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Abstract. In this article, we propose a new algorithm for minimizing the energy of a nematic
liquid crystal. Based on the equal elastic constants Oseen–Frank model, the problem reduces to
finding harmonic minimizing maps that take values into the unit sphere of R3. The convergence of
this algorithm is proved in a continuous setting. Then, numerous numerical results that show its
efficiency are given.

Key words. nematic liquid crystals, harmonic maps, nonconvex optimization, finite differences,
relaxation method, Uzawa method, conjugate gradient method

AMS subject classifications. 35A40, 65C20, 65N30

PII. S0036142994264249

1. Introduction. In recent years, liquid crystals have been of constant interest
for mathematicians and physicists. Several models were proposed (harmonic maps,
Oseen–Frank model, Ericksen model) to explain the defects in the structure of ne-
matics. Working with the Oseen–Frank model, nematic liquid crystals are naturally
represented by an S2-valued map, with which one associates an energy that depends
on some elastic constants (see formula (2)). For some values of these constants the
energy reduces to the Dirichlet energy (5), and the stable configurations of the liquid
crystal are closely related to minimizing harmonic S2-valued maps. Even if it appears
to be quite restrictive, this case is nonetheless physically meaningful (the constants
are usually of the same order of magnitude). Theoretical aspects of such harmonic
maps have been intensively studied, and a lot of results about existence, regularity,
and singularities of minimizing or nonminimizing harmonic maps are now available.
For example, mainly because of degree theory, maps from R3 into S2 may have sin-
gularities that would correspond to defects in the structure of the nematic. From the
numerical point of view, a few authors (Cohen et al. [4], Lin [11], Dean, Glowinski, and
Li [5], Cohen, Lin, and Luskin [3], and Lin and Luskin [12]) have developed algorithms
for finding stable solutions. However, mainly because of the lack of convexity of the
constraint, the convergence of these algorithms has not always been established. The
purpose of this paper is to give a new approach to this problem and to construct a
very efficient algorithm in the harmonic mapping case. The proof of the convergence
of this algorithm is also given.

2. The Oseen–Frank model. The liquid crystal phase is a transitional phase
between liquid and solid. We may consider (at least for some specific liquid crystal)
the material to be constituted of long molecules, one dimension of which is much
larger than the others. Let Ω be a bounded domain of R3 in which some liquid crystal
is embedded. Call for x belonging to Ω, u(x) the mean direction of the molecules near
x. This defines a map u from Ω into the unit sphere S2 of R3. Working with this

∗Received by the editors March 7, 1994; accepted for publication (in revised form) December 15,
1995.

http://www.siam.org/journals/sinum/34-5/26424.html
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background, Oseen and Frank associated the following energy with u [13], [16], [7]:

E(u) =
∫

Ω
W (u,∇u)dx,(1)

where the energy density is given by

W (u,∇u) =
1
2
{(K1(divu)2 +K2(u · curl(u))2 +K3 | u× curl(u) |2

+(K2 +K4)(tr[(∇u)2]− (divu)2)}.
(2)

Here, the constants Ki typically depend on the material and on the temperature.
They are usually assumed to verify K1,K2,K3 > 0 and K2 > |K4|. Because physical
stable configurations correspond to minimizers of E, we are interested in finding the
configurations that agree to a nonconstant boundary data and minimize (even locally)
the energy E. Mathematically, the problem reads

MinimizeE(u) overAn0 ,(3)

where

An0 ≡ H1
n0

(Ω, S2)

= {u ∈ H1(Ω, R3);u(x) ∈ S2 a.e.; u|∂Ω = n0 in the sense of trace}.(4)

The space H1 is the usual Sobolev space, and n0 is the boundary condition
satisfying n0(x) ∈ S2 a.e. on ∂Ω.

