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taught by Anne Auger
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taught by Laurent Dumas
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First Example of a Black-Box Continuous Optimization
Problem

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Ful1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

PANG



Problem Statement

Continuous Domain Search/Optimization
» Task: minimize an objective function (fitness function, loss
function) in continuous domain
f: X CR" >R, x — f(x)

» Black Box scenario (direct search scenario)

T

» gradients are not available or not useful
» problem domain specific knowledge is used only within the
black box, e.g. within an appropriate encoding

» Search costs: number of function evaluations



Optimization of the Design of a Launcher

Example of a black-box problem
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= Scenario: multi-stage launcher brings a
satellite into orbit

= Minimize the overall cost of a launch

= Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

23 continuous parameters to optimize
+ constraints




Control of the Alignement of Molecules
Example of a black-box problem (I1)

Objective function:
via numerical simulation

or a real experiment

possible application in drug design



What Makes a Function Difficult to Solve?

Why stochastic search?

» non-linear, non-quadratic, non-convex
on linear and quadratic functions
much better search policies are
available

> ruggedness

non-smooth, discontinuous,
multimodal, and/or noisy
function
» dimensionality (size of search space)

(considerably) larger than three

» non-separability
dependencies between the
objective variables

» ill-conditioning

gradient direction Newton directio



Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated with
adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0, 1]*° would require
100%% = 10%° points. A 100 points appear now as isolated points in
a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or large
dimensional search spaces.



Separable Problems

Definition (Separable Problem)
A function f is separable if

arg min )f(xl,...,x,,): (argminf(xl,...),...,argminf(...,x,,))
X1 Xn

X15e-3Xn

= it follows that f can be optimized in a
sequence of n independent 1-D optimization
processes

Example: Additively
decomposable functions

(X1, Xp) = Z fi(xi)

Rastrigin function
f(x) = 10n+>_7, (x? —10cos(2mx;))




Non-Separable Problems

Building a non-separable problem from a separable one

(1,2)

Rotating the coordinate system

» f:x+— f(x) separable

» f: x+— f(Rx) non-separable
R rotation matrix
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lHansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278



[[l-Conditioned Problems

> If f is convex quadratic, f : x - $xTHx = 357 hiix? + 5 20, hij xix,
with H positive, definite, symmetric matrix

» ill-conditioned means a high condition number of Hessian Matrix H

cond(H) = 71\\:?:((::))

Example / exercice
The level-sets of a function are defined as

Lc={xeR"f(x)=c}, ceR.

Consider the objective function f(x) = 1(x{ + 9x3)
1. Plot the level sets of f.

2. Compute the condition number of the Hessian matrix of f, relate it to
the axis ratio of the level sets of f.

3. Generalize 1. and 2. to a general convex-quadratic function.



[[l-conditionned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed"” lines of equal function value (high
curvatures)

gradient direction —f'(x)"

Newton direction
—H 17[/(X)T

Condition number equals nine here. Condition numbers up to 10'°
are not unusual in real world problems.



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder and Mead 1965]

Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)

>

vV Vv v Y

Differential Evolution [Storn and Price 1997]

Particle Swarm Optimization [Kennedy and Eberhart 1995]

Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen and Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approximation (SPSA) [spall 2000]



Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fp(0,x1,...,xx, f(x1),...,f(x)))



Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fp(0,x1,...,xx, f(x1),...,f(x)))



Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fp(0,x1,...,xx, f(x1),...,f(x)))
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Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"
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Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fg(0,x1,...,xx,f(x1),...,f(xx))



Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fp(0,x1,...,xx, f(x1),...,f(x)))

Everything depends on the definition of P and Fy



Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 0, set population size A € N
While not terminate

1. Sample distribution P (x|6) — x1,...,x) € R"

2. Evaluate x1,...,x) on f

3. Update parameters 0 < Fp(0, x1,...,xx, f(x1),...,f(x2))

Everything depends on the definition of P and Fy

In Evolutionary Algorithms the distribution P is often implicitly
defined via operators on a population, in particular, selection,
recombination and mutation

Natural template for Estimation of Distribution Algorithms



A Simple Example: The Pure Random Search

Also an Ineffective Example

The Pure Random Search

» Sample uniformly at random a solution

» Return the best solution ever found

Exercice
See the exercice on the document "Exercices - class 1".

