$$
\text { PRET - CLASS } 4
$$

We have seen last time that an orthogonal matrix is a square matrix 4 such that:

$$
U^{\top} U=U U^{\top}=I
$$

It means that the inverse of $U^{-1}=U^{\top}$

$$
\text { Example: } U=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \text { is orthogonal } U^{-1}=U^{\top}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), U^{-1}=U^{T}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

EIGENVALUES / EIGENVECTORS , MATRIX REDUCTION
DEFINTIION: An eigenvector s of a $n \times n$ matrix is a non-zero vector such that, $\exists \lambda \in \mathbb{R}$ called eigenvalue such that

$$
A v=\lambda v
$$

GEONETRICAL interpretation:
A a 2×2 matrix, v eigenvector of $A ;$ ie $A v=\lambda v$ say $\lambda>1$

Examples: Find eigenvalues and eigenvectors of $I=\left(\begin{array}{ll}1 & (0) \\ (0) & \lambda_{1}\end{array}\right), D=\left(\begin{array}{ll}\lambda_{1} \\ (0) & (0) \\ \left(\lambda_{n}\right)\end{array}\right)$

If $I=\left(\begin{array}{ll}1 & \\ (0) & (0) \\ 1\end{array}\right)$, then any vector x satisfies $I x=x$, so any vector is eigenvector associated to the eigenvalue 1 .
$\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right), \cdots,\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are eigenvectors : corRECT but actually any $x \in \mathbb{R}^{n}$ is

$$
\left.\left.D=\left(\begin{array}{ll}
\lambda_{1} & (0 \\
(0) & \binom{0}{d_{n}}
\end{array}\right) \quad e_{1}=\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \rightarrow e_{1}=\left(\begin{array}{lll}
d x & (0) \\
(0) & d_{2}
\end{array}\right) \right\rvert\, \begin{array}{l}
0 \\
A_{1} \\
0 \\
\lambda_{1} \\
0
\end{array}\right)=\lambda_{1} e_{1}
$$

e_{1} is eigenvector associated to λ_{1}.
$e_{2}=\left(\begin{array}{c}0 \\ \text { 寺 } \\ 1 \\ 0\end{array}\right)$ is eigenvector associated to λ_{2}

$$
e_{n}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right) \longrightarrow t_{0} \lambda_{n}
$$

$D=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \quad$ In \mathbb{R}^{2}, how is the unit circle $\left\{\left.x=\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}^{2}+x_{2}^{2}=1\right\}$ transformed via D ?

The circle is tausformed into the red ellipsoid.
Let $y=\binom{y_{1}}{y_{2}}=A x$ with $x \in$ Unit circle $\left(\begin{array}{l}\left.\text { ie } x_{1}^{2}+x_{2}^{2}=1\right) ~\end{array}\right.$

$$
\begin{array}{r}
=\binom{2 x_{1}}{x_{2}} \quad \Rightarrow \quad x_{1}=\frac{y_{1}}{2}, x_{2}=y_{2}^{2} \quad \begin{array}{l}
x_{1}^{2}+x_{2}^{2}=1 \\
\frac{y_{1}^{2}}{4}+y_{2}^{2}=1
\end{array}
\end{array}
$$

Equation of an ellipsoid.

Given $D=\left(\begin{array}{ll}\lambda_{1} & \\ & (0) \\ (0) & \lambda_{n}\end{array}\right), \quad D^{k}=\underbrace{D D<}_{\text {ktimes }}=\left(\begin{array}{lll}\lambda_{1} k_{k} & & \\ \vdots & (0) \\ (0) & & \left.\begin{array}{l}k \\ \lambda_{n}\end{array}\right)\end{array}\right.$

$$
\left.\begin{array}{l}
D^{2}=\left(\begin{array}{lll}
\lambda_{1}^{2} & & \\
& , & \\
0 & 0 & 0 \\
0 & & \lambda_{n}^{2}
\end{array}\right) \\
A=\left(\begin{array}{ll}
a & d \\
c & b
\end{array}\right), A^{2}=\left(\begin{array}{l}
a^{2} \\
c^{2}
\end{array} b^{2}\right.
\end{array}\right)
$$

