Eléments finis en dimension $N \ge 2$

François Alouges

1er Avril 2014

Problème modèle

 Ω ouvert borné de \mathbb{R}^N et $f \in L^2(\Omega)$.

$$\begin{cases} -\Delta u = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega. \end{cases}$$

Il existe une solution unique dans $H_0^1(\Omega)$.

Dans tout ce qui suit nous supposerons que le domaine Ω est **polyèdrique** (polygonal si N=2), afin que nous puissions le mailler exactement.

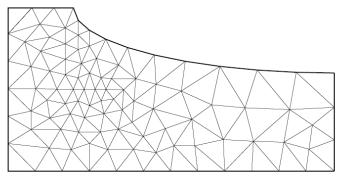
Rappels

- Faire une formulation variationnelle du problème (V Hilbert, Lax-Milgram, etc.)
- $V_h \subset V$ de dimension finie
- Poser la même formulation variationnelle dans V_h
- C'est un système linéaire!
- Estimation d'erreur

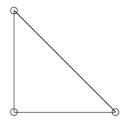
$$||u-u_h||_V \le C \inf_{v_h \in V_h} ||u-v_h||_V$$
 (Lemme de Céa)
 $\le C||u-r_h(u)||_V$ ($r_h = \text{interpolé dans } V_h$)
 $\le C h ||u''||_{L^2}$

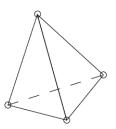
Eléments finis triangulaires

Exemple de maillage en dimension N = 2:



Mailles





Les mailles sont des N-simplexes (triangles en 2-D, tétraèdres en 3-D).

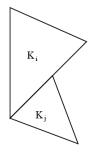
Définition

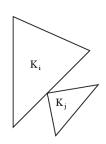
Soit Ω un ouvert connexe polyèdrique de \mathbb{R}^N . Un maillage ou une triangulation de $\overline{\Omega}$ est un ensemble \mathcal{T}_h de N-simplexes (non dégénérés) $(K_i)_{1 \le i \le n}$ qui vérifient

- en dimension N = 2, l'intersection $K_i \cap K_j$ de deux triangles distincts est soit vide, soit réduite à un sommet commun, soit à une arête commune **entière** (en dimension N = 3, l'intersection est soit vide, soit un sommet commun, soit une face commune entière, soit une arête commune entière).

Les sommets (ou noeuds) du maillage \mathcal{T}_h sont les sommets des N-simplexes K_i qui le composent. Par convention, le paramètre h désigne le maximum des diamètres des N-simplexes K_i .

Situation interdite





Maillage non-conforme

•
$$N = 2, k = 1,$$

$$\mathbb{P}_1 = \textit{vect}\{1, x, y\}, \text{ dimension} = 3$$

•
$$N = 2, k = 2,$$

$$\mathbb{P}_2 = vect\{1, x, y, x^2, xy, y^2\}, \text{ dimension = 6}$$

•
$$N = 2, k = 3,$$

$$\mathbb{P}_3 = \textit{vect}\{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3\}, \text{ dimension} = 10$$

•
$$N = 3, k = 1,$$

$$\mathbb{P}_1 = \textit{vect}\{1, x, y, z\}, \text{ dimension} = 4$$

$$N = 3, k = 2,$$

$$\mathbb{P}_2 = \textit{vect}\{1, x, y, z, x^2, xy, xz, y^2, yz, z^2\}, \text{ dimension} = 10$$

•
$$N = 2, k = 1$$
,

$$\mathbb{P}_1 = \textit{vect}\{1, x, y\}, \text{ dimension} = 3$$

•
$$N = 2, k = 2,$$

$$\mathbb{P}_2 = vect\{1, x, y, x^2, xy, y^2\}, \text{ dimension = 6}$$

•
$$N = 2, k = 3,$$

$$\mathbb{P}_3 = \textit{vect}\{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3\}, \text{ dimension} = 10$$

