PREF - MATH FOR DJ

$$
\text { CLASS } 4 \text { - EXERCICES }
$$

EXERCISE 1 Suppose A is a matrix with an eigenvector v associated to the eigenvalue 3 and an eigenvector w associated to the eigenvalue 2. Let $u=v+\infty$

Prove that $\lim _{m \rightarrow+\infty} \frac{\left\|A^{m} u\right\|}{\left\|A^{m} v\right\|}=1$
EXERCICE 2 Let $\|$. II be a norm defined on vectors of \mathbb{R}^{n}. We define a norm on the set of $m \times n$ matrices as $\|A\|\left\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sup _{\|x\|=1}\right\| A x \|$

1) Prove that $\forall x\|A x\| \leqslant\|A\|\|x\|$
2) Deduce that $\|A B\| \leqslant\|A\|\|B\| \|$
3) Prove that if $I I$. II is the Euclidean norm and A is symmetric, then

$$
\||A|\|=\max _{i=1, \ldots, n}\left|d_{i}\right| \quad \lambda_{i} \text { eigenvalues of } A \text {. }
$$

Exercise 3

1) Suppose that A is symmetric positive semi-definite, show that all eigenvalues of A are nonnegative ($\underline{i \cdot e} \geqslant 0$) ${ }^{2}$) Suppose that A is symmetric positive definite. Show that all eigenvalues of A are strictly positive (ie >0)

EXERCISE 4
Let A be a $n \times m$ matrix.
Show that $\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)$
EXERCISE 5
Let $\left(\lambda_{i}, v_{i}\right)_{1 \leq i \leq n}$ be pairs of eigenvalues, eigenvectors of a mahix A where $\left\{v_{1},, v_{n}\right\}$ are brearly independent. Identify eigenvalues and eigen vector of $A^{2}, A^{3}, \ldots, A^{k} \quad h \in \mathbb{N}$ Are those matrices diagonalizable?

