LINEAR ALGEBRA I
PRE 2 - mATH FOR DS - CLASS

VECTOR SPACE
A vector space $(V,+$,$) is a set endowed by two operations:$ $+\left\{\begin{array}{l}(v, v) \longrightarrow V \\ (x, y) \longmapsto x+y\end{array} \quad\right.$ that allows to add two vectors.
$\cdot\left\{\begin{array}{l}(\mathbb{R}, v) \longrightarrow V \quad \text { that is the multiplication of a vector by a } \\ (\alpha, x) \longrightarrow \alpha_{0} x \quad \text { scalar }\end{array}\right.$
Formally a number of axioms need to be satisfied such that
$\rightarrow(v,+)$ is an additive group check what is a group oft the class

$$
\begin{aligned}
& \rightarrow \alpha_{\mathbb{R}}^{\alpha} \cdot\left(\begin{array}{l}
x \neq y) \\
\\
\boldsymbol{N}
\end{array}\right)=\alpha_{1} \cdot x+\alpha_{\cdot 2} \\
& \rightarrow \alpha_{1} \cdot\left(\alpha_{2} \cdot x\right)=\left(\alpha_{1} \alpha_{2}\right) \cdot x \\
& \rightarrow\left(\alpha_{1}+\alpha_{2}\right) \cdot x=\alpha_{1} x+\alpha_{2} x
\end{aligned}
$$

Elements of V are called vector.

Q - Which vector space do you know?
$(\mathbb{R},+,$.$) is a vector space$
$\left(\mathbb{R}^{n},+,.\right)$ is a vector space

x_{i} are the components or entries of the vector

$$
\begin{gathered}
x=\left[\begin{array}{l}
x_{1} \\
1 \\
x_{n}
\end{array}\right] ; \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \\
x+y=\left[\begin{array}{l}
x_{1} \\
1 \\
1 \\
x_{n}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
1 \\
1 \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]
\end{gathered}
$$

Example: Add the two vectors of \mathbb{R}^{2} :

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\left[\begin{array}{c}
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
6 \\
1
\end{array}\right]
$$

Scalar in multiplication in \mathbb{R}^{n} :

$$
\underset{R}{\alpha_{R}}-x=\alpha \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha x_{1} \\
1 \\
1 \\
x_{n}
\end{array}\right]
$$

Home exercice: Simplify $3\left[\begin{array}{l}2 \\ 1\end{array}\right]+\left[\begin{array}{c}-4 \\ -1\end{array}\right]$
Can we substract vector of \mathbb{R}^{n} ?

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { ? }
$$

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]
$$

Yes we can substiact vector because it is abually adding - the vector.
GEONETRICAL INTERPRETATION:
In \mathbb{R}^{2}, we consider the vector $x=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

\rightarrow we do not care about the sign

$$
y=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

\rightarrow a vector has a direction and an amplitude

Adding two vectors

$$
x+y=\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Scalar multiplication:

$$
\begin{gathered}
x=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad y=2 \cdot x=2\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
z=-1 x=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\tilde{z}=-2 x
$$

nultiplying by a scalar changes the amplitude but we Keep the same direction.

$$
\underset{\mathbb{R}}{c_{1} v_{1}+c_{2} v_{2}+\cdots \cdots+c_{\mathbb{R}} v_{k} v_{k}} \underset{\mathbb{R}}{\mathbb{R}}
$$

v_{1}, \ldots, v_{k} are vectors
u, _, ck ore salas (reel numbers)
\rightarrow. This is a linear combination of the vectors
$\left\{v_{1},-, v_{k}\right\}_{p}$
The scalars $4, \ldots, c k$ are called the weights

$$
\underbrace{1\left[\begin{array}{l}
2 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

this is a linear combination of $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Definition: The span of a list of vectors is the set of all vectors which can be written as a linear combination of the vectors in the list

Notation: $\operatorname{span}\left(v_{1}, \ldots, v h\right)\left[\begin{array}{l}\text { iN FRANCE } \\ \operatorname{Vect}\left(v_{1}, . . ., v k\right)\end{array}\right]$
What is the span of $x=\left[\begin{array}{l}2 \\ 0\end{array}\right], y=\left[\begin{array}{l}0 \\ 1\end{array}\right]$?