Two simplifications occur for problem (3):
• The fourth term in the energy is a null Lagrangian and depends only on the

boundary data. This term is constant on An0 and has no influence on the
minimization problem.
• If we take K1 = K2 = K3 = 1 and K4 = 0, from | u(x) |= 1 a.e., one easily

computes

E(u) =
1
2

∫
Ω
| ∇u |2 dx,(5)

which is the Dirichlet energy for maps between Ω and S2. The problem
becomes finding minimizing harmonic maps that take values into S2.

In the following, we will restrict ourselves to this latter case (the general case will
be the subject of a forthcoming work), and we give an explicit minimization algorithm
well suited to this problem. The numerical implementation will be considered in the
final sections.

3. An energy-decreasing algorithm. The question of finding numerically the
solutions of this problem was first investigated by Lin [11] and Cohen et al. [4] (see
also [3] and [12]). The following difficulties occur.

• Nonconvexity. The constraint |u(x)| = 1 a.e. is not convex. Classical algo-
rithms of minimization with convex constraints cannot be used directly.
• Nonregularity. The minimizers may not be continuous (actually, if the degree

of the boundary data n0 is different from 0, no continuous map that takes
values into S2 belongs to An0).
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• Nonuniqueness. Since E doesn’t change under transformations u −→ QT ◦u◦
Q where Q is orthogonal, the solution may not be unique. Moreover, Rivière
[14] recently showed the existence of infinitely many harmonic maps with the
same boundary data n0. At last, there exist harmonic maps (solutions to the
Euler–Lagrange equations) that are not minimizing. Trying to directly solve
the Euler–Lagrange equations of the problem is not suitable.

In [4] and [5] (and [3] for gradient methods), the authors gave an iterative proce-
dure in which the iteration can be split into two steps (the relaxation method given
in [12] or [3] does not fit into this context):

1. Let u0 be an initial guess;

2. For n = 0 . . . until convergence

2.1. Find vn such that E(vn) ≤ E(un) where vn may not belong to H1(Ω, S2) ;

2.2. Set un+1(x) =
vn(x)
| vn(x) | .

As far as step 2.1 is concerned, different methods can be used (e.g., gradient methods).
The second step makes sure that the limit (if the algorithm converges) satisfies the
constraint. The problem here is that the behavior of the energy during step 2.2 is
unknown. In other words, the gain obtained during step 2.1 can be lost during the
second step.

The algorithm we give is constructed in order to avoid this difficulty (actually,
step 2.2 is also energy-decreasing) and accelerate the convergence. The complete
construction follows three propositions.

PROPOSITION 1. If v ∈ H1
n0

(Ω, R3) verifies | v(x) |≥ 1 a.e., then v/|v| belongs to
H1
n0

(Ω, S2), and moreover,∣∣∣∣∇( v(x)
| v(x) |

)∣∣∣∣2 ≤ |∇v(x)|2 a.e.,(6)

from which we easily deduce that

E

(
v

| v |

)
≤ E(v).(7)

Proof. This result can be shown by direct calculation. However, Serre [15] has
remarked that it extends when S2 is replaced by the boundary of any closed convex
domain C. If Π is the projection on C, one has

| ∇Πv(x) |≤| ∇v(x) | a.e. if v(x) /∈ C a.e.(8)

The proof of this property follows from the definition of the derivative and the con-
tractivity of Π. Our case is only the particular case where C = B3, the unit ball of
R3.

This first proposition gives an explicit way of decreasing the energy during the
renormalization stage (step 2.2). It remains to construct such a map v which verifies
the condition |v(x)| ≥ 1 a.e. Given u ∈ H1

n0
(Ω, S2), the next two propositions allow

the construction of v.
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PROPOSITION 2. Let Ku = {w ∈ H1
0 (Ω, R3) such that w(x).u(x) = 0 a.e.}. If we

write v = u− w, where w belongs to Ku, then

| v(x) |2=| u(x)− w(x) |2= 1+ | w(x) |2≥ 1 a.e.

