CLASS 2- LINEAR ALGEBRA 2 We come back on the example from lat time

$$
L:\left\{\begin{array}{l}
\mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longrightarrow\left(\begin{array}{l}
\mathbb{R}^{2} \\
x_{1} \\
5
\end{array}\right)
\end{array}\right.
$$

This is not a linear taurformation because

$$
L\binom{0}{0}=\binom{0}{5} \neq 0
$$

Proposition: If L is a linear taunformation them

$$
L\left(o_{v}\right)=0 w
$$

$$
L: V \longrightarrow W
$$

Since L is linear, $L(x+y)=L(x)+L(y)$
Hence $L(0+o v)=L(o v)+L(o v)$

$$
\Rightarrow \quad L(\text { ow })=L(o v)+L(o v) \Rightarrow L(o v)=0 w
$$

natrix
A matrix is a rectangular array of numbers.

Exauple:

$$
A=\left(\begin{array}{ll}
3 & 2 \\
5 & 0
\end{array}\right) \text { is a } 2 \times 2 \text { matrix }
$$

If $m=n$, we talk abrut a squar matix.

Adding two matrices
Let A be a $m \times n$ matrix

- $B=m \times m$ matrix

$$
A+B=\left(a_{i j^{\prime}+}+b_{i j}\right)_{1 \in j \in m} 1 \in i \in n
$$

Examples:

$$
\left[\begin{array}{ll}
2 & 0 \\
1 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
12 \\
00
\end{array}\right] ;\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 3 \\
0 & 1 \\
1 & 0
\end{array}\right]=
$$

Impossible to add
mULTIPLICATION BY A SCALAR

$$
t A=\left[\begin{array}{ccc}
\tan & \cdots, \tan 1 \\
\vdots & \vdots \\
\tan 1 & , \tan , n
\end{array}\right] \quad \text { ex: } 3\left[\begin{array}{ll}
2 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
3 & 3 \\
0 & 3
\end{array}\right]
$$

ПATRIX-VECTOR MULTIPLICATION
Let A a mam matrix; x a n-dim vector (that we can also see as

$$
x\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
\hline
\end{array}\right]
$$ a $n \times 1$ matrix)

Example:
$A=\left[\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right] ; x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, compute $A x=$?

$$
A x=\binom{2}{2}
$$

Another way to see the matix-nector multiplication:

$$
A x=\underbrace{x_{1}^{\ell_{1}^{R}} A_{1}+\cdots+x_{n} A_{n}}
$$

linear combination of the columns of A (which are vectors) with weights x_{1}, \ldots, x_{n} (coordinates of vector)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad x=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& A x=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
\end{aligned}
$$

Let A be a $m \times n$ matrix, $A=\left[A_{1}, \ldots, A_{n}\right][m$

$$
\alpha\left\{\begin{array}{l}
\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
x \longrightarrow A_{x}\left(=x_{1} A_{1}+\cdots+x_{n} A_{n}\right)
\end{array}\right.
$$

Proposition: $x+\stackrel{d}{\longrightarrow} A x$ is a linear tausformation from \mathbb{R}^{n} to \mathbb{R}^{m}
PRoof : Verity:

$$
\begin{aligned}
& L(x+y)=L(x)+L(y) \\
& L(\lambda x)=\lambda L(x)
\end{aligned}
$$

We have seen that we can associate to a matrix a linear tiaurformation. The converse is true, we can associate to a linear thausformation from two vector spaces of finite dimeurion a matrix.