Let w be a vector a of \mathbb{R}^{2}

$$
\begin{aligned}
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] & =\left[\begin{array}{c}
\frac{w_{1}}{2} \times 2 \\
w_{2}
\end{array}\right] \\
& =\frac{w_{1}}{2}\left[\begin{array}{l}
2 \\
0
\end{array}\right]+w_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

w is a linear combination of $\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ with the weights $\frac{w_{1}}{2}, \omega_{2}$

Then $\operatorname{span}\left(\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\mathbb{R}^{2}$
What is the span of $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0\end{array}\right]$?

Definition: A list of vectors is linearly independent if none of the vectors in the list can be witter as a linear combination of the others.
Examples: $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad$ Are they linerly independent?
No, they are not lin. ind. beccuese $v_{2}=3 v_{1}$
Same question with $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$?
Yes they are.
Prorsition: $\left(v_{1}, t, v k\right)$ are linearly independent vectors

$$
\begin{aligned}
& \Longleftrightarrow \\
\lambda_{1} v_{1}+\cdots+\lambda_{k} v k & =0 \quad \Rightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0
\end{aligned}
$$

Use this proposition at home to show $\binom{1}{0},\binom{0}{1}$ are linearly independent
Definition: A spanning list of a vector space V is a list of vectors in V such that the span is equal to V.

Example: $\left\{\binom{2}{0},\binom{0}{1}\right\}$ is a spanning list of \mathbb{R}^{2}
You can verify that $\binom{2}{1},\binom{1}{0}$ is a spanning list of \mathbb{R}^{2}

- We consider $V=\left\{\left(\begin{array}{l}x \\ 0 \\ 0\end{array}\right), x \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$
$\rightarrow V$ is a vector space (check this at home)
$\operatorname{span}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=V$ such that $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is a spanning list of V

Definition: A linearly independent spanning list of a vectors space V is called a basis.

Proposition: All basis of a vector space have the same length, which is called the dimension of the vector space.

Given a basis of V there is an unique way to write any vector of v as a linear combination of the elements of the basis.

If $\left\{v_{1}, \ldots, v k\right\}$ is a basis of V.
Let $y \in V$, there exists an unique set of salas $\left(\alpha_{1}, \ldots, \alpha k\right)$ such that $y=\alpha_{1} v_{l}+\ldots+\alpha_{\ell} v_{k}$ $\left(\alpha_{1},-, \alpha_{k}\right)$ are called the coordinates of y with respect to the basis $\left(v_{1},-, v_{k}\right)$

Let's go back to \mathbb{R}^{n}

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

$\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis of \mathbb{R}^{n}. [HONE EXERCICE]
\rightarrow the dimension \mathbb{R}^{n} is n.
Let $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$, how do we de compost x into $\left\{e_{1}, e_{2},-, e_{n}\right\}$?

$$
x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}
$$

So, the coordinates of a vector of \mathbb{R}^{n} coincide with its coordinates with respect to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$
$\left\{e_{1}, \ldots, e_{n}\right\}$ is called the stamcbord basis of \mathbb{R}^{n}.
[FRANE: "base canorriqu"]

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

$\Rightarrow \mathbb{R}^{2}$ is a 2 -dimensional vector space.
\mathbb{R}^{3} is a 3 -dimensional vector space

LINEAR TRANSFORMATIONS
Definition: $L: V \rightarrow W$ is a linear tausformation vector spaces
if $\forall v_{1}, v_{2} \in V, \alpha_{1}, \alpha_{2} \in \mathbb{R}$ the following is satisfied:

$$
L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)
$$

Example:

Definition: The rank of a linear transformation $L: V \rightarrow W$
is the dimension of $L(V)$
where $L(V)=\{y \in W$ such that $y=L(x), x \in V\}$
[FRANCE: $\angle(V)$ is the image of $<$]

$$
\operatorname{rank}(L)=\operatorname{dim}(L(v))
$$

Image of L
Example:
Consider $L:\left\{\begin{array}{l}\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\ x=\binom{x_{1}}{x_{2}} \rightarrow\binom{x_{1}}{0}\end{array}\right.$

1) Show that 2 is a linear transformation
2) Find $\operatorname{rank}(2)$.

Consider $L:\left\{\begin{array}{l}\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\ x=\binom{x_{1}}{x_{2}} \rightarrow\binom{x_{1}}{0}\end{array}\right.$

1) Show that 2 is a linear transformation
2) Find $\operatorname{rank}(2)$.