•
$$N = 3, k = 1,$$

$$\mathbb{P}_1 = vect\{1, x, y, z\}, \text{ dimension} = 4$$

•
$$N = 3, k = 2,$$

$$\mathbb{P}_2 = vect\{1, x, y, z, x^2, xy, xz, y^2, yz, z^2\}, \text{ dimension} = 10$$

Treillis d'ordre k

On appelle **treillis d'ordre** *k* l'ensemble (fini)

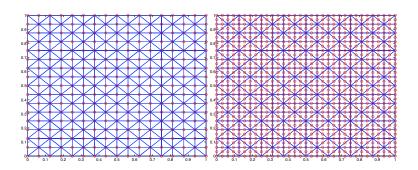
$$\Sigma_k = \left\{ x \in K \text{ tel que } \lambda_j(x) \in \{0, \frac{1}{k}, ..., \frac{k-1}{k}, 1\} \text{ pour } 1 \leq j \leq N \right\}$$

dont les points sont notés $(\sigma_i)_{1 \le i \le n_k}$.

Pour k = 1 il s'agit de l'ensemble des sommets de K, et pour k = 2 des sommets et des points milieux des arêtes reliant deux sommets.

Dimension
$$N=2$$

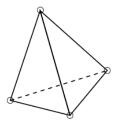
Exemples de maillages



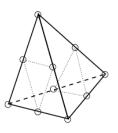
Maillages P1 et P2

Dimension N = 3

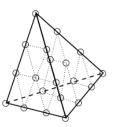
 Σ_1



 Σ_2



 Σ_3



Unisolvance

Unisolvance de Σ_k pour \mathbb{P}_k

Lemme Tout polynôme de \mathbb{P}_k est déterminé de manière unique par ses valeurs aux points $(\sigma_j)_{1 \leq j \leq n_k}$ du treillis Σ_k . Autrement dit, il existe une base $(\psi_j)_{1 \leq j \leq n_k}$ de \mathbb{P}_k telle que

$$\psi_j(\sigma_i) = \delta_{ij} \quad 1 \leq i, j \leq n_k.$$

Continuité à l'interface entre 2 mailles

Lemme Soit K et K' deux N-simplexes ayant une face commune $\Gamma = \partial K \cap \partial K'$. Alors, leur treillis d'ordre $k \geq 1$, Σ_k et Σ_k' , coïncident sur cette face Γ . De plus, étant donné p_K et $p_{K'}$ deux polynômes de \mathbb{P}_k , la fonction ν définie par

$$v(x) = \begin{cases} p_{K}(x) & \text{si } x \in K \\ p_{K'}(x) & \text{si } x \in K' \end{cases}$$

est continue sur $K \cup K'$, si et seulement si p_K et $p_{K'}$ ont des valeurs qui coïncident aux points du treillis sur la face commune Γ .

Preuve. Par construction les treillis Σ_k et Σ_k' coïncident sur leur face commune Γ . Si les polynômes p_K et $p_{K'}$ coïncident aux points de $\Sigma_k \cap \Gamma$, alors par application du Lemme précédent ils sont égaux sur Γ , ce qui prouve la continuité de v.

Eléments finis \mathbb{P}_k

Définition 6.3.5. Etant donné un maillage \mathcal{T}_h d'un ouvert Ω , la méthode des éléments finis \mathbb{P}_k , ou <u>éléments finis triangulaires</u> de Lagrange d'ordre k, associée à ce maillage, est définie par l'espace discret

$$V_h = \left\{ v \in C(\overline{\Omega}) \text{ tel que } v \, \middle|_{K_i} \in \mathbb{P}_k \text{ pour tout } K_i \in \mathcal{T}_h \right\}.$$

On appelle **noeuds des degrés de liberté** l'ensemble des points (distincts) $(\hat{a}_i)_{1 \leq i \leq n_{dl}}$ des treillis d'ordre k de chacun des N-simplexes $K_i \in \mathcal{T}_h$.

On appelle **degrés de liberté** d'une fonction $v \in V_h$ l'ensemble des valeurs de v en ces noeuds $(\hat{a}_i)_{1 \le i \le n_{dl}}$.

