PRE 2 - CLASS 3
Correction from:

$$
(x \longmapsto A x \text { is infective }) \Leftrightarrow(\operatorname{ker}(A)=\{0\})
$$

(i) \Rightarrow (ii) Let $z \in \operatorname{ku}(A)$, then $A z=0=A_{0}$
by injectivity $z=0$
(ii) $\Rightarrow(i)$ Let x, \tilde{x} be two vectors such that $A x=A \tilde{x}$
by linearity $\Rightarrow A(x-\tilde{x})=0$
them $x-\tilde{x} \in \operatorname{Ke}(A)$ and thus $x-\tilde{x}=0$

$$
\Rightarrow \quad x=\tilde{x}^{2}
$$

Elements for the correction of the proof of the last Thteonen from the last class.

Since bijective means infective and sujective we only rood to prose that

$$
(r i) \Leftrightarrow(i i)
$$

Let us prove that (ii) \Rightarrow (iii)
We know that $\{0\} C \operatorname{Ker}(A) \quad[b e c a u s e ~ A O=0]$
With the rank nullity theorem:
\rightarrow By assumption

$$
\begin{array}{rlrl}
\operatorname{din}(\operatorname{ker}(A))+\underbrace{\operatorname{rank}(A)}_{4})=n & \operatorname{range}(A)=\mathbb{R}^{n} \quad \text { rank }(A) & =\operatorname{dim}(\operatorname{ranget}) \\
n & \text { because } x \mapsto A x \text { is surjéctive }] & =\operatorname{dim}\left(\mathbb{R}^{n}\right) \\
& =n
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{dim}(\operatorname{ker}(A))=0 \\
& \Rightarrow \operatorname{ker}(A)=\{0\}
\end{aligned}
$$

$$
(i i i) \Rightarrow(i i) \quad \text { If } \operatorname{Ker}(A)=\{0\} \Rightarrow \operatorname{dim}(\operatorname{Ker}(A))=0
$$

By the rank nullity theorem $\Rightarrow \operatorname{rank}(A)=n$

$$
\begin{gathered}
\operatorname{dim}(k \operatorname{ke}(A))+\operatorname{rank}(A)=n \\
0 \quad \Rightarrow \operatorname{rank}(A)=n
\end{gathered}
$$

$\Leftrightarrow x_{H} A x$ is surfective.

For a square mathis.
When $x \mapsto A x$ is
When $x \mapsto A x$ is bijective, we can talk about the inverse of the matin A, we denote it A^{-1}.

It satisfies $A^{-1} A=A A^{-1}=I=\left(\begin{array}{ccc}1 & & \\ 1 & 1 & (0) \\ (0) & \ddots & \ddots \\ (0) & \ddots\end{array}\right)$
Identity matin, sometimes we dentate it I_{n} or I_{d}

- The previous theorem bells us that the inverse of a matrix exits $\Leftrightarrow(\operatorname{kel}(A)=\{0\}) \Leftrightarrow(\operatorname{mank}(A)=n)$

Properties of identity matrix: Let A a $n \times x$ matrix

$$
\begin{aligned}
& \text { - } A I_{n}=I_{n} A=A \\
& \text { - } I_{n} I_{n}=I_{n} \Rightarrow I_{n}^{-1}=I_{n} \\
& \text { - } I_{n} x=x \\
& \mathbb{R}^{n}
\end{aligned}
$$

Inverse of product of matrices:
Let A and B be $n \times n$ matrices, invertible:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

PRoof:

$$
\begin{aligned}
& \text { if }(A B)\left(B^{-1} A^{-1}\right)=I_{n} \quad \text { then }(A B)^{-1}=B^{-1} A^{-1} \\
& \Leftrightarrow(A B) B^{-1} A^{-1}=A \cdot \underbrace{B B^{-1} A^{-1}}_{I_{n}}=\begin{aligned}
& A I_{n} A^{-1} \\
&=A A^{-1}=I_{n}
\end{aligned}
\end{aligned}
$$