PROPOSITION 3. The problem

Minimize
∫

Ω
| ∇(u− w) |2 dx for w ∈ Ku(9)

possesses a unique solution that we call w(u).
Proof. Ku is a convex (it is a linear space) of H1(Ω, R3), closed for the strong

topology of H1. The map w is the projection of u onto Ku with respect to the usual
distance on H1

0 .
Moreover, since w ≡ 0 belongs to Ku, one deduces∫

Ω
| ∇(u− w(u)) |2 dx ≤

∫
Ω
| ∇u |2 dx,

which ensures that the first step of the algorithm decreases the energy.
The algorithm then reads as follows:

(A)



1. Let u0 be an initial guess;

2. For n = 0 . . . until convergence

2.1. Solve the problem (9) and call wn = w(un) the solution;

2.2. Set un+1 =
un − wn
| un − wn |

.

Two remarks can be made.
• The nonlinear nonconvex constraint |u| = 1 a.e. has been transformed into

the linear (easier-to-handle) one:

u(x) · w(x) = 0 a.e.

• From the construction itself, we easily deduce that

for all n ≥ 0, E(un+1) ≤ E(un − wn) ≤ E(un).(10)

Since we do have control of the energy during the algorithm, we obtain the fol-
lowing result concerning the convergence of this algorithm.

THEOREM 1. The algorithm (A) converges in the sense that (un) (up to a subse-
quence) weakly converges in H1(Ω, R3) to a harmonic map u∞ ∈ H1

n0
(Ω, S2) where n0

is the boundary data of u0. Moreover, the entire sequence (wn)n≥0 strongly converges
to 0 in H1

0 (Ω, R3).
Proof. We first use the following lemma in order to estimate the energy decrease

during the step 2.1.
LEMMA 1. We have for all n ≥ 0∫

Ω
|∇un|2 dx =

∫
Ω
|∇ (un − wn)|2 dx+

∫
Ω
|∇wn|2 dx.(11)

Proof. It suffices to write the variational formulation of the problem (9):∫
Ω
∇ (un − wn) · ∇Ψdx = 0 ∀Ψ ∈ Kun .

Taking Ψ = wn gives the desired result.
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Now, since the step (2.2) is also energy decreasing, we may write∫
Ω
|∇un+1|2 dx ≤

∫
Ω
|∇ (un − wn)|2 dx =

∫
Ω
|∇un|2 dx−

∫
Ω
|∇wn|2 dx,

from which we deduce∫
Ω
|∇wn|2 dx ≤

∫
Ω
|∇un|2 dx−

∫
Ω
|∇un+1|2 dx.(12)

Summing (12) from n = 0 to n = N leads to

N∑
n=0

∫
Ω
|∇wn|2 dx ≤

∫
Ω
|∇u0|2 dx,

and the series ∑
n≥0

∫
Ω
|∇wn|2 dx

is convergent. The conclusion that

wn −→ 0 strongly in H1

follows immediately.
It remains to prove that (up to a subsequence) (un) weakly converges to a har-

monic map u∞ in H1. But we have, for all n ≥ 0,∫
Ω
|∇un|2 dx ≤

∫
Ω
|∇u0|2 dx.

That means that the sequence (un) is bounded in H1. We may extract a subsequence
(that we still denote by (un)) which converges weakly in H1, strongly in L2, and a.e.
to a map called u∞. Since un belongs to H1

n0
(Ω, S2) and since this set is closed under

weak-H1 convergence, we deduce that u∞ belongs to H1
n0

(Ω, S2). The last assertion
is that u∞ is a harmonic map. In order to solve this question, we need to write the
Euler–Lagrange equations of which wn is a solution:∫

Ω
∇ (un − wn) · ∇Ψdx = 0 ∀Ψ ∈ Kun .

Taking Ψ under the form Ψ = φ× un, where φ ∈ C∞0 (Ω, R3), gives∫
Ω
∇ (un − wn) · (∇φ× un + φ×∇un) dx = 0.