Non-adaptive Algorithm
For the pure random search P (x|0) is independent of € (i.e. no 6
to be adapted): the algorithm is "blind"

In this class: present algorithms that are "much
better" than that



Evolution Strategies

New search points are sampled normally
distributed

xi=m+oy; fori=1,... Awithy;iid ~AN(0,C)

as perturbations of m, where x;, m € R", 0 € Ry,
C e RHXH



Evolution Strategies

New search points are sampled normally
distributed

xi=m+oy; fori=1,..., Awithy;iid. ~N(0,C):

as perturbations of m, where x;, m € R", 0 € Ry,
C e RHXH
where
» the mean vector m € R" represents the favorite solution
> the so-called step-size o € R4 controls the step length

» the covariance matrix C € R™" determines the shape
of the distribution ellipsoid

here, all new points are sampled with the same parameters



Evolution Strategies

New search points are sampled normally
distributed

xi=m+oy; fori=1,..., Awithy;iid. ~N(0,C):

as perturbations of m, where x;, m € R", 0 € Ry,
C e RHXH
where
» the mean vector m € R" represents the favorite solution
> the so-called step-size o € R4 controls the step length

» the covariance matrix C € R™" determines the shape
of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.



Normal Distribution

1-D case

Standard Normal Distribution
0.4

probability density of the 1-D standard normal
distribution N'(0, 1)

o
@

probability density
=1
i

Re]
=
=
=

|
3

o

X
o
VR
| %,
N——

4 -2 0 2 4

General case

> Normal distribution N (m, o)

m

> A normal distribution is entirely determined by its mean value and
variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed

> Exercice: Show that m + oN(0,1) = N (m, 0?)



Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its
mean value m and variance o2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X, ..., X,,)T are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, j) entries
are the covariance of (Xj, X;)

Tj = cov(Xi, Xj) = E [(Xi — u)(X; — w)]

where pj = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

Z=E[(X —p)(X —u)"]



The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/(m, C) is uniquely determined by its
mean value m € R" and its symmetric positive definite n X n covariance matrix

C.

m.C c m) C m

The mean value m

2-D Normal Distribution

> determines the displacement (translation)
> value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

m,C m C



The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A/(m, C) is uniquely determined by its
mean value m € R" and its symmetric positive definite n X n covariance matrix

C.

m.C c m) C m

The mean value m

2-D Normal Distribution

> determines the displacement (translation)
> value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

m,C m C

The covariance matrix C
> determines the shape

> geometrical interpretation: any covariance matrix can be uniquely
identified with the iso-density ellipsoid
{xeR"|(x — m)TCHx —m) =1}



...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)T"C™}(x — m) = 1}

Lines of Equal Density

N (m,o21) ~ m+oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/(0,1) ~ A (0,AA™) holds for all
A.



...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)T"C™}(x — m) = 1}

Lines of Equal Density

N(m,o2l)~m+oN(0,1) N(m,D?)~m+DAN(0,I)
one degree of freedom o n degrees of freedom
components are components are
independent standard independent, scaled
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/(0,1) ~ A (0, AA™) holds for all
A.



...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)T"C™}(x — m) = 1}

Lines of Equal Density

N(m,o2l)~m+oN(0,1) N(m,D?)~m+DAN(0,I)
one degree of freedom o

N(m,C)~ m+C2N(0,1)
n degrees of freedom
components are

(n® + n)/2 degrees of freedom
components are components are
independent standard independent, scaled correlated
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/(0,1) ~ A (0,AA™) holds for all
A.



Where are we?

Problem Statement

Stochastic search algorithms - basics

Adaptation of Distribution Parameters: What to Achieve?

Adaptive Evolution Strategies



Adaptation: What do we want to achieve?

New search points are sampled normally distributed

xi=m+oy; fori=1,..., X with y; ii.d. ~AN(0,C)

where x;; m € R", 0 € R, C € R™"

» the mean vector should represent the favorite solution

» the step-size controls the step-length and thus convergence
rate
should allow to reach fastest convergence rate possible
» the covariance matrix C € R™" determines the shape of the
distribution ellipsoid
adaptation should allow to learn the “topography” of the problem

particulary important for ill-conditionned problems
C « H™! on convex quadratic functions



Adaptive Evolution Strategies
Mean Vector Adaptation
Step-size control

Covariance Matrix Adaptation



Evolution Strategies (ES)
Simple Update for Mean Vector

Let u: # parents, \: # offspring