ExERcice: Are the following matrices invertible? If so
compute the inverse : compute the inverse:

$$
A=\left(\begin{array}{ll}
2 & 0 \tag{array}\\
0 & 1
\end{array}\right) ; \quad B=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

A is invertible $(\operatorname{rank}(A)=2), B$ is rot invertible $\left(\operatorname{rank}(B)=2\right.$ or $\left.\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in \operatorname{Ker}(\mathbb{B})\right)$

$$
A^{-1}=\left[\begin{array}{ll}
1 / 2 & 0 \\
0 & 1
\end{array}\right]
$$

A is a specific diagonal matrix.
Definition: A diagonal matrix, is a matrix with zeros on off-diagonal elements

A diagonal matrix is invertible if $d_{1} \neq 0, d_{2} \neq 0, \ldots, d_{n} \neq 0$
If $d_{i \neq 0} \quad \forall i=1, \ldots, n$ then $\quad D^{-1}=\left(\begin{array}{cc}\frac{1}{d 1} \frac{1}{d_{2}}, & \\ \\ d_{1} & (0) \\ (0) & \frac{1}{d_{1}}\end{array}\right)$
PRoof:

Why do we want to inverse a matrix?
for instance to solve a linear system.
Consider the system of equations:

$$
\left\{\begin{aligned}
x_{1}+3 x_{2}+4 x_{3} & =2 \\
2 x_{2}+x_{3} & =1 \\
x_{1}+\quad 3 x_{3} & =2
\end{aligned}\right.
$$

Show that (S) is equivalent to find $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ such that

$$
\underbrace{\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)}_{=A} x=\underbrace{\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)}_{=b}
$$

ie. to solve (δ) we need to find x such that $A_{x}=b$

If we know that A is invertible, them

$$
\begin{aligned}
& A x=b \\
\Leftrightarrow & A^{-1} A x=A^{-1} b \\
\Leftrightarrow & I x=A^{-1} b \\
\Leftrightarrow & x=A^{-1} b
\end{aligned}
$$

Norms
Given a vector space E. A norm on E is a function: $p: E \rightarrow \mathbb{R}_{+}=[0,+00]$ and that satisfies:

$$
\begin{aligned}
& \forall \lambda \in \mathbb{R}, \forall u, v \in E \\
& \cdot p(u+v) \leq p(u)+p(v) \\
& \cdot p(\lambda u)=|\lambda| p(u) \\
& \cdot p(v)=0 \Rightarrow v=0
\end{aligned}
$$

triange inequality

Example in \mathbb{R}^{n} :

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Given $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \quad\|x\|_{2}=\sqrt{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)}$
example : $\left\|\binom{2}{1}\right\|_{2}=\sqrt{4+1}=\sqrt{5}$

$$
\begin{aligned}
& \left\|\binom{1}{0}\right\|_{2}=\sqrt{1+0}=1 \\
& \left\|\binom{0}{1}\right\|_{2}=\sqrt{0+1}=1
\end{aligned}
$$

Other norms:

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \\
& \|x\|_{\infty 0}=\max \left|x_{i}\right|
\end{aligned}
$$

Display in \mathbb{R}^{2}, the unit balls with respect to the different norms

$$
\left.B(0,1)=\left\{x \in R^{2}\right\}\|x\| \leq 1\right\}
$$

$$
\sqrt{x_{1}^{2}+x_{2}^{2}} \leq 1
$$

$$
\|x\|_{1}
$$

$$
\|.\|_{\infty}
$$

Norms are useful to measure distances:

$$
d(x, y)=\|x-y\|(=\|y-x\|)
$$

Two different worms will give two different "measure" of distances.