Expanding this expression gives∫
Ω
∇un · ∇φ× un −∇wn · (∇φ× un + φ×∇un) dx = 0

or ∫
Ω
∇φ · un ×∇un −∇φ · un ×∇wn − φ · ∇un ×∇wndx = 0.

This means that

div (un ×∇ (un − wn)) = ∇wn ×∇un
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in the sense of distributions. Using the facts that

un ⇀ u∞ weakly in H1,

un → u∞ strongly in L2,

wn → 0 strongly inH1,

we can pass to the limit and write

div (u∞ ×∇u∞) = 0

in the sense of distributions, which is equivalent to the fact that u∞ is a harmonic
map (as remarked by Chen [2]).

4. A few remarks about the map u → w(u). In this section, we would like
to make a few remarks concerning the map

w : H1(Ω, S2) −→ H1
0 (Ω, R3),

u −→ w(u),

where w(u) is the solution of the problem (9). Lemma 1 gives∫
Ω
|∇u|2 dx =

∫
Ω
|∇ (u− w(u))|2 dx+

∫
Ω
|∇w(u)|2 dx,

and moreover, w(u) is a solution of the associated variational formulation∫
Ω
∇ (u− w(u)) · ∇Ψdx = 0 ∀Ψ ∈ Ku.(13)

We now have the following remark.
Remark 1. The map w(u) is the unique solution of the variational formulation

(13) in Ku.
Proof. We already know that w(u) is a solution. In order to prove the uniqueness,

consider two solutions w1 and w2 in Ku of (13). We may write (since w1 −w2 ∈ Ku)∫
Ω
∇ (u− w1) · ∇(w1 − w2)dx = 0

and ∫
Ω
∇ (u− w2) · ∇(w1 − w2)dx = 0.

Subtracting these two equalities gives∫
Ω
|∇(w1 − w2)|2 dx = 0,

which means

w1 = w2

since w1 and w2 belong to H1
0 .

Remark 2. The map u is a harmonic mapping if and only if w(u) = 0.
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Proof. If 0 is the solution of (13), we have∫
Ω
∇u · ∇Ψ dx = 0 ∀Ψ ∈ Ku.

By taking trial functions Ψ under the form Ψ = φ×u, where φ ∈ C∞0 (Ω, R3), we find
that

div(u×∇u) = 0(14)

in the sense of distributions, which is equivalent to the fact that u is a harmonic
mapping (see [2]). Conversely, from (14), we may deduce (13) with w(u) = 0 by a
density argument.

5. Implementations of the algorithm. Here we give three different ways to
numerically implement the algorithm. The first is a saddle-point technique, whereas
the second is closely related to a relaxation method for solving the Poisson problem.
The third appears to be a conjugate gradient method. Some comparisons in terms of
computation times between these implementations are given.

5.1. Discretization. We use finite differences. Following [11] and [4], we call
C = [0, 1]3 the unit cube of R3. If h = 1

M is the space-step, we approximate a map
u : C −→ S2 by the values at the edges of the mesh

uhijk ≈ u(ih, jh, kh) for 0 ≤ i, j, k ≤M.

The (approximated) energy is simply given by

Eh(uhijk) =
1
2

M−1∑
i,j,k=0

∣∣∣∣∣uhi+1,j,k − uhijk
h

∣∣∣∣∣
2

+

∣∣∣∣∣uhi,j+1,k − uhijk
h

∣∣∣∣∣
2

+

∣∣∣∣∣uhi,j,k+1 − uhijk
h

∣∣∣∣∣
2
h3,

and we look for a minimizer of the energy Eh in the discretized space:

Ahn0
= {uhijk; |uhijk| = 1 for all 0 ≤ i, j, k ≤M

and uhijk = n0,ijk for all i, j, k such that (ih, jh, kh) ∈ ∂C}.

It is also necessary to define the space of variations (the discretized version of Ku)

Kh
uhijk

= {whijk;whijk · uhijk = 0 for all 0 ≤ i, j, k ≤M

and whijk = 0 for all i, j, k such that (ih, jh, kh) ∈ ∂C}.