Answers: $1 \int_{j}^{2} \sum_{i}^{\prime \prime}(x, 2)$

$$
\begin{aligned}
\operatorname{rank}(L)=\operatorname{dim}\left(L\left(\mathbb{R}^{2}\right)\right) & L\left(\mathbb{R}^{2}\right)=\left\{y=\binom{y_{1}}{0}, y_{1} \in \mathbb{R}\right\} \\
& \binom{1}{0} \text { is a basis of } L\left(\mathbb{R}^{2}\right)
\end{aligned}
$$

$\binom{1}{0}$ is radenenceut and it is a spamming list of $L\left(\mathbb{R}^{2}\right)$

Let $y \in L\left(\mathbb{R}^{2}\right), y=\binom{y_{1}}{0}=y_{1}\binom{1}{0} \Rightarrow\binom{1}{0}$ is a spanning list of $L\left(\mathbb{R}^{2}\right)$
Then $\operatorname{din}\left(L\left(\mathbb{R}^{2}\right)\right)=1=\operatorname{ramk}(L)$

Proposition of other example:

$$
\begin{aligned}
& L: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& x=\binom{x_{1}}{x_{2}} \longrightarrow\binom{x_{1}}{5} \quad \operatorname{rank}(L)=1 \text { ? }
\end{aligned}
$$

$L(x+y)=L(x)+L(y)$ if L is a linear transformation

$$
\begin{aligned}
& 2(\underbrace{\left.\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}\right)}=\binom{x_{1}}{5}+\binom{y_{2}}{5}=\binom{x_{1}+y_{2}}{10} \\
& 2\left(\binom{x_{1}+y_{1}}{x_{2}+y_{2}}\right) \\
& \binom{x_{1}+y_{1}}{5}
\end{aligned}
$$

the example is not a linear transformation.

Considen $L\left(\left[\begin{array}{l}x \\ y \\ t\end{array}\right]\right)=\left[\begin{array}{c}z+y \\ z-y \\ 0\end{array}\right] \quad L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$
Hone EXERCICE: shis that L is lirear

$$
\operatorname{rank}(L)=2
$$

$L=\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$
is binear trausformation

$$
R:\left\{\begin{array}{l}
\mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longrightarrow\binom{x_{1}}{3 x_{2}}
\end{array}\right.
$$

$$
L:\left\{\begin{array}{l}
\mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longrightarrow\left(\begin{array}{l}
\mathbb{R}^{2} \\
x_{2} \\
x_{1}
\end{array}\right)
\end{array}\right.
$$

Definition:
The nullspace on kernel of a linear transformation is the set of vector mapped to 0 .

Let $L: V \rightarrow W$ be a linear taenformation

$$
\operatorname{ker}(L)=\left\{v \in v, L(v)=o_{w}\right\}
$$

Example:

$$
\begin{aligned}
& L:\left\{\begin{array}{l}
R^{2} \longrightarrow \mathbb{R}^{2} \\
x_{1} \\
x_{2}
\end{array}\right) \longrightarrow\binom{x_{1}}{0} \\
& \operatorname{Ker}(L)=\left\{\binom{0}{x_{2}}, x_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

$$
\operatorname{din}(\operatorname{Ker}(L))=1 \quad\binom{0}{1} \begin{array}{r}
\text { is a bans of } \\
\\
\text { the henel })
\end{array}
$$

Remark: $\operatorname{dim}(\operatorname{Ker}(L))+\operatorname{dim}(L(V))=1+1=2$
Rank nullity theorem
Let V, W be two vector spaces (V finite dimeenional) Let $L: V \rightarrow W$ be a linear transformation. Then $\operatorname{rank}(L)+\operatorname{dim}(\operatorname{ker}(L))=\operatorname{dim}(V)$

$$
\begin{aligned}
& L:\left\{\begin{array}{l}
\mathbb{R}^{2} \rightarrow \mathbb{R} 2 \\
\binom{x_{1}}{x_{2}} \longrightarrow\binom{0}{x_{2}}
\end{array}\right. \\
& L\left(\mathbb{R}^{2}\right)=\left\{\binom{0}{x_{2}}, x_{2} \in \mathbb{R}\right\} \\
& \operatorname{ramk}(L)=1 \\
& \operatorname{ker}(L)=\left\{\binom{x_{1}}{0}, x_{1} \in \mathbb{R}\right. \\
& \operatorname{dim}(\operatorname{ker}(L))+\operatorname{rank}(L)=1+1=2
\end{aligned}
$$

