PRO 2 - CLASS 5
8.10.2020

EXERCISE 3 (Sheet for class 4)
A symmetric and which is positive semi-definite

$$
\text { [which means } \left.\forall x, x^{\top} A x \geqslant 0\right]
$$

We want to show that all eigenvalues of A are non-negetir which means $\geqslant 0$.
\rightarrow Since A is symmetric, from the spectral theorem, we know that there exits P an orthogonal matrix such that: $A=P D P^{\top}$ where

$$
\lambda_{i}: \text { eigenvalues of } A . \quad D=\left(\begin{array}{ll}
\lambda_{1} & (0) \\
(0) & (0) \\
& \lambda_{n}
\end{array}\right)
$$

$$
A=P D P^{\top}
$$

Since A is positive semi-definite $x^{\top} A x \geqslant 0 \quad \forall x$ ie $\quad x^{\top} P D P^{\top} x \geqslant 0$

$$
D=\left(\begin{array}{lll}
\lambda_{1} & & \\
10 & \ddots \\
(0) & \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

If $P_{x}^{\top}=\left(\begin{array}{l}1 \\ \vdots \\ 0\end{array}\right)=e_{1}$

If $x=\left(P^{T}\right)^{-1} e_{1}=P e_{1}$, then $x^{\top} A x=\lambda_{1}$
Since $\forall x, x^{T} A x \geqslant 0$, this implies that $\lambda_{1} \geq 0$
Incan take $x=P_{e i}$ with $e_{i}=\left(\begin{array}{l}0 \\ b \\ d \\ j\end{array}\right)<$ it, $x^{\top} A x=\lambda_{i}$
since $x^{\top} A x \geqslant 0$, this implies that $\lambda_{i} \geqslant 0$

$$
\begin{aligned}
& =\lambda_{1}
\end{aligned}
$$

$$
(\underbrace{\left(p^{\top} x\right.}_{y})^{\top} D(\underbrace{\left.\rho^{\top} x\right)}_{=y}=y^{\top} D y \hookrightarrow \sum_{i=1}^{m} \lambda_{i} y_{i}^{2} \geqslant 0
$$

If A is positive definite, we know $x^{\top} A x=0 \Rightarrow x=0$ ie if $x \neq 0$, them $x^{\top} A x>0$.
Them if $x=P_{e i} \neq 0$, therefore $x^{\top} A x=\lambda_{i}>0$.

EXERCICE 4: A a $n \times m$ matrix, show that

$$
\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)
$$

EXERCICE 4 : A a $n \times m$ matrix, show that

$$
\operatorname{rank}(\underbrace{A^{\top} A}_{\substack{m \times n \times x \times m}})=\operatorname{rank}(A)
$$

From the rank-nullity theorem: $\operatorname{ranh}(A)+\operatorname{dinke}(A)=m$

$$
\operatorname{ramk}\left(A^{\top} A\right)+\operatorname{dim} k a\left(A^{\top} A\right)=m
$$

Therefore if we shaw that $\operatorname{dim}(\operatorname{ken} A)=\operatorname{dim} \operatorname{ken}\left(A^{\top} A\right)$, we will have

$$
\operatorname{ramh}(A)=\operatorname{ranh}\left(A^{\top} A\right)
$$

We will prove that $\operatorname{Ken}(A)=\operatorname{Ker}\left(A^{\top} A\right)$.
we wart to show that

1) $\operatorname{Ke}(A) \subset \operatorname{Ker}\left(A^{\top} A\right)$ Let $x \in \operatorname{Ken}(A)$,

$$
\begin{aligned}
A x=0 & \Rightarrow A^{\top} A x=A^{\top} 0=0 \\
& \Rightarrow x \in \operatorname{ken}\left(A^{\top} A\right)
\end{aligned}
$$

We want to show that
2) $\operatorname{Ke}\left(A^{\top} A\right) \subset \operatorname{Ker}(A) \quad \operatorname{let} x \in \operatorname{kar}\left(A^{\top} A\right), A^{\top} A x=0$