Let L:E $\longrightarrow V$ be a linear trausformation. E; is a n dim -vector V is a m dom -vector space
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of vectors of E
Let $\left\{b_{1}, \ldots, b_{m}\right\} \square$ of V
$L\left(e_{1}\right) \in V$, I can deomposite it in a unique way on $\left\{b_{1}, \ldots, b_{n}\right\}$

$$
\begin{aligned}
& L\left(e_{1}\right)=\alpha_{11} b_{1}+\cdots+\alpha_{m 1} b_{m} \\
& L\left(e_{2}\right)=\alpha_{12} b_{1}+\cdots+\alpha_{m 2} b_{n}
\end{aligned}
$$

We say that B is the representation of

B is a $m \times m$ matrix

EXERCICE: Find the matrix comesponding to the linear transformation

$$
I\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
z \\
x \\
y
\end{array}\right) \quad T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad \text { in the standard } \text { basis. }
$$

Standard boris in $\mathbb{R}^{3},\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$

$$
\begin{aligned}
T\left(e_{1}\right) & =\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), T\left(e_{2}\right) & =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) ; T\left(e_{3}\right) & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =0 e_{1}+1 e_{2}+\Delta e_{3} & =0 e_{1}+0 e_{2}+1 e_{3} & =1 e_{1}+\Delta e_{2}+0 e_{3}
\end{aligned}
$$

$T\left(e_{1}\right) T\left(e_{2}\right) T\left(e_{3}\right)$

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) e_{1}
$$

A is the representation of T in the standard basis

In \mathbb{R}^{n} the standard basis is $\left\{e_{1}\right.$, , en $\}$

$$
e i=\left(\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)<i
$$

There is not an unique way to represut a linear transformation as a matrix. If you charge the bans, this will change the matrix representation.
If you consider the basis $\tilde{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \ln _{2}^{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=e_{3}$ will be different.
If $L: E \rightarrow V$ is a linear transformation, B its matin representation in $\left\{e_{1},-e_{n}\right\}$ and $\left\{b_{1},-, b_{m}\right\}$

Then $L(x)$ is represented as $B x$ in $\left\{b_{1},-, b_{m}\right\}$
Product. matin, vector.
matrix multiplications:
Let A be a $m \times n$ matrix
Let B be a $n \times p$ matrix
Then $A B$ is a mop matrix such that

$$
\forall x \in \mathbb{R}^{p} \quad(A B) x=A(B x)
$$

Concretely:

Multiply:

$$
\frac{\left[\begin{array}{ll}
3 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 4 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 12 & 3 \\
2 & 0 & 0 & 1
\end{array}\right]}{\left[\begin{array}{lll}
1 & 1
\end{array}\right]}
$$

I! Be careful about sizes, you cant multiply a (2×2) \& (3×4)

$$
\begin{aligned}
& \left.\left[\begin{array}{ll}
x & x \\
x \\
x
\end{array}\right]\right]^{x}\left[\begin{array}{ll}
x & x \\
x & x \\
x
\end{array}\right] \text { impossible } \\
& \text { matrix } \\
& \text { Remember: } \\
& \text { (}{\underset{\text { Same }}{2}(m \times m)(m \times p)}_{(m \times p)}^{(m a t i x}
\end{aligned}
$$

RANK, KERNEL (NULLSPACE), INVERSE OF A MATRIX
DEFINITION: The rank of a matrix A is defined as the rank of the linear transformation
$A\left\{\begin{array}{l}\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\ x \longrightarrow A x\end{array}\right.$

$$
\operatorname{rank}(A)=\operatorname{dim}(\underbrace{A\left(\mathbb{R}^{n}\right)}_{\text {rage of of or Image of A }})
$$

Since $A x=x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}$
linear combinations of columns of A
Then $\operatorname{ramk}(A)$ is the dimension of the span $\left(A_{1}, \ldots, A_{n}\right)$
Examples: $\operatorname{rank}\left(\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)\right)=2 \quad \operatorname{rank}\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)\right)=1 \quad \operatorname{sank}\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)=2$

DEFINITION: The kernel s nellypace of a $m \times m$ matrix A is the kervel of $x \in \mathbb{R}^{n} \longrightarrow A x \in \mathbb{R}^{n}$ that is

$$
\operatorname{ker}(A)=\left\{x \in \mathbb{R}^{n}, A x=0_{\operatorname{Rn}}\right\}
$$