With all these notations, the discretized algorithm follows directly:

(Ah)



1. Let uh0,ijk be an initial guess;

2. For n = 0 . . . until convergence

2.1. Minimize Eh
(
uhn,ijk − whijk

)
over Kh

uhn,ijk
and call whn,ijk the solution;

2.2. Set uhn+1,ijk =
uhn,ijk − whn,ijk
| uhn,ijk − whn,ijk |

.
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Step 2.2 is still energy-decreasing because of the Lipschitz property of the projection
Π onto the unit sphere (see Proposition 1). Hence, the only remaining problem is to
solve step 2.1, that is,

MinimizeEh
(
uhn,ijk − whijk

)
over whijk ∈ Kh

uhn,ijk
.(15)

We give three different methods for the resolution of (15) and the corresponding
results.

5.2. A saddle-point technique. In order to solve the problem (15), it seems
natural to introduce the following augmented Lagrangian:

Lh
(
whijk, ω

h
ijk

)
= Eh

(
uhijk − whijk

)
+
r

2

M∑
i,j,k=0

(
uhijk · whijk

)2
+

M∑
i,j,k=0

ωhijk
(
uhijk · whijk

)
.

Since Lh(w,ω) can be rewritten as

Lh(w,ω) =
1
2

(Aw,w)− (b, w) + (ω,Bw) +
r

2
|Bw|2 + C,

where A is a positive definite matrix, b is a vector, B is the constraint, and C is a
constant, it is easily seen (see [6, p. 2]) that this Lagrangian has a unique saddle-point
(the unicity comes from the fact that the map w → Bw is onto)(

w̄hijk, ω̄
h
ijk

)
∈ R3(M+1)3 ×R(M+1)3

,

which satisfies

Lh
(
w̄hijk, ω̄

h
ijk

)
= inf

w∈R3(M+1)3 sup
ω∈R(M+1)3 Lh (w,ω) .

That means
• uhijk · w̄hijk = 0 for all 0 ≤ i, j, k ≤M ,

• w̄hijk minimizes Eh(uhijk − whijk) with respect to this constraint.
We have implemented a standard Uzawa method for finding the saddle-point (see

[6, p. 21]). With the notations above, and setting

Ar = A+ rBtB,

this method is as follows:

Start with g0, w0 = A−1
r (b−Btg0);

For n = 0 . . . until convergence

pn = −A−1
r Btwn,

ρn = − (Bwn,Bpn)
|Bpn|2

,

gn+1 = gn + ρnBwn,

wn+1 = wn + ρnpn.
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FIG. 1. CPU time for augmented Lagrangian technique with respect to the augmentation pa-
rameter r on a 213 grid.

As usual, the rate of convergence of the algorithm is closely related to the value of r
(the augmentation parameter). The bigger r is, the faster (in terms of iterations) the
saddle-point is reached, but the more ill conditioned Ar is. As the inversion of the
matrix Ar at each iteration is done by a conjugate gradient method, very big values
of r slow down the total time for finding the saddle-point. In Fig. 1 we see the time
used for the resolution of the saddle-point for different values of r. Here the mesh is
21× 21× 21 and good values of r are between 2000 and 5000.

5.3. A relaxation method. This method is inspired by the resolution of the
Poisson problem with Dirichlet boundary conditions: ∆u = f on Ω,

u = 0 on ∂Ω.
(16)

More precisely, when we want to solve the Euler–Lagrange equations of problem
(15), we are led to solve  ∆h

(
uhijk − whijk

)
= ωijku

h
ijk,

whijk = 0 if (ih, jh, kh) ∈ ∂Ω,

where ∆h is the classical five-point discretization of the Laplace operator in finite
differences. Calling

b(vhijk) =
[
vhi+1,j,k + vhi−1,j,k + vhi,j+1,k + vhi,j−1,k + vhi,j,k+1 + vhi,j,k−1

]
,
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we can rewrite this in the form(
b(uhijk)− b(whijk)− 6

(
uhijk − whijk

))
× uhijk = 0.(17)

We will give a procedure to iteratively solve these equations. Keeping in mind that

whijk⊥uhijk,

we deduce

whijk = µijk
(
b(uhijk)− b(whijk)−

((
b(uhijk)− b(whijk)

)
· uhijk

)
uhijk

)
.