I multiply by x^{\top},

$$
\underbrace{(A x)}_{(A x)^{\top} A^{\top} A x}=0
$$

We have show m that $\operatorname{Ker}\left(A^{\top} A\right)=\operatorname{Ker}(A)$

$$
\begin{aligned}
& \Rightarrow \quad \operatorname{dim}\left(\operatorname{ker}\left(A^{\top} A\right)\right)=\operatorname{dim}(\operatorname{ker}(A)) \\
& \Rightarrow \operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A) \quad(\text { see above }) .
\end{aligned}
$$

WRAP UP:
Spectral theorem: A $n \times n$ symmetric can be diagonalized in an orthogonal basis, ie $\exists U$ orthogonal matrix, D exuagonal

$$
A=U D U^{\top} \quad D=\left(\begin{array}{ll}
\lambda_{1} & (0) \\
10) & \lambda_{n}
\end{array}\right)^{\prime} \quad \begin{aligned}
& \lambda_{i}, \text { eigen } \\
& \text { of } A
\end{aligned}
$$

In addition if A is positive definite, $\lambda_{i}>0$
of A is positive semi-definiee, $\lambda_{i} \geqslant 0$
Polar decomposition: A $n \times n$ matrix, $\exists R$ orthogonal such that

$$
A=R \sqrt{\underbrace{A^{\top} A}_{\text {Gram matrix, positive semi- definite }}}
$$

singular value decomposition
Start (for the moment) from a square matrix $A, n \times n$
(1) $A=\underbrace{\sqrt[R]{A^{\top} A}}_{\hat{1} \text { symmetric positive semis definite. }}$ (polar decompontion)

Them from the spectral theorem
(2)

$$
\begin{aligned}
& \sqrt{A^{\top} A}=V \sum V^{\top} \quad \Sigma=\left(\begin{array}{ll}
\lambda_{1} & \\
(0) & (0) \\
(& \lambda_{n}
\end{array}\right) \\
& \lambda_{i} \text { e eigenvalues of } \sqrt{A^{\top} A} \\
& \text { (= square coot of } \\
& \text { eigenalalues of } A^{\top} A \text {) } \\
& V \text { :athognal } \\
& \lambda_{i} \geqslant 0 \text { because } \sqrt{A^{t} A} \text { is pontine semi -odfinte. }
\end{aligned}
$$

I can put (1) and (2) together:

$$
A=R V \sum V^{T} \text { with } R \text { and } V \text { orthogonal }
$$

$R V$ is orthogonal sine $R \& V$ are orthogonal, Let denote $U=R V$

Then: $\quad A=U \Sigma V^{\top}$ with U, V orthogonal \sum diagonal with positive values.
$A=U \Sigma V^{T}$ is a singular value decomposition of A $\Sigma=\operatorname{diag}\left(\lambda_{i}\right), \lambda_{i}$ are called the singular value

$$
\left(\begin{array}{ll}
\lambda_{1}^{\prime \prime} & (0) \\
(0) & d_{n}
\end{array}\right)
$$ of A.

Note: this is different from diagonalization where:

$$
A=P \sum P^{-1}
$$

Here U \& V are different matrices.
Proof that if R and V are orthogonal, then RV is orthogonal. I need to show: $(R V)^{\top}(R V)=I$
$(R V)^{\top} R V=V^{\top} \underbrace{R^{\top} R V}_{工}=V^{(R \text { rathood }} I V=V^{\top} V=I$

2D:

$$
A=U \Sigma V^{\top}
$$

U[Rotation]

Singular value decomposition for rectangular matrices
Let A be $m \times n$ matrix, there exist U, V, Σ
$U: m \times m$ orthogonal matrix x
$V: n \times n$ orthogonal matrix
$\Sigma: m \times n$

$\sigma_{i} \geqslant 0$ singular value of A $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{0}$
$r=$ number of non zero singular value $r=\operatorname{ramh}(A)\left(=\operatorname{ramk} A^{\top} A\right)$

Where do U, Σ, V come from?