DOTS PRODUCTS AND ORTHOGONALITY
Examples:

$$
\begin{array}{lc}
p=\left[\begin{array}{l}
4.90 \\
2.20 \\
1.00
\end{array}\right] & q=\left[\begin{array}{c}
20 \\
100 \\
200
\end{array}\right] \\
\text { PRICES of } & \Gamma_{T} \\
\text { PRODUCTS } & \text { quantity of product } \\
\text { sold. }
\end{array}
$$

Value of what you have sold:

$$
\begin{aligned}
4.90 \times 20+2.20 \times 100+1.50 \times 200 & = \\
& =p \cdot q
\end{aligned}
$$

dot product
DEFINITIN: The dot product or scalar product of two vectors in \mathbb{R}^{n} is defined as $\quad x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{n=1}^{n} x_{i} y_{1}$ $\langle x, y\rangle$ (othernnotation)
standard
Connection to Euclidean norm: $\quad x \cdot x=\sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2}$

Properties:

$$
\begin{aligned}
& x \cdot y=y \cdot x \quad \forall x, y \quad[\text { symmetry }] \\
& \lambda x \cdot y=x \cdot(\lambda y)=\lambda(x \cdot y) \quad \forall \lambda \in \mathbb{R}, x, y \in \mathbb{R}^{n} \\
& \mathbb{R} \quad x \cdot(\lambda y+z)=\lambda x \cdot y+x \cdot z \quad \lambda \in \mathbb{R}, x, y, z \in \mathbb{R}^{n}
\end{aligned}
$$

EXERCICE: Show that

$$
\|x+y\|^{2}=(x+y) \cdot(x+y)=\|x\|^{2}+2 x \cdot y+\|y\|^{2} \quad \forall x, y \in \mathbb{R}^{n}
$$

where IU. II is the Euclidean norm.
The dot product $x \cdot y$ has a geometric connection with the angle θ between two vectors x and y :

$$
x \cdot y=\|x\|\|y\| \cos (\theta)
$$

When $x \cdot y=0$ we say that x and y are orthogonal
GEONETRK INTER PRETATIN: If $x \cdot y=0$ them $\cos (\theta)=0, \theta=9_{0}^{\circ}$

Examples of orthogonal vectors:

EXERCICE: Let v_{1}, v_{n} be a lit of orthogonal non zero vectors, ie $v_{i} \cdot v_{j}=0 \quad \forall i \neq j$. Prove that they are linearly
independent.

TRANSPOSE OF A MATRIX
DEFINTITIN: Given a $m \times n$ matrix A, its thauspore A^{\prime} or A^{T} is a $n \times m$ whore th row is equal to the th column of A. If $A=\left(a_{i j}\right), A^{\top}=\left(\hat{a}_{i j}\right)$ where $\hat{a}_{i j}=a_{j i}{ }_{i}$
Example::

$$
A=\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right) \quad A^{\top}=\left(\begin{array}{lll}
1 & 1 & 4 \\
3 & 0
\end{array}\right)
$$

For a square matrix :

Swap symmetric elements wat diagonal.
PROPERTIES

$$
\begin{aligned}
&(\underset{\Gamma}{\lambda} A+B)^{T}=\lambda A^{\top}+B^{T} \\
& \in \mathbb{R} \\
& \therefore(A B)^{T}=B^{T} A^{\top} \\
& \cdots\left(A^{\top}\right)^{T}=A
\end{aligned}
$$

DEFINITION: $A n \times n$ matrix A satisfying $A^{\top}=A$ is called Symmetric.

Example:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & b^{3} \\
3 & 2
\end{array}\right) \text { is symmetric } \\
& \left(\begin{array}{lll}
1 & \alpha & \beta \\
\alpha & 3 & \gamma \\
\beta & \gamma & 6
\end{array}\right) \text { is symmetric }
\end{aligned}
$$

WRITING THE DOT PRODUCT WITH TRANSPOSE Let $x, y \in \mathbb{R}^{n}$ two vectors (or $n \times 1$ matrices)

$$
x_{p}^{x} y=\underbrace{x^{\top} y}_{\substack{\text { product } \\
\text { dot product } \\
\text { between } 2 \text { matrices }}} \quad x^{\top} y=\left(x_{1} \ldots x_{n}\right)\left(\begin{array}{l}
y_{1} \\
y_{n} \\
y_{n}
\end{array}\right)=x_{1} y_{n}+\ldots+x_{n} y_{n}
$$