On définit aussi le sous-espace V_{0h} par

$$V_{0h} = \{ v \in V_h \text{ tel que } v = 0 \text{ sur } \partial \Omega \}.$$

Proposition 6.3.7 L'espace V_h est un sous-espace de $H^1(\Omega)$ dont la dimension est le nombre de degrés de liberté, et il existe une base $(\phi_i)_{1 \leq i \leq n_{dl}}$ de V_h définie par

$$\phi_i(\hat{\mathbf{a}}_j) = \delta_{ij} \quad 1 \leq i, j \leq n_{dl},$$

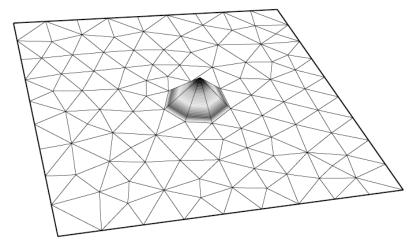
telle que

$$v(x) = \sum_{i=1}^{n_{dl}} v(\hat{a}_i) \phi_i(x).$$

Preuve: par simple combinaison des Lemmes précédents.

Remarque. L'appellation "éléments finis de Lagrange" veut dire que toute fonction de l'espace V_h est caractérisée pas ses valeurs ponctuelles (ses degrés de liberté) aux noeuds (\hat{a}_j) . On parle d'éléments finis de Hermite si les degrés de liberté sont les valeurs de la fonction et de ses dérivées partielles d'ordre 1.

Fonction de base \mathbb{P}_1 en dimension N=2.



Résolution pratique

On résout le problème modèle par la méthode des éléments finis \mathbb{P}_k .

La formulation variationnelle de l'approximation interne est

trouver
$$u_h \in V_{0h}$$
 tell que $\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx \quad \forall \, v_h \in V_{0h}$.

On décompose u_h sur la base des $(\phi_j)_{1 \le j \le n_{dl}}$ et on prend $v_h = \phi_j$ ce qui donne

$$\sum_{j=1}^{n_{dl}} u_h(\hat{a}_j) \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx = \int_{\Omega} f \phi_i \, dx.$$

Matrice de rigidité

Vecteur inconnu:
$$U_h = \left(u_h(\hat{a}_j)\right)_{1 \leq j \leq n_{dl}}$$

Second membre: $b_h = \left(\int_{\Omega} f \phi_i \, dx\right)_{1 \leq i \leq n_{dl}}$
Matrice de rigidité: $\mathcal{K}_h = \left(\int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx\right)_{1 \leq i,j \leq n_{dl}}$
La formulation variationnelle est équivalente au système

linéaire $\mathcal{K}_h U_h = b_h.$

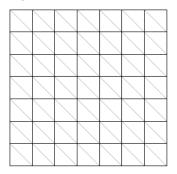
$$\mathcal{K}_h \mathcal{O}_h = \mathcal{D}_h.$$

En général, l'intersection des supports de ϕ_j et ϕ_i est vide et la plupart des coefficients de \mathcal{K}_h sont nuls. La matrice de rigidité \mathcal{K}_h est donc creuse.

Taille des matrices

La matrice de rigidité K_h est creuse mais elle est de grande taille!

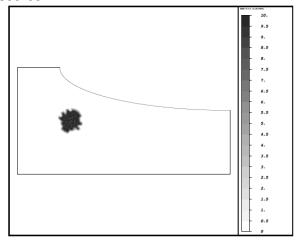
Exemple: maillage régulier $n \times n$ en dimension N = 2



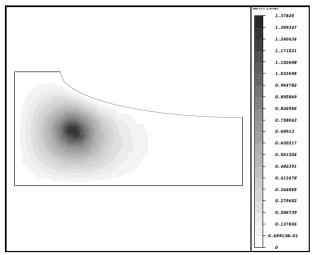
Matrice K_h d'ordre n^2 (ou bien n^3 en dimension N=3). Il faut optimiser la résolution du système linéaire!