If we have a $n \times n$ matrix A with n linearly indepeudent eigen rectory $\left\{v_{1}, v_{2},, v_{n}\right\}$,
$A v_{i}=\lambda_{i} v_{i} \quad \lambda_{i}$: eigenvalue associated to v_{i}
$\left\{v_{1},-, v_{n}\right\}$ is a basis of \mathbb{R}^{n}.
$V=\left[v_{1}, \ldots, v_{n}\right]$, then we have $A V=\frac{V D}{d_{1}}(x)$
(a) is true: Indeed:

$$
\left.\begin{array}{l}
\text { is true: Indeed: } \\
\left.A V=(A) v_{1}, \ldots, v_{n}\right) \\
\left(A v_{1}, A v_{2}, \ldots, A v_{m}\right)
\end{array}\right)=\left(\lambda_{1} v_{1}, \lambda_{2} v_{2}, \ldots, \lambda_{n} v_{m}\right)=\underbrace{\left(v_{1}, \ldots, v_{m}\right)}_{V D} \begin{array}{ccc}
\left(\begin{array}{cc}
\lambda_{1} & 1 \\
10 & (0) \\
1 & d_{n}
\end{array}\right) & d_{n}
\end{array})
$$

the columss by d_{1}
V is compored of n linearly indepeudeut vectos, $\Rightarrow \operatorname{span}\left(v_{1},-, v_{n}\right)=\mathbb{R}^{n}$

$$
\Rightarrow \operatorname{rank}(V)=n
$$

$\Rightarrow V$ is an invertible matrix

$$
\begin{aligned}
A V=V D \quad \Leftrightarrow \quad A V V^{-1}= & V D V^{-1} \\
A= & V D V^{-1} \quad \text { We say that the } \\
& \prod_{\text {Dragonal }}^{\Leftrightarrow} \quad \text { matm'x } A \text { is diagonalizable. }
\end{aligned}
$$

EXERCICE: Let $\left(\lambda_{i}, v_{i}\right)_{1 \leq i \leq n}$ be pairs of eigenvalues, eigenvectors of a matrix A with $\left\{v_{1},, v_{n}\right\}$ are linearly ind pendent.

Identify eigenvalues and eigenvectors of $A^{2}, \ldots, A^{k} \quad k \in \mathbb{N}$ Are they diagonalizable?

POSITIVE - DEFINITE MATRICES
DEFINTITN: $A{ }_{n \times n} \operatorname{matnix} A$ is positive definite if A is symmetric and if:

$$
\begin{aligned}
& \text { 1) } \forall x \in \mathbb{R}^{n}, x^{\top} A x \geqslant 0 \quad \text { (positive) } \\
& \text { 2) } x^{\top} A x=0 \Rightarrow x=0 \quad \text { (definite) }
\end{aligned}
$$

Remark: we can have the same definition with negative definite.
A $n \times n$ matrix is positive semi-definite if it is symmetric and positive.

DEFINITION: (GRAn MATRix) If A is a $m \times n$ matrix, then $A^{+} A$ is its Gram matrix.

The Gram matrix is always positive semi-definite.
Proof: 1/ Let's prove that $A^{\top} A$ is symmetric.
we need to prove that $\left(A^{\top} A\right)^{\top}=A^{\top} A$
it is easy since $(A B)^{\top}=B^{\top} A^{\top}$

$$
\Rightarrow \quad\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A \Rightarrow A^{\top} A \text { is symmetric }
$$

2) Let $x \in \mathbb{R}^{n}$, we need to show that $x^{T}\left(A^{\top} A\right) x \geqslant 0$

$$
x^{\top} A^{\top} A x=(A x)^{\top}(A x) \geqslant 0
$$

\Longrightarrow Given y a vector $y^{\top} y=\sum y_{i}^{2} \geqslant 0 \quad y=\left(\begin{array}{l}y_{1} \\ 1 \\ y_{n}\end{array}\right)$

EXERCICE: $\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)$

THEOREN: (Spectral theorem)
If A is a symmetric $n \times n$ matrix, then A is orthogonally diagonalizable, which means that A has n eigenvectors which are pairwise orthogonal and independent.

Hence, a symmetric matrix can be diagonalized as
$A=V D \cdot V^{T}$ with V orthogonal.
and D is diagonal made of n eigenvalues of A

EXERCICE: If A is symmetric positive definte matrix, show that all eigenvalues of A are strictly positive.
polar decomposition
Given a $n \times n$ matrix A, we consider the Gram matrix $A^{\top} A$ which is symmetric and positive remi-definte.