Putting this expression into(
b(uhijk)− b(whijk)− 6

(
uhijk − whijk

))
· whijk = 0

leads to

µijk = −1
6
.

Thus, (17) may be rewritten as

whijk =
1
6
[((

b(uhijk)− b(whijk)
)
· uhijk

)
uhijk −

(
b(uhijk)− b(whijk)

)]
=

1
6
uhijk ×

(
uhijk ×

(
b(uhijk)− b(whijk)

))
.

Let us choose a relaxation parameter µ ∈ (0, 2). We start the iterative procedure
with wh0,ijk = 0. If we introduce the lexicographical order � on R3 defined by

(i, j, k)� (l,m, n) if and only if i < l or i = l and j < m

or i = l and j = m and k < n,

we can write the following algorithm:

For L = 1 . . . until convergence

For (i, j, k) = (0, 0, 0) to (i, j, k) = (M,M,M) with the � order,

if (ih, jh, kh) ∈ ∂Ω then whL,ijk = 0

else define w̃hlmn by

 w̃hlmn = whL−1,lmn if (i, j, k)� (l,m, n)

w̃hlmn = whL−1,lmn otherwise

Compute w̄ = 1
6u

h
ijk ×

(
uhijk ×

(
b(uhijk)− b(w̃hijk)

))
(∗)

and set whL,ijk = µw̄ + (1− µ)whL−1,ijk.

We remark that this algorithm is exactly the same as the one used for solving the
Poisson problem (16) with a relaxation technique applied to a Gauss–Seidel iteration.
The basic calculation (*) here stands for

w̄ =
1
6
b(w̃hijk),
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FIG. 2. CPU time for the relaxation method with respect to µ, on a 213 grid. The optimal value
of µ is around 1.7.

which we would have found during the resolution of (16). Notice that the relaxation
technique developed by Lin and Luskin [12] is quite different, since they try to solve
the nonlinear constrained problem directly. Here, the constraint has been linearized,
and this relaxation method is an easy adaptation of the one used to solve (16).

The advantage of this method is of course its ease of implementation. Moreover,
the constraint is accurately verified (we search directly for wh in Kuh), instead of
being verified at the limit. The problem comes from finding the best value of µ.
Figure 2 shows the CPU time used for solving the same problem as before (see Fig. 1
for the Uzawa method) with various values of µ between 1 and 2 (values less than 1
give higher computing time).

6. A conjugate gradient technique. As we might expect from the last section,
we can write a conjugate gradient algorithm for solving the problem (15). As before,
this method is very different from the one used by Cohen, Lin, and Luskin [3] in the
sense that we solve a linear problem as described in the following remark.

Remark 3. Suppose we want to minimize

F (X) =
1
2

(AX,X)− (b,X),

where (., .) is the inner product on RN , A is a positive definite N ×N matrix, b is a
vector in RN , and X ∈ RN , subject to the constraint

BX = 0.

Then X may be obtained by applying a conjugate gradient procedure to the functional

F̃ (X) =
1
2

(πAπX,X)− (πb,X),(18)
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TABLE 1

CPU time for solving problem (15)
on a Sparc2 computer

153 grid 213 grid

Lagrangian method ≈ 8.8s ≈ 21.1s

Relaxation method ≈ 4.7s ≈ 11.1s

Conjugate gradient ≈ 3.7s ≈ 11.3s

where π stands for the orthogonal projector onto the linear space

K =
{
X ∈ RN such that BX = 0

}
,

provided the algorithm is started with X0 ∈ K.
The proof of this remark is obvious and left to the reader. It is also clear (since

F̃ (X) = F̃ (πX)) that any minimization procedure that converges to a minimum X∞
of F̃ will give the correct solution to (18), X̄ = πX∞.