EXERCICE: Show that u. $(A v)=A^{\top} u \cdot v \quad \forall u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ A $m \times n$ matrix x

ORTHOGONAL COMPLEMENT
The orthogonal complement V^{\perp} of a vector space $V \subset \mathbb{R}^{n}$ is the set of vectors which are orthogonal to every vector in V.
Example: In $\mathbb{R}^{3}, \quad V=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad V=\operatorname{span}(v)$
What is V^{\perp} ?

An orthogonal basis is a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ such that

$$
e_{i} \cdot e_{j}=0 \quad i \neq j
$$

Which orthogonal basis of \mathbb{R}^{n} do you know?
orthogonal basis of \mathbb{R}^{n} do you know?
standard basis, $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right), e_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right), \ldots, e_{n}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)$
ThEOREm: Every vector space $V \subset \mathbb{R}^{n}$ has an orthogonal basis.

ORTHOGONAL MATRICES
DEFINITION: A square matrix U is orthogonal if $U^{\top} U=U U^{\top}=I$
Orthogonal matrices are norm preserving:
$U_{n \times n}$ orthogonal, $\forall x \in \mathbb{R}^{n}\|U \dot{x}\|=\|x\|$ matin
$\rightarrow H_{\text {ow do you prase thar? }}$

In \mathbb{R}^{2}, orthogonal matrices are either rotations or reflexion along axis

Let is prove that $\left\|U_{x}\right\|=\|x\|$ if U is orthogonal
this is equivalent to show that $\|U x\|^{2}=\|x\|^{2}$
ie $U x \cdot U_{x}=x \cdot x$

$$
U_{x} \cdot U_{x}=\underbrace{U^{\top} U}_{I} \cdot x=x \cdot x
$$

Remark: $U^{\top} U=I \Leftrightarrow$ The columns of U are orthogonal and of norm 1

$$
u=\left[u_{1}, \ldots, u_{n}\right] \quad u^{\top} v=I \quad \Leftrightarrow\left\|v_{i}\right\|=1 \quad \forall_{i} \quad u_{i} . u_{j}=0 \quad \forall i \neq j
$$

Find some 3×3 orthogonal matrices.

 $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \quad A x=\left(\begin{array}{l}x_{2} \\ x_{1} \\ x_{3}\end{array}\right)$ A is a permutation, it permutes the coordinate of x.

$$
\begin{aligned}
& \left\|A_{1}\right\|=\sqrt{0+0+1}=1 \\
& \left\|A_{2}\right\|=1 \\
& \left\|A_{3}\right\|=1 \\
& A_{1} \cdot A_{2}=0 \times 0+0 \times 1+1 \times 0=0 \\
& A_{1} \cdot A_{3}=\cdots=0 \\
& A_{2} \cdot A_{3}=\cdots-\cdots=0
\end{aligned}
$$

U is an orthogonal matrix $U^{\top} U=I$

$$
\Leftrightarrow \quad U=\left[u_{1}, \ldots, u_{n}\right] \quad\left\|u_{i}\right\|=1, \quad u_{i} \cdot u_{j}=0_{i \neq j}
$$

But it is not the that $x \in \mathbb{R}^{n}$ and $U x$ are orthogonal for U orthogonal
Take: $U=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \vdots & U_{2} \\ U_{1} & U_{2}\end{array} \quad U\right.$ is orthogonal

$$
\begin{aligned}
& \left\|U_{1}\right\|^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1 ; \quad\left\|U_{2}\right\|^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1 \\
& U_{1} \cdot U_{2}=\cos \theta(-\sin \theta)+\sin \theta \cos \theta=0
\end{aligned}
$$

$$
x, \quad U x
$$

