any polynomial of degree k
without changing the inequality), and such that the norm of vn is 1 in Hk+1. This
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ρK

hK

Figure 3.6: Definition of h and ρ for a triangle

sequence is bounded in Hk+1, so that one can extract a subsequence which converges
weakly to u ∈ Hk+1 . This subsequence (still denoted (vn() converges strongly in Hk

(by compact injection of Hk+1 onto Hk). As |vn|k+1,K goes to 0, the Cauchy quantity

|vp − vq|k+1,K also converges to 0, so that the sequence converges strongly in Hk+1. The

limit u is orthogonal to P k, and all its k + 1 derivatives vanish: it is a polynomial of
degree ≤ k, so that u = 0, which is a contradiction, as u has norm 1 in Hk+1.

Step 2. (Change of variables) The constant C in the estimate (3.7) depends on simplex
K. Let us consider this estimate applied to the reference simplex K̃, the constant is
now universal (it only depends on the space dimension d and on parameter k and m).
Considering now a general simplex K ⊂ Rd, the idea is to map K onto K̃, use the stability
estimate, and transport back the obtained estimate to K. Let us denote by Φ the affine
mapping K̃ −→ K. It can be checked that its jacobian (which is simply its linear part)
verifies

‖∇Φ‖ ≤ ChK .

where hK is the diameter of K (see Fig. 3.6). Indeed, ‖∇Φ‖ measures the maximal
possible ratio between the length of a segment and its image by Φ. On the other way
around, we have

∥

∥∇Φ−1
∥

∥ ≤ C
1

ρK

.

Proposition 6 Let K ⊂ Rd be a non-degenerated simplex, m ≤ k ≤ 1, and IK a linear
operator from Hk+1 onto Hm which preserves polynomials of degree ≤ k. There exists a
constant (which depends on d, k, and m only) such that

|v − IKv|m,K ≤ C
hk+1

K

ρm
K

|v|k+1,K ∀v ∈ Hk+1(K) (3.8)

Proof : We consider v ∈ Hk+1(K), and we denote by ṽ ∈ Hk+1(K̃) the transported
function v ◦ Φ. As |v − IKv|m,K involves m derivatives in space, we get

|v − IKv|m,K ≤ C
1

ρm
K

|∇Φ| |ṽ − IK̃ ṽ|m,K̃ .
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We apply then the estimate over K̃

|ṽ − IK̃ ṽ|m,K̃ ≤ C |ṽ|k+1,K̃ ,

where C is a universal constant, and we perform the reciprocal change of variable x̃ 7→
x = Φ(x̃), which gives

|ṽ|k+1,K̃ ≤ Chk+1
K

∣

∣∇Φ−1
∣

∣ |v|k+1,K

which yields (3.10). Note that tha constant C might have changed in the process, but it
still does not depend on K.

Step 3. (Estimate over the whole domain) We consider now a polyhedral2 domain, and
a family (Ωh) of triangulations. We shall assume that the family is regular, i.e. the
aspect ratio of element is controlled: hK/ρK is bounded uniformly with respect to h (i.e.
the triangulation) and K (the individual simplex). We also consider that h denotes3 the
diameter of Ωh We denote by Ih a global interpolation operator, i.e. Ih maps Hk+1(Ω)
onto Hm(Ω), and its restriction to any element K preserves polynomials of degree ≤ k.

Proposition 7 Let Ω be a polyhedral domain, and (Ωh) a regular family of triangulations,
and (Ih) the corresponding family of interpolation operators. We have

|v − Ihv|m,Ω ≤ Chk+1−m |v|k+1,Ω ∀v ∈ Hk+1(Ω) (3.9)

Proof : We simply decompose the squared quantity over elements of Ωh:

|v − Ihv|
2
m,Ω =

∑

K

|v − Ihv|
2
m,K ≤ C

∑

K

h
2(k+1)
K

ρ2m
K

|v|2k+1,K ≤ C ′
∑

K

h
2(k+1−m)
K |v|2k+1,K

≤ C ′h2(k+1−m)
∑

K

|v|2k+1,K = C ′h2(k+1−m) |v|2k+1,Ω .

Application to first order (P 1) elements. The simplest (and most commonly used
approach) to solve elliptic problems is based on piecewise affine functions. Given a poly-
hedral domain Ω and a mesh Ωh, for any continuous function v over Ω, we denote by Ihv
the function which is affine on each triangle of Ωh, and such that vh(x) = v(x) for any
vertex x of Ωh. As H2 functions are continuous in the physical dimensions d = 1, 2 or 3,
this operator maps continuously H2(Ω) onto H1(Ω), and the previous proposition takes
the following form (with k = m = 1).