Exemples numériques avec FreeFem++

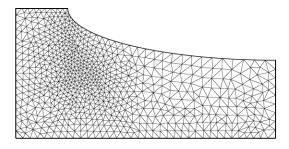
Terme source f



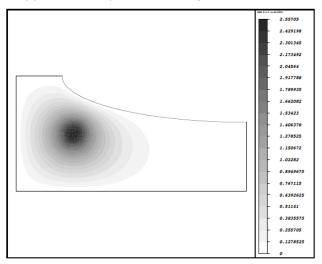
Solution approchée u_h pour le maillage "grossier"



Maillage triangulaire plus fin que le précédent

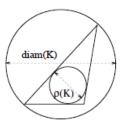


Solution approchée u_h pour le maillage "fin"



6.3.2 Convergence et estimation d'erreur

Diamètre $h_K = diam(K)$ et rondeur $\rho(K)$ d'un triangle K



Définition 6.3.11 Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages de Ω. On dit qu'il s'agit d'une suite de maillages réguliers si

- la suite $h = \max_{K_i \in \mathcal{T}_h} \operatorname{diam}(K_i)$ tend vers 0,
- ② il existe une constante C telle que, pour tout h > 0 et tout $K \in \mathcal{T}_h$,

$$1 \leq \frac{\operatorname{diam}(K)}{\rho(K)} \leq C.$$

Convergence et estimation d'erreur

Théorème 6.3.13 Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages réguliers de Ω . Soit $u \in H^1_0(\Omega)$, la solution exacte, et $u_h \in V_{0h}$, la solution approchée par éléments finis \mathbb{P}_k .

La méthode des éléments finis \mathbb{P}_k converge, c'est-à-dire que

$$\lim_{h\to 0}\|u-u_h\|_{H^1(\Omega)}=0.$$

De plus, si $u \in H^{k+1}(\Omega)$ et si k+1 > N/2, alors on a l'estimation d'erreur

$$||u-u_h||_{H^1(\Omega)}\leq Ch^k||u||_{H^{k+1}(\Omega)}$$

Remarque. Le Théorème 6.3.13 s'applique à toute méthode d'éléments finis de type Lagrange (aussi pour les éléments finis rectangulaires).

Pour N = 2 ou N = 3, la condition k + 1 > N/2 est satisfaite dès que $k \ge 1$.

Démonstration du Théorème 6.3.13: idée principale Lemme 6.1.2 de Céa + interpolation ci-dessous.

Définition d'un opérateur d'interpolation r_h . Pour toute fonction continue v on définit son interpolée

$$r_h v(x) = \sum_{i=1}^{n_{dl}} v(\hat{a}_i) \phi_i(x)$$

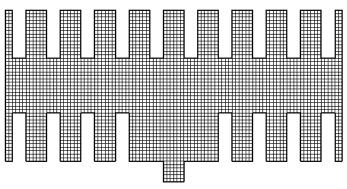
avec $(\hat{a}_i)_{1 \leq i \leq n_{dl}}$ les noeuds des degrés de liberté et $(\phi_i)_{1 \leq i \leq n_{dl}}$ la base de V_{0h} de la méthode des éléments finis \mathbb{P}_k .

Proposition 6.3.16 (admise) Soit $(\mathcal{T}_h)_{h>0}$ une suite de maillages réguliers de Ω . On suppose que k+1>N/2. Alors, pour tout $v\in H^{k+1}(\Omega)$ l'interpolée r_hv est bien définie, et il existe une constante C, indépendante de h et de v, telle que

$$||v - r_h v||_{H^1(\Omega)} \le Ch^k ||v||_{H^{k+1}(\Omega)}.$$

Eléments finis rectangulaires

Exemple de maillage rectangulaire en dimension N=2



Définition 6.3.21

Soit Ω un ouvert connexe polyèdrique de \mathbb{R}^N . Un maillage rectangulaire de $\overline{\Omega}$ est un ensemble \mathcal{T}_h de N-rectangles (non dégénérés) $(K_i)_{1 \le i \le n}$ qui vérifient

- en dimension N = 2, l'intersection $K_i \cap K_j$ de deux rectangles distincts est soit vide, soit un sommet commun, soit une arête commune entière (en dimension N = 3 il faut ajouter soit une face commune entière).