$$
\begin{aligned}
A=\underset{m \times n}{U \times m} \sum_{m \times n} V_{n \times n}^{\top} & A^{\top} A
\end{aligned}=\left(U \Sigma V^{\top}\right)^{\top}\left(U \Sigma V^{\top}\right)
$$

$\Sigma^{\top} \Sigma$ is the diagonal matrix that contains the eigenvalues of $A^{\top} A$ which are $\geqslant 0$ because $A^{\top} A$ is positive
V contains the eigenvectors of $A^{\top} A$. semi-definite.
\rightarrow Similary $\quad A A^{\top}=U \Sigma V^{\top}\left(U \Sigma V^{\top}\right)^{\top}=U \Sigma V^{\top} V \Sigma U^{\top}=U \Sigma \Sigma^{\top} U^{\top}$
U contains eigenvectors from $A A^{\top}$

Rank $(A)=$ \#non-zero singular values.
A square matrix is non-singular, ie invertible or fill rank \Leftrightarrow all its singular value are mon-zero.

- The ratio $\frac{\sigma_{1}}{\sigma_{n}}$ tells how close A is to being singular
(The larger the ratio, the closest the matin is from being singular)
The ratio is called the condition number of A

DETERMINANT
$\operatorname{det}(A)=|A|$ is a single number with lots of information.
$(A$ is invertible $) \Leftrightarrow(\operatorname{det}(A) \neq 0)$
$(A$ is singular $) \Leftrightarrow(\operatorname{det}(A)=0)$
Three properties:
(1) $\operatorname{det}(I)=1$
(2) If I exchange 2 rows of a matrix : reverse sign of determinant $\begin{aligned} & {\left[\begin{array}{ll}\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|\end{array}\left|=-\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=-1\right.\right.} \\ &\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1\end{array}\right)-\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\end{aligned}$
(3a) If I scale a cow by $t=$ determinant is multiplied by t :

$$
\left|\begin{array}{cc}
t a & t b \\
c & d
\end{array}\right|=t\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

(3b) $\left|\begin{array}{cc}a+a^{\prime} & b+b^{\prime} \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|+\left|\begin{array}{ll}a^{\prime} & b^{\prime} \\ c & d\end{array}\right|$
Linear funct wot 1st row, given and fixed.
A and B are square matrices:
(i) $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$
(ii) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

If A is invertible: $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \quad\left[\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)\right.$

$$
\operatorname{det}(T)=1 \Rightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}
$$

$\operatorname{det}(A)= \pm 1$ if A is orthograal
RRoof
A is orthogonal $A^{\top} A=I$

$$
\begin{aligned}
& \operatorname{det}\left(A^{\top} A\right)=\operatorname{det}(I)=1 \\
\Rightarrow & \operatorname{det}\left(A^{\top}\right) \times \operatorname{det}(A)=1 \\
& \operatorname{det}(A) \\
\Rightarrow & \operatorname{det}(A)^{2}=1 \Rightarrow \operatorname{det}(A)= \pm 1
\end{aligned}
$$

$$
\operatorname{det}|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b
$$

BACK TO SVD:
For a square matixix $\quad A=U \sum_{n \times n} V^{\top}$

$$
|\operatorname{det}(A)|=\left|\operatorname{det}\left(U \Sigma V^{\top}\right)\right|=|\operatorname{det}(U)| \operatorname{det}(\Sigma)\left|\operatorname{det}\left(V^{\top}\right)\right|
$$

U is orthogenal, $|\operatorname{det}(u)|=1 ;\left|\operatorname{det}\left(v^{\top}\right)\right|=1$

$$
\begin{aligned}
& |\operatorname{det}(A)|=|\operatorname{det}(\Sigma)|=\sigma_{1} \ldots \sigma_{n} \\
& \Sigma=\left(\begin{array}{cc}
\sigma_{1} & \\
(0) & (0) \\
\left(\delta_{m}\right.
\end{array}\right) \quad \delta_{i} \geqslant 0
\end{aligned}
$$

Given a matrix A, the absolute value of det (A)
= product of the singular values of A
GEOMETRICAL INTERPRETATION
$2 D$

The area is scaled via A by $|\operatorname{det}(A)|$
in higher dimension:
Volume A New volume $=|\operatorname{det}(A)|$. Volume.