According to the spectral theorem, $\exists V$ orthogonal and D diagonal (composed of eigen values of $A^{\top} A$) such that:

$$
A^{\top} A=V D V^{\top}
$$

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & (0) \\
(0) & \ddots & \lambda_{n}
\end{array}\right)
$$

since $A^{\top} A$ is positive semi -definite, $\lambda_{i} \geqslant 0$
We define $D^{1 / 2}:=\left(\begin{array}{cc}\sqrt{\lambda_{1}} & \\ & (0) \\ (0) & \ddots \\ \hline\end{array}\right) \quad\left[D^{1 / 2} D^{1 / 2}=D\right]$

$$
\text { I define } \sqrt{A^{\top} A:=V D^{1 / 2} V^{\top}\left[\sqrt{A^{\top} A} \sqrt{A^{\top} A}\right.} \begin{aligned}
& =V D^{1 / 2} V^{\top} V D^{1 / 2} V^{\top} \\
& \left.=V D^{1 / 2} D^{1 / 2} V^{\top}=V D V^{\top}=A A A\right]
\end{aligned}
$$

The matix $\sqrt{A^{+} A}$ is simpler to understand than A because it is symmetric and positive remi-definte, yet it transforms the space nearly in the same way.
INDEED: Let $x \in \mathbb{R}^{n}$, then $\|A x\|^{2}=(A x)^{\top} A x=x^{\top} A^{\top} A x{ }^{\top}$

$$
\begin{aligned}
& \left.=x^{\top}\left(\sqrt{A^{\top} A}\right)\right)^{\top}{\sqrt{A^{\top} A}}_{x}=\left\|\sqrt{A^{\top} A} x\right\|^{2}
\end{aligned}
$$

have the same norm

Hence there is a norm preserving transformation (ie orthogonal matrix) to go from $A x$ to $\sqrt{A^{T} A}{ }_{x}$

$$
A x=R \sqrt{A^{\top} A} x \quad R \text { is orthogonal }
$$

It thins out that R does not depeud on X. (From the POLAR DECOMposition THorien)

THEOREM: (POLAR DECOMPOSITION)
For any $n \times n$ matrix A, there exists an orthogonal matrix R such that

$$
A=R \sqrt{A^{\top} A}
$$

TRACE and MATRIX NORMS
Given a non matrix $A, \quad \operatorname{Tr}(A)=\sum_{i=1}^{m} a i i \quad A=(a i j)$ if'.

$$
\begin{aligned}
& \cdot \operatorname{Tr}(A B)=\operatorname{Tr}(B A) \\
& \cdot \operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B) \\
& {[\operatorname{Tr}(I)=n}
\end{aligned}
$$

Consequence: Let A is a $V^{n \times n}$ diagonalizable matrix
$\operatorname{Tr}(A)=\sum_{i=1}^{n} \lambda_{i}$ with λ_{i} eigenvalues of A.
PRooF:

$$
\begin{gathered}
A=V D V^{-1} \\
\operatorname{Tr}(A)=\operatorname{Tr}\left((V D) V^{-1}\right)=\operatorname{Tr}\left(V^{-1}(V D)\right)=\operatorname{Tr}(I D)=\operatorname{Tr}(D) \\
D=\left(\begin{array}{cc}
\lambda_{1} & (0) \\
(0) & \lambda_{n}
\end{array}\right) \quad \lambda_{i} \text { eigenvalues of } A \\
\\
\operatorname{Tr}(D)=\sum_{i=1}^{n} \lambda_{i}
\end{gathered}
$$

Example of application: $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right)$ is symmetric $\operatorname{Tr}(A)=3=\lambda_{1}+\lambda_{2}$ where λ_{1} and dz are eigenvalues of A.

Matrix worms: We can define norms on the set of matrices.

$$
\|A\|_{\infty 0}=\max _{i, j}\left|a_{i j}\right| \quad A=\left(\begin{array}{l}
0 \\
1 \\
x-x
\end{array}\right)
$$

Given a norm $\|$. Il defined on vectors of \mathbb{R}^{n} (any corm), we can define a norm on matrices as:

$$
\|A A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\|A x\|
$$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$\operatorname{ken}(A)=\mathbb{R}^{3} \quad x \in \mathbb{R}^{3}, \quad A x=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, all $x \in \mathbb{R}^{3}$ belong $\operatorname{Ker}(A)$.
A 3×3 invertible matrix, $\operatorname{Ker}(A)=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$