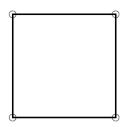
Les sommets (ou noeuds) du maillage \mathcal{T}_h sont les sommets des N-rectangles K_i qui le composent. Par convention, le paramètre h désigne le maximum des diamètres des N-rectangles K_i .

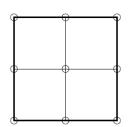
Treillis

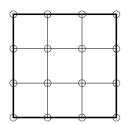
Pour tout entier $k \ge 1$ on définit le treillis d'ordre k du N-rectangle K comme l'ensemble (fini)

$$\Sigma_k = \left\{x \in K \text{ tel que } \frac{x_j - l_j}{L_j - l_j} \in \{0, \frac{1}{k}, ..., \frac{k-1}{k}, 1\} \text{ pour } 1 \leq j \leq N \right\}.$$

Pour k = 1 il s'agit de l'ensemble des sommets de K.







•
$$N = 2, k = 1,$$

$$\mathbb{Q}_1 = \textit{vect}\{1, x, y, xy\}, \text{ dimension} = 4$$

•
$$N = 2, k = 2,$$

$$\mathbb{Q}_2 = \textit{vect}\{1, x, y, xy, x^2, x^2y, xy^2, y^2, x^2y^2\}, \text{ dimension = 9}$$

•
$$N = 2, k = 3,$$

$$\mathbb{Q}_3 = \textit{vect}\{1, x, y, xy, x^2, x^2y, xy^2, y^2, x^2y^2, x^3, x^3y,$$

$$x^3y^2, xy^3, x^2y^3, x^3y^3, y^3\}, \text{ dimension} = 16$$

idem en N = 3...

Unisolvance de Σ_k pour \mathbb{Q}_k

Lemme 6.3.22 Soit K un N-rectangle. Soit un entier $k \ge 1$. Alors, tout polynôme de \mathbb{Q}_k est déterminé de manière unique par ses valeurs aux points du treillis Σ_k d'ordre k.

Eléments finis \mathbb{Q}_k

Définition 6.3.25. Etant donné un maillage rectangulaire \mathcal{T}_h d'un ouvert Ω , la méthode des éléments finis \mathbb{Q}_k est définie par l'espace discret

$$V_h = \left\{ v \in \mathcal{C}(\overline{\Omega}) \text{ tel que } v \, \middle|_{K_i} \in \mathbb{Q}_k \text{ pour tout } K_i \in \mathcal{T}_h
ight\}.$$

On appelle noeuds des **degrés de liberté** l'ensemble des points $(\hat{a}_i)_{1 \leq i \leq n_{dl}}$ des treillis d'ordre k de chacun des N-rectangles $K_i \in \mathcal{T}_h$.

Proposition 6.3.26 L'espace V_h est un sous-espace de $H^1(\Omega)$ dont la dimension est le nombre de degrés de liberté n_{dl} . De plus, il existe une base de V_h $(\phi_i)_{1 \leq i \leq n_{dl}}$ définie par

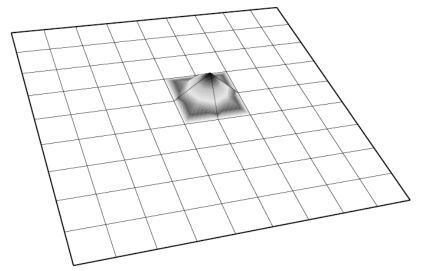
$$\phi_i(\hat{\mathbf{a}}_j) = \delta_{ij} \quad 1 \leq i, j \leq n_{dl},$$

telle que

$$v(x) = \sum_{i=1}^{n_{dl}} v(\hat{a}_i) \phi_i(x).$$

Remarque. Il s'agit encore d'éléments finis de Lagrange. Même résultat de convergence que pour les éléments finis triangulaires.

Fonction de base \mathbb{Q}_1 en dimension N=2.