Ball is transformed into hyper-ellépsoid via A

EXERCICES (class 4)
A can be diagonalized $\quad V=\left[v_{1},-, v_{n}\right]$

$$
\begin{aligned}
& A=V D V^{-1} \quad D=\left(\begin{array}{ll}
\lambda_{n} & (0) \\
(0) & \lambda_{n}
\end{array}\right) \\
& A^{2}=\left(V D V^{-1}\right)\left(V D V^{-1}\right)=V D V^{-1} V D V^{-1} \\
& =V D I D V^{-1} \\
& =V D^{2} V^{-1} \\
& A^{k}=\underbrace{D^{k}}_{\text {Diagonal matrix }} V^{-1} \\
& D^{k}=\underbrace{\lambda_{1}^{k}} \begin{array}{ll}
(0) & (0) \\
(0) & \lambda_{n}^{k}
\end{array})
\end{aligned}
$$

A^{k} are diagonalizable, eigenvalues are λ_{i}^{k}, eigenvectors are the same as eigenvectors of A

Other solution:
v_{i}^{l} eigenvector of A associated to λ_{i}

$$
\begin{aligned}
& A \hat{v}_{i}=\lambda_{i} v_{i} \\
\Rightarrow \quad & A^{2} v_{i}=A\left(A v_{i}\right)=A\left(\lambda i v_{i}^{\prime}\right)=\lambda_{i} A v_{i}=\lambda i^{2} v_{i}
\end{aligned}
$$

vi eigenvector of A^{2} associated to $-\lambda_{i}$

Exercice 1: $\quad A v=3 v \quad A \omega=2 \omega$

$$
\begin{aligned}
& A^{n} u=A^{n}(v+w)=? \\
& A v=3 v \Rightarrow A^{2} v=3 A v=3^{2} v \quad \cdots A^{n} v=3^{n} v \\
& A^{n} w=2^{n} w \\
& A^{n} u=A^{n}(v+w)=A^{n} v+A^{n} w=3^{n} v+2^{n} w \\
& \frac{\left\|A^{n}(u)\right\|}{\left\|A^{n} v\right\|}=\frac{\left\|3^{n} v+2^{n} w\right\|}{\left\|3^{n} v\right\|}=\frac{\left\|3^{n} v+2^{n} w\right\|}{3^{n}\|v\|}=\frac{\left\|v+\left(\frac{2}{3}\right)^{n} w\right\|}{\|v\|} \\
& \text { Since }\left(\frac{2}{3}\right)^{n} \xrightarrow[n \rightarrow+0]{\longrightarrow} v+\left(\frac{2}{3}\right)^{n} w \underset{n \rightarrow+\infty}{\longrightarrow} v \Rightarrow \lim _{n \rightarrow+\infty} \frac{\left\|v+\left(\frac{2}{3}\right)^{n} w\right\|}{\|v\|}=\frac{\|v\|}{\|v\|}=1
\end{aligned}
$$

Property: If $f:(E, \|$ II) $\rightarrow \mathbb{R}$ is continuous in $a \in E$
them if $x_{n} \underset{n \rightarrow \text { No o }}{ }$ a $f\left(x_{n}\right) \underset{n \rightarrow \text { too }}{\longrightarrow} f(a)$

$$
V+\left(\frac{2}{3}\right)^{n} \omega \xrightarrow[n \rightarrow+\infty]{ } v
$$

$f\{\begin{array}{l}\mathbb{R}^{n} \rightarrow \mathbb{R} \\ x \longmapsto\|x\|\end{array}$ is continuous in v, them $\underbrace{\left\|v+\left(\frac{2}{3}\right)^{n} w\right\|}_{f\left(v+\left(\frac{2}{3}\right)^{n} w\right)} \rightarrow\|v\|$