Proposition 8 Let Ω be a polyhedral domain of Rd, d = 1, 2 or 3, (Ωh) a regular family
of triangulations, and Ih the first order interpolation operator on Ωh. We have

|v − Ihv|1,Ω ≤ Ch |v|2,Ω ∀v ∈ H2(Ω) (3.10)

2This approach can be extended to more general domain, but in the case of curved boundaries, the
fact that Ωh might be different from Ω calls for a special care of elements in contact with the boundary.

3This double role played by h (as label of the triangulation in the family, and as diameter of the
corresponding triangulation) might seem confusing at first sight. Yet it is the standard convention in this
context, and
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3.2 Mixed finite element formulations

3.2.1 Finite element formulation of the Stokes problem

We consider the Stokes problem in a bounded domain Ω, with Dirichlet boundary condi-
tions. The variational formulation writes















∫

Ω

∇u · ∇v −

∫

Ω

p∇ · v =

∫

Ω

f · v ∀v ∈ V = H1
0 (Ω)d

∫

Ω

q∇ · u = 0 ∀q ∈ X = L2
0(Ω).

(3.11)

This variational formulation can be written in an abstract way:

{

a(u, v) + b(v, p) = 〈ϕ , v〉 ∀v ∈ V
b(u, µ) = 0 ∀µ ∈ X.

(3.12)

One denotes by B ∈ L(V,X) the operator defined by (Bv, µ) = b(v, µ). Note that b(v, p)
can also be written 〈B⋆p , v〉.

It is natural to introduce Vh and Xh, approximation spaces for V and X, respectively,
and the associated discretized problem

{

a(uh, vh) + b(vh, ph) = 〈ϕ , vh〉 ∀vh ∈ Vh

b(uh, µh) = 0 ∀µh ∈ Xh.
(3.13)

Operator Bh ∈ L(V,Xh) is defined by

(Bhv, µh) = (Bv, µh) ∀µh ∈ Xh,

and the discrete constrained space is denoted by

Kh = Vh ∩ kerBh = {vh , b(vh, µh) = 0 ∀µh ∈ X}

Problem 3.14 consists in minimizing

J(v) =
1

2
a(v, v) − 〈ϕ , v〉

over Kh. Considering finite dimensional approximation spaces Vh and Xh, Kh has finite
dimension, therefore it is closed, so that Problem 3.14 is obviously well-posed, at least in
terms of existence. Uniqueness holds for the primal variable uh, but not necessarily for
the Lagrange multiplier ph.

The question is now: assuming that (Vh) and (Xh) are suitable sequences of approxima-
tion spaces, i.e. dist(v, Vh) and dist(q,Xh) both go to zero as the discretization parameter
h goes to 0, can uh be expected to converge to the solution u of the continuous constrained
minimization problem ? As for the dual part ph, in case it is uniquely defined, one may
also wonder whether it converges to p.

Extension of the theory developed for standard (unconstrained) variational problems
is in fact not straightforward. Informally, if Xh is much “richer” than Vh in terms of
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approximation, the discrete problem might be overconstrained, so that Kh does not ap-
proximate V properly (it might even be reduced to {0}). On the other way, if Xh is
too poor, the problem might be underconstrained, so that the solution uh to the discrete
constrained minimization problem might converge (if ever) outside K. Both approxima-
tions have obviously to be balanced in some way. This balance necessitates a fine tuning
between the two discretization spaces, which will be expressed by the discrete inf-sup (or
BBL) condition.

Remark 5 In the case of Stokes problem, as the velocity is H1 and the pressure L2, it
would be very natural to approximate velocities with continuous, piecewise P 1 functions
(as for the poisson problem), while pressures would be approximated by P 0 functions. As
we shall see, this straightforward approach does not work, for reasons that we shall detail
below.

3.2.2 A general estimate without inf-sup condition

To enlight how this inf-sup condition allows a proper error estimation of primal and dual
quantities (i.e. |u− uh| and |p− ph|), we shall start the numerical analysis by a very
general estimation of the sole primal quantity, under very loose conditions (in particular
without the inf-sup condition). Although this estimation will not be used as such in
the context of divergence free constraint, it will prove powerful in other contexts (see
Chapter ??, dedicated to fictitious domain methods).

We assume here that a(·, ·) is a continuous, symmetric and coercive bilinear form over
V × V , and B ∈ L(V,X), so that K = kerB is closed. The problem which consists in
minimizing

J(v) =
1

2
a(v, v) − 〈ϕ , v〉

over K is well-posed by Lax Milgram theorem, and we denote by u its solution. We do
not make extra assumptions on B, so that the saddle-point problem may be ill-posed in
terms of existence of a Lagrange multiplier. Concerning approximation spaces, we simply
assume that Vh ⊂ V , but Xh is any finite dimensional space, and Bh ∈ L(V,Xh). Of
course, it will be necessary to make extra assumptions on Xh and Bh to obtain useful
estimates, but it is not necessary for the time being.

