PREZ - CLASS 4

EIGENVALUES / EIGENVECTORS, MATRIX REDUCTION

DEFINITION: An eigenvector v of a nxn matrix is a non-zero vector such that, IXER called eigenvalue such that

 $Av = \lambda v$

GEONETRICAL INTERPRETATION: A a $2x^2$ matrix, v eigenvector of A, ie $Av = \lambda v$ say 2>1 A Av A Av A Av A Av A Av Examples: Find eigenvalues and expensectors of $I = \begin{pmatrix} 1 \\ (0) \end{pmatrix}, D = \begin{pmatrix} 1 \\ (0) \end{pmatrix}$

 $D = \begin{pmatrix} 2 & \circ \\ \circ & 1 \end{pmatrix}$ In \mathbb{R}^2 , how is the unit circle $\int x = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \mid \alpha_1^2 + \alpha_2^2 = 1$ transformed wia D? D 62, The circle is transformed into the red ellipsoid. Let $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = Ax$ with $x \in Unit$ circle $(i \le x_1^2 + x_2^2 = 1)$ $= \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix} = x_1 = \frac{y_1}{2}$, $x_2 = y_2^2$, $x_1^2 + x_2^2 = 1$ $= \begin{pmatrix} y_1^2 \\ y_2 \end{pmatrix} = 1$ Equation of an ellipsoid

EXERCICE: Let (1i, vi) 15 is be pairs of eigenvalues, eigenvectors of a matrix A with Jr, -, vmJ are linearly independent. Identify eigenvalues and eigenvectors of A², -, A^k h C N

Are they diagonalizable?

POSITIVE - DEFINITE NATRICES

 DEFINITION: (GRAN NATRIX) If A is a man matrix, then

AtA is its Gram matrix.

The Gram matrix is always positive semi-definite

PROOF: 1/ Let's prove that ATA is symmetric.

=) $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A =) A^{T}A$ is symmetric

2/ Let $x \in \mathbb{R}^{n}$, we need to show that $x^{T}(A^{T}A) \times \geq 0$

 $x^{T}A^{T}Ax = (Ax)^{T}(Ax) \ge 0$

 \Rightarrow Briven y a vector $y^T y = \sum y_i^2 \ge 0$ $y = \begin{pmatrix} y_1 \\ 1 \\ y_n \end{pmatrix}$

EXERCICE: rank (A^TA) = rank (A)

THEOREN: (Spechral Heorem)

If A is a symmetric nxn matrix, then A is orthogonally diagonalizable, which means that A has n eigenvectors which are pairwise orthogonal and independent.

Here, a symmetric matrix can be diagonalized as

$$A = V D V$$
 with V or thogona

and D is diagonal made of n eigenvalues of A

EXERCICE: If A is symmetric positive definte matrix, show that all eigenvalues of A are strictly positive.

POLAR DECONPOSITION

Given a non matrix A, we consider the Gram matrix A^TA which is symmetric and poritive semi-definite.

According to the spectral theorem, IV orthogonal and D diagonal (composed of eigenvalues of ATA) such that:

 $A^{T}A = VDVT \qquad D = \begin{pmatrix} A_{1} \\ \ddots \\ (o) \end{pmatrix}$

Since $A^T A$ is positive semi-definite, $\lambda_1 \ge 0$ We define $D^{1/2} := \begin{pmatrix} I_{AT} \\ 0 \end{pmatrix} \qquad D^{1/2} D^{1/2} = D \end{pmatrix}$ T define $\sqrt{A^T A} := \sqrt{D^{1/2} \sqrt{T}} \qquad \sqrt{A^T A} \sqrt{A^T A} = \sqrt{D^{1/2} \sqrt{T}} \sqrt{D^{1/2} \sqrt{T}}$ $= \sqrt{D^{1/2} D^{1/2} \sqrt{T}} = \sqrt{D^{1/2} \sqrt{T}} = \sqrt{D^{1/2} \sqrt{T}} = \sqrt{D^{1/2} D^{1/2} \sqrt{T}} = \sqrt{D$

The matrix VATA is simpler to understand than A because it is symmetric and positive semi-definite, yet it travesforms the space nearly in the same way. $\frac{1}{1 \times 2} = (A \times)^{T} A \times 2 \times A^{T} A \times T$ $= (A \times)^{T} A \times 2 \times A^{T} A \times T$ $= (A \times)^{T} A \times 2 \times A^{T} A \times T$ $= (A \times)^{T} A \times 2 \times A^{T} A \times T$ $= (A \times)^{T} A \times 2 \times A^{T} A \times T$ $= (A \times)^{T} A \times 2 \times A^{T} A \times T$ $X \longrightarrow AX$ have the same norm Hence there is a norm preserving transformation (ie orthogonal matrix) to go from Ax to VATAJX AX = RVATA X R is orthogonal It tains out that R does not depend on x. (From the POLAR DECONPOSITION) THEOREM)

THEOREM: (POLAR DECOMPOSITION) For any nxn matnix A, Here exists an orthogonal matrix R such that $A = R \sqrt{A^T A^T}$

TRACE and NATRIX NORMS

Consequence: Let A is a diagonalizable matrix $T_r(A) = \sum_{i=1}^n \lambda_i$ with λ_i eigenvalues of A. PROOF : $A = V D V^{-1}$ $Tr(A) = Tr((VD)V^{-1}) = Tr(V^{-1}(VD)) = Tr(ID) = Tr(D)$ $D = \begin{pmatrix} A_n \\ (b) \\ (b) \end{pmatrix}$ λ_i eigenvalues of A $Tr(D) = \sum_{i=1}^{n} \lambda_i$ Example of application: $A = \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}$ is symmetric $Tr(A) = 3 = \lambda_A + \lambda_2$ where to and 12 are eigenvolue of A.

<u>Matrix vorms</u>: We can define norms on the set of matrices.

||A||00 = max | aij | ij $A = \begin{pmatrix} x \\ x - x \end{pmatrix}$

Given a norm II. Il defined or vectors of Rn (any norm), we can

define a norm on mathices as:

$$\||A\|| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{\|x\| = 1} ||Ax||$$

 $\operatorname{Ker}(A) = \mathbb{R}^{3}$ XeR^{3} , $\operatorname{AX} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$, $\operatorname{all} \times \operatorname{eR}^{3}$ belong $\operatorname{Ker}(A)$.

A 3x3 invertible matrix, $\operatorname{Ker}(A) = 2\binom{p}{2}$