13.1 Résolution des systèmes linéaires

Problème: résoudre le système linéaire dans \mathbb{R}^n

$$Ax = b$$
 avec $A \in \mathcal{M}_n(\mathbb{R})$ et n grand!

On veut des algorithmes numériques efficaces et stables!

- Efficacité = minimiser le temps de calcul et la place en mémoire.
- Stabilité = ne pas amplifier les erreurs d'arrondi.

Deux types de méthodes:

- Méthodes directes (solution exacte en un nombre fini d'opérations).
- Méthodes itératives (suite de solutions approchées).

Stabilité et conditionnement

Définition 13.1.1 norme matricielle subordonnée $||A|| = \max_{x \in \mathbb{C}^n} \frac{||Ax||}{||x||}$.

Définition 13.1.9 On appelle conditionnement d'une matrice $A \in \mathcal{M}_n(\mathbb{C})$, relatif à une norme matricielle subordonnée, la valeur définie par

$$cond(A) = ||A||.||A^{-1}||$$

Proposition 13.1.10 Soit *A* une matrice inversible et $b \in \mathbb{R}^n$, $b \neq 0$.

• Si Ax = b et $A(x + \delta x) = b + \delta b$, alors on a

$$\frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}.$$

② Si Ax = b et $(A + \delta A)(x + \delta x) = b$, alors on a

$$\frac{\|\delta x\|}{\|x+\delta x\|} \leq \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}.$$

Exemple

$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}, b = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}, x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

mais

$$b = \begin{pmatrix} 32.1 \\ 22.9 \\ 33.1 \\ 30.9 \end{pmatrix}, \ x = \begin{pmatrix} 9.2 \\ -12.6 \\ 4.5 \\ -11 \end{pmatrix}$$

Exemple

$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}, b = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}, x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

mais

$$b = \begin{pmatrix} 32.1 \\ 22.9 \\ 33.1 \\ 30.9 \end{pmatrix}, x = \begin{pmatrix} 9.2 \\ -12.6 \\ 4.5 \\ -11 \end{pmatrix}$$

Démonstration.

Exercice.

Si A est symétrique réelle définie positive, on trouve

$$\operatorname{cond}_2(A) = \frac{\lambda_n(A)}{\lambda_1(A)},$$

où $0 < \lambda_1(A) \le ... \le \lambda_n(A)$ sont les valeurs propres de A.

Exemple

Pour les éléments finis \mathbb{P}_1 appliqués au Laplacien, la matrice de rigidité est

$$\mathcal{K}_h = h^{-1} \left(egin{array}{cccc} 2 & -1 & & & 0 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 2 \end{array}
ight),$$

dont le conditionnement est $\operatorname{cond}_2(\mathcal{K}_h) \approx \frac{4}{\pi^2 h^2}$ pour $h \approx 0$. La matrice de rigidité \mathcal{K}_h est mal conditionnée. Il faut faire attention à la stabilité dans la résolution des systèmes linéaires issus de la méthode des éléments finis.

13.1.3 Méthodes directes

Matrice réelle inversible *A* d'ordre *n*.

- Elimination de Gauss.
- Factorisation LU.
- Factorisation de Cholesky pour les matrices symétriques.

Caractéristiques:

- Mémoire requise: de l'ordre de n² réels.
- Temps nécessaire: de l'ordre de n³ opérations arithmétiques.

Avantage: simple, robuste, précis.

Inconvénient: trop chères, voire impossibles, si *n* est grand (ce qui est systématique en 3-D).

Factorisation LU

Il s'agit de la méthode d'élimination de Gauss sans pivot. **Proposition 13.1.15** Soit une matrice $A = (a_{ij})_{1 \le i,j \le n}$ d'ordre n. Sous une hypothèse technique (vérifiée si A est définie positive), il existe un unique couple de matrices triangulaires (L, U) tel que A = LU avec

$$L = \begin{pmatrix} 1 & 0 & \dots & 0 \\ I_{2,1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ I_{n,1} & \dots & I_{n,n-1} & 1 \end{pmatrix}, U = \begin{pmatrix} u_{1,1} & \dots & \dots & u_{1,n} \\ 0 & u_{2,2} & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & u_{n,n} \end{pmatrix}.$$

Intérêt: il est facile de résoudre des systèmes triangulaires.