We consider the (abstract) discretized saddle-point problem:

{

a(uh, vh) + (Bhvh, ph) = 〈ϕ , vh〉 ∀vh ∈ Vh

(Bhuh, qh) = 0 ∀qh ∈ Xh.
(3.14)

This problems consists in minimizing

J(v) =
1

2
a(v, v) − 〈ϕ , v〉

over Kh = kerBh. As Xh is finite dimensional, the saddle-point problem is well-posed
in the following sense: it admits a solution (uh, ph), and uh is uniquely defined as the
minimizer of J over Kh.
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Let us start by a very simple remark on the continuous problem: there exists a unique
ξ ∈ V ′ (more precisely in K⊥) such that

Au+ ξ = ϕ.

As u is uniquely defined, ξ is uniquely defined as ϕ − Au. The basis of the following
estimate will be to prove that, even if ξ cannot be written B⋆p, some convergence of uh

toward u can be expected as soon as ξ can be approximated by B⋆
hµh.

Proposition 9 Let a(·, ·) be a continuous, symmetric, coercive, bilinear form over V ×V ,
ϕ ∈ V ′, B ∈ L(V,X). We denote by u the unique minimizer of J over K = kerB. Let
Vh ⊂ V and Xh be finite-dimensional spaces, Bh ∈ L(V,Xh), and Kh = kerBh ∩ Vh. Let
(uh, ph) be a solution of the saddle point-problem (3.14). Then

|u− uh| ≤ C

(

inf
wh∈Kh

|wh − u| + inf
qh∈Xh

‖ξ − B⋆
hqh‖V ′

h

)

(3.15)

Proof : For any vh ∈ Kh, (Bhvh, ph) = 0, so that

a(uh, vh) = 〈ϕ , vh〉.

The core of the proof consists in taking vh in the form uh − wh, where wh is in Kh. It
comes

a(vh, vh) = 〈ϕ , vh〉 − a(wh, vh).

The exact solution u verifies

a(u, vh) + 〈ξ , vh〉 = 〈ϕ , vh〉,

so that
a(vh, vh) = a(u− wh, vh) + 〈ξ , vh〉.

As vh is in Kh, 〈B
⋆
hqh , vh〉 = (Bhvh, µh) = 0 for any µh ∈ Xh, so that this quantity can

be substracted to the right-hand side.

a(vh, vh) = a(u− wh, vh) + 〈ξ −B⋆
hµh , vh〉.

One obtains

α |vh|
2 ≤ ‖a‖ |u− wh| |vh| + ‖B⋆

hqh − ξ‖ |vh| ⇒ α |uh − wh| ≤ ‖a‖ |u− wh| + ‖B⋆
hqh − ξ‖

and therefore
|uh − u| ≤ C

(

|u− wh| + ‖B⋆
hqh − ξ‖V ′

h

)

.

for any wh ∈ Kh, any qh ∈ Xh, which ends the proof.

Estimate (3.15) expresses the required balance between both approximation spaces. Firstly,
Xh has to be rich enough (and Bh has to approximate B in some sense) for the second
term to be small. But if Xh is too rich, it may constrain excessively the problem, so that
Kh may not be a good approximation space for K, preventing the first term to go to 0.
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3.2.3 Estimates with the inf-sup condition

We may now introduce the framework which we will favor for Stokes equation. We
consider here a saddle point formulation which is well-posed at the continuous level, i.e.
B is surjective.

Proposition 10 Notations and assumptions are those of Proposition 9. We furthermore
assume here that B ∈ L(V,X) is surjective, so that the continuous saddle point problem
admits a unique solution (u, p). We also assume that both approximations are conforming,
i.e. Vh ⊂ V and Xh ⊂ X, that Bh is defined by

(Bhv, qh) = (Bv, qh) = b(v, qh),

and that it verifies the discrete inf-sup condition:

inf
qh∈Xh

sup
vh∈Vh

b(vh, qh)

|vh| |qh|
≥ β > 0,

where β is independent4 of h. Then we have the following error estimate

|u− uh| + |p− ph| ≤ C

(

inf
wh∈Vh

|wh − u| + inf
qh∈Xh

|qh − p|

)

(3.16)

Proof : The proof is based on estimate (3.15). As preliminary step, let us first note that
the infimum over Xh of ‖B⋆

hqh − ξ‖V ′

h

takes the form (as ξ = B⋆p)

inf
qh∈Xh

|B⋆(qh − p)| ≤ inf
qh∈Xh

‖B⋆‖ |qh − p| .