Setting πh to be the projector onto the plane orthogonal to uijk,

πhwijk = wijk − (wijk.uijk)uijk,

we implemented the classical conjugate gradient applied to the functional (18):

Start with w0 ∈ Kun,ijk , r0 = −πh∆h(uhijk − w0,ijk), p0 = r0;

For n = 0 . . . until convergence

αn = (rn,pn)
(pn,−πh∆hpn) ;

wn+1,ijk = wn,ijk + αnpn;

rn+1 = rn + αnπ
h∆hpn;

βn = |rn+1|2
|rn|2

;

pn+1 = rn+1 + βnpn.

In other words, the possibility of writing a conjugate gradient method comes
from the explicit knowledge of πh. Indeed, in our problem, πh is the pointwise pro-
jection onto the plane orthogonal to u. Thus, this method appears to be “equivalent”
(in terms of complexity) to one iteration of the Uzawa method (for the augmented
Lagrangian).

7. Comparison of the algorithms. We described three algorithms in the pre-
ceding section. We give here (see also Table 1) a short comparison in terms of CPU
times on two cases. The first case is on a 153 grid and the second is on a 213 grid. For
both the Uzawa method and the relaxation method, we give the best performance
obtained. The same problem has been chosen for comparing the three algorithms,
on the same grid. The initial value for wijk is 0, and the algorithms stop when the
Euclidean norm of the residual has been reduced by a factor of 10−4. The map taken
for uh is of degree 1 with displaced singularity, which is drawn in Fig. 3.

As expected, the augmented Lagrangian technique (even with the optimal param-
eter r) is much more costly than either relaxation or conjugate gradient techniques.
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FIG. 3. Initial map presenting a degree 1 singularity and which agrees with x/|x| on the boundary.

Moreover, choosing bad values for the Lagrangian and relaxation methods can be
dramatic. As the fastest method is the conjugate gradient where no parameter needs
to be adjusted, we made the most of the computations below with this method.

8. Using the fibers for representing the solution. In order to “draw” the
solution, we decided to draw some of its fibers. We will briefly discuss the advantage
of using the fibers. (In [8] and [9] Gulliver studied the fibers from the mathematical
point of view.)

DEFINITION 1. Let u ∈ H1
n0

(Ω, S2); we call

Fu(s) = u−1({s,−s})

the fiber of u associated with a vector s ∈ S2.
Generically, since Ω is of dimension 3, these fibers are curves in Ω.
Example. If we consider the map

u∗ : Ω −→ S2,

x −→ x

|x| ,

the fibers of u∗ are obviously straight lines that are crossing each other at 0. In the
preceding example, the fibers cross each other exactly where the map has a singularity.
Conversely, if two fibers cross each other at a point x in Ω, then there is a singularity
at x (since the map has to take different values at x). More precisely, if x is a
singularity of degree k, for u, since u maps “k times” the sphere S2 locally around x
(that is, on any sufficiently small sphere around x) from the definition of the degree,
then we expect any fiber of u to go at least k times through x. From the above
remarks, and taking into account the result by Brezis, Coron, and Lieb [1] that locally
minimizing harmonic maps may have only singularities of degree ±1, drawing few
fibers (three fibers are usually sufficient) immediately allows the localization of the
singularities.
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FIG. 4. The algorithm converges to a final map which possesses straight fibers. This is x −→
x/|x|.

9. Numerical results.

9.1. The map x/|x | is minimizing. The first example treated is to verify the
minimizing property of the map

u∗ : Ω −→ S2,

x −→ x

|x| .