Calcul pratique de la factorisation LU

$$A = LU \Rightarrow a_{i,j} = \sum_{k=1}^{n} I_{i,k} u_{k,j} = \sum_{k=1}^{min(i,j)} I_{i,k} u_{k,j}.$$

Au fur et à mesure qu'on lit les colonnes de A, on en déduit les coefficients des colonnes de L et de U.

Par récurrence: on a déjà calculé les colonnes 1 à j-1 de L et de U.

Colonne j de A: on calcule la *j*-ème colonne de L et de U

$$\begin{array}{lll} a_{1,j} = I_{1,1}u_{1,j} & \Rightarrow & u_{1,j} = a_{1,j} \\ \vdots & & \vdots & & \vdots \\ a_{j,j} = I_{j,1}u_{1,j} + \dots + I_{j,j}u_{j,j} & \Rightarrow & u_{j,j} = a_{j,j} - \sum_{k=1}^{j-1} I_{j,k}u_{k,j} \\ a_{j+1,j} = I_{j+1,1}u_{1,j} + \dots + I_{j+1,j}u_{j,j} & \Rightarrow & I_{j+1,j} = \frac{a_{j+1,j} - \sum_{k=1}^{j-1} I_{j+1,k}u_{k,j}}{u_{jj}} \\ \vdots & & \vdots & & \vdots \\ a_{n,j} = I_{n,1}u_{1,j} + \dots + I_{n,j}u_{j,j} & \Rightarrow & I_{n,j} = \frac{a_{n,j} - \sum_{k=1}^{j-1} I_{n,k}u_{k,j}}{u_{jj}} \end{array}$$

Compte d'opérations

Pour *n* grand on ne compte que les multiplications ou divisions.

factorisation LU : le nombre d'opérations N_{op} est

$$N_{op} = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} (1 + \sum_{k=j+1}^{n} 1),$$

qui, au premier ordre, donne $N_{op} \approx n^3/3$.

 substitution (ou remontée-descente sur les deux systèmes triangulaires): le nombre d'opérations N_{op} est

$$N_{op}=2\sum_{j=1}^{n}j,$$

qui, au premier ordre, donne $N_{op} \approx n^2$.

Factorisation de Cholesky

Proposition 13.1.19 Soit *A* une matrice symétrique réelle, définie positive. Il existe une unique matrice réelle *B* triangulaire inférieure, telle que tous ses éléments diagonaux soient positifs, et qui vérifie

$$A = BB^{*}.$$

$$A = \begin{bmatrix} b_{1,1} & 0 & \dots & 0 \\ b_{2,1} & b_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ b_{n,1} & \dots & b_{n,n-1} & b_{n,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & \dots & \dots & b_{n,1} \\ 0 & b_{2,2} & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & b_{n,n} \end{bmatrix}.$$

Méthode du gradient conjugué

Proposition 13.1.39 Soit *A* une matrice symétrique définie positive, et $x_0 \in \mathbb{R}^n$. Soit (x_k, r_k, p_k) trois suites définies par les relations de récurrence

$$p_0 = r_0 = b - Ax_0$$
, et pour $0 \le k$
$$\begin{cases} x_{k+1} = x_k + \alpha_k p_k \\ r_{k+1} = r_k - \alpha_k A p_k \\ p_{k+1} = r_{k+1} + \beta_k p_k \end{cases}$$

avec

$$\alpha_k = \frac{\|r_k\|^2}{Ap_k \cdot p_k}$$
 et $\beta_k = \frac{\|r_{k+1}\|^2}{\|r_k\|^2}$.

Alors, la suite $(x_k)_{k\geq 0}$ converge en moins de n itérations vers la solution exacte de Ax = b

Méthode la plus efficace (avec un préconditionnement pour converger plus vite).