The first step of the proof, which is essential to use approximation properties of Vh,
consists in showing that the first infimum in (3.15) can be replaced by an infimum over
the unsconstrained approximation space Vh.

In a second step, we will show that the estimate on |u− uh| induces an estimate on
|p− ph|.

Step 1. As for the first term in estimate (3.15), we proceed as follows: consider an
approximation vh ∈ Vh of u, we build an approximation wh = vh + zh ∈ Kh with the same
approximation properties (up to a multiplicative constant which does not depend on h).

Let vh ∈ Vh be given. We denote by zh the element of Vh which verifies

Bhzh = −Bhvh

and which minimizes the norm (i.e. wh = vh + zh is the projection of vh onto Kh). This
zh is the primal part of the solution to the saddle point problem

(zh, yh) + (ηh, Bhyh) = 0 ∀yh ∈ Vh

(µh, Bhzh) = −(µh, Bhvh) ∀µh ∈ Xh.

4As always in such contexts, we implicitly consider sequences of approximation spaces (Vh) and (Xh),
indexed by a parameter h (which will represent the mesh diameter in actual Finite Element discretization,
which goes to 0 as the dimension of the spaces goes to infinity.
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Thanks to the inf-sup condition, we have

|ηh| ≤
1

β
sup
yh

〈B⋆
hηh , yh〉

|yh|
= |zh| .

On the other hand, taking yh = zh, it comes

|zh|
2 ≤ |(ηh, Bhzh)| ≤ |ηh| |Bhvh| = |ηh| |Bh(u− vh)| ≤ C |zh| |Bh(u− vh)| .

The new approximant wh = vh + zh is then such that

|u− wh| ≤ |u− vh| + |zh| ≤ C |u− vh| .

Step 2. To estimate |p− ph|, we substract the discrete variational formulation from the
continuous one. We get

(ph, Bvh) = a(u− uh, vh) + (p, Bvh),

so that, for any qh ∈ Xh

(ph − qh, Bvh) = a(u− uh, vh) + (p− qh, Bvh) ∀qh ∈ Xh.

By the inf-sup condition, we have

|ph − qh| ≤
1

β
sup

vh∈Vh

|a(u− uh, vh) + (λ− µh, Bvh)|

|vh|

≤
1

β
(‖a‖ |u− uh| + ‖B‖ |p− qh|) ,

so that, finally,

|p− ph| ≤
‖a‖

β
|u− uh| +

(

1 +
‖B‖

β

)

inf
qh∈Xh

|p− qh| .

The discrete inf-sup condition, which is not easily verified in its native form, is equiva-
lent to the existence of an operator from V to Vh which preserves the discrete constraint,
with a bounded norm5. More precisely, we have

Proposition 11 (Fortin’s criterium)
We assume that B ∈ L(V,X) verifies the inf-sup condition. Then the sequence (Vh, Xh)

verifies the discrete inf-sup condition iff there exists a constant C > 0 and a family (Πh)h,
with Πh ∈ L(V, Vh), such that

b (Πhv − v, qh) = 0 ∀(v, qh) ∈ V ×Xh,

with
|Πhv| ≤ C |v| .

5As always, this assertion refers to a family (Πh) of operators which is uniformly bounded with respect
to h.
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Proof : Assume that b(·, ·) verifies the inf-sup condition. For any v ∈ V , we build vh

which minimizes the norm among all those wh that verify Bwh = Bv (as in the beginning
of Proposition 10). The saddle point formulation of the problem writes

(vh, wh) + (ph, Bwh) = 0 ∀wh ∈ Vh

(qh, Bvh) = (qh, Bv) ∀qh ∈ Xh.

By the inf-sup condition, one has |ph| ≤ |vh| /β, and by taking wh = vh in the first line,
we obtain |vh| ≤ C |v|. We define Πhv as vh (orthogonal projection onto B⋆(Xh).

On the other way, consider qh ∈ Xh ⊂ X, denote by v its reciprocal image by B which
minimizes the norm. This norm is controlled by that of qh because the range of B is
closed. We have

sup
vh

b(vh, qh)

|vh|
≥
b(Πhv, qh)

|Πhv|
≥

1

C
|qh| ,

which ends the proof.

3.3 Exercises

Exercise 7 Show that on a conformal mesh Ωh of a two-dimensional domain Ω the space

P 1(Ωh) =
{

uh ∈ H1
0 (Ω,R2) such that div uh = 0

}

is reduced to {0}.
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FiXme: Verifier et corriger les references FiXme !
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