Examples: Rank and Kernel of $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
rank? Span $\left.\left\{\begin{array}{l}0 \\ 0\end{array}\right),\binom{1}{0},\binom{0}{2}\right\}=\mathbb{R}^{2} \quad \operatorname{rank}(A)=2$

$$
\begin{aligned}
& \operatorname{ku}(A)=\left\{x \in \mathbb{R}^{3} \mid A x=0\right\} \\
&=\left\{x \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{c}
x_{2} \\
x_{3}
\end{array}\right]=0\right.\right\} \\
&=\left\{x \in \mathbb{R}^{3} \mid x_{2}=x_{3}=0\right\} \\
&=\left\{\left(\begin{array}{l}
x_{1} \\
0 \\
0
\end{array}\right), x_{1} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \\
& \operatorname{dim}(\operatorname{ker} A)=1
\end{aligned}
$$

The rank (A) and $\operatorname{dim} \operatorname{ker}(A)$ are consistent with the RANK NULLITY Theorem

$$
\operatorname{rank}(A)_{11}^{2}+\underset{1}{11}+\operatorname{dim}_{1}(\operatorname{ken}(A))=\operatorname{dim}_{11}\left(\mathbb{R}^{3}\right)
$$

We forget about matrix, linear transformation and we want to talk

f can be $f: \exp \left\{\begin{array}{l}\mathbb{R} \longrightarrow \mathbb{R} \geqslant 0 \\ x \longrightarrow \exp (x)\end{array}\right.$

DEFINITION: We say that f is sujeective if all elements of F have a pre-imaje by f, i.e. $\quad \forall y \in F, \exists x \in E, f(x)=y$ "antecedent" IN PRENCH

DEFINITION: We say that f is injective if two elements of E are sent on different elements of F
I.E. $\forall x_{1}, x_{2} \in E, \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

ExAMPLES

f_{1}, injective, surjective? $\rightarrow f_{1}$ is not surjective because d has no pe-image. f_{2}
? $f_{1} \longrightarrow$ infective because $f_{1}(2)=f_{1}(3)$
f_{3} ? Same for f_{2} : not infective and nod surgeitive. f_{3} is both infective and subjective

This is infective but not surjective

DEFINITION: If a mapping F is both infective and surjective, we by that f is bijective.

If f is bjeictive then $\forall y \in F$ there exist an unique $X \in E$
such that $y=f(x)$.
$\frac{7}{7}!$
If f is byjective there exits an inverse mapping denoted f^{-1} such that

$$
\begin{aligned}
& f^{-1}=f^{-1} \circ f=i d \\
& f^{-1}(f(x))=x
\end{aligned} \quad\left\{\begin{array}{l}
E \xrightarrow{f} F \xrightarrow{f^{-1}} E \\
x \longrightarrow f(x) \longrightarrow f^{-1}(f(x))=x
\end{array}\right.
$$

We go back to matrices.
Proposition: Let A be a $m \times m$ matrix, them

$$
\left(x \in \mathbb{R}^{n} \longmapsto A x \text { is injective }\right) \Leftrightarrow(k a(A)=\{0\})
$$

Proof: Look for the proof for the next class [ExERCICE]

$$
(x \stackrel{A}{\longrightarrow} A x \text { is surgective }) \Leftrightarrow \underset{\substack{n \\ A\left(\mathbb{R}^{n}\right)}}{\operatorname{range}(A)}=\mathbb{R}^{m}
$$

THEOREN: If A is a $n \times n$ matrix (square). Them the following ore equivalent:
(i) the taus formation $x \mapsto A x$ is bijective
(ii) range $(A)=\mathbb{R}^{n} \quad(x \mapsto A x$ is serjective $)$
(iii) Kerr $A=\{0\} \quad(x \mapsto A x$ is infective)

$$
L_{1}:\binom{x}{y} \longmapsto\binom{y}{x}^{\text {ELEmENTS FOR THE }}
$$

L_{1} the symmetry with respect

$$
\text { to }{ }^{4} x=y^{4}
$$