There exist many proofs of this result (one of the simplest is due to Lin [10]).
Figure 3 shows the initial data, which is a map with one singularity of degree

1 displaced on the right of the cube and which agrees with u∗ on ∂Ω. After a few
iterations of the algorithm (see Fig. 4), the singularity moved to the center and the
fibers are now straight lines. This means that this final map is u∗. Remark that the
boundary condition did not change, since the fibers still cross the boundary at the
same places. Figure 5 shows the energy diagram during these iterations.

9.2. The singularities of degree greater than 1 are unstable. This has
been proved by Brezis, Coron, and Lieb [1] after having seen the numerical results
of Cohen et al. [4]. The result is that minimizing harmonic maps may only have
singularities of degree ±1. Conversely, singularities of degree 2, 3, . . . are unstable.
The best way to construct a singularity of degree n is to consider the map

uω : Ω −→ S2,

x −→ π−1
s ◦ ω ◦ πs

(
x

|x|

)
,

where πs is the stereographic projection from S2 into the complex plane C and ω is a
map from C to C. If ω is holomorphic, then the map uω is harmonic. Moreover, uω
has only one singularity in 0, and if, for example, ω is polynomial of degree n, then
this singularity is of degree n.
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FIG. 5. Energy versus iterations diagram for the degree 1 singularity.
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FIG. 6. Initial map with a degree 2 singularity.

We have decided to start the algorithm with a map of the form uω with
• ω(z) = z2,
• ω(z) = z3.

In each case we expect the singularity to “explode” into a few singularities, each of
degree 1.

As far as the first case is concerned (ω(z) = z2), we have represented some fibers
of the discretized map uhω in Fig. 6. Due to the discretization, the singularity is
delocalized in the center cell. After a few iterations (Fig. 7), the algorithm finds
a “stable” map which possesses 2 singularities of degree +1. Numerically, degree 2
singularities are also unstable. The energy diagram is presented in Fig. 8, where it can
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FIG. 7. Final map with two degree 1 singularities.

FIG. 8. Energy versus iterations for the creation of two degree 1 singularities.

be seen that the algorithm has some difficulties lowering the energy at the beginning.
The reason is that since the initial guess is a harmonic map, the first computed descent
directions are almost 0. However, the algorithm is stable enough to slowly decrease
the energy and escape from this critical point. Another possibility for testing the
stability of the initial mapping would have been to perturb it.

The second case is a very special one; actually, the first algorithm (augmented
Lagrangian technique) led to a map with three singularities of degree 1 (see Figs. 9
and 10 for initial and limit maps). The second and third (much faster) algorithms
found a map with five singularities, four of degree 1, and one of degree −1, in the
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FIG. 9. Initial map with a degree 3 singularity.
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FIG. 10. Final map with three degree 1 singularities obtained with the Uzawa method.

center, conserving the total degree of the map. The main reason for this strange
result is that the constraint is very well satisfied; it is also due to the symmetry of
the problem (see Figs. 11, 12, and 13 for a few iterates). This is the only case where
a different result has been found when running the different algorithms. The second
minimizer is of energy greater than the first one, indicating that we found a local
minimizer of the energy. (Even the augmented Lagrangian algorithm started with
this map as an initial guess did not succeed in decreasing the energy.)
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FIG. 11. After 10 iterations of the relaxation or conjugate gradient methods.
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FIG. 12. After 50 iterations of the relaxation or conjugate gradient methods.

10. Conclusion. We have constructed a very efficient algorithm well suited for
finding minimizing S2-valued harmonic maps. From some properties of the construc-
tion, we have been able to prove the convergence of this method. After discretization,
we obtained a numerical version of this algorithm which possesses a very good rate of
convergence (but each iteration requires the resolution of a linear system). Unfortu-
nately, generalizing this process to the more complicated case of nonequal constants
Ki does not seem that easy. Since the energy is no longer quadratic, the problem (15)
is nonlinear and may not have a unique solution. Moreover, the renormalization step
may increase the energy.
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FIG. 13. Final map with five singularities, obtained with the relaxation or conjugate gradient
methods.
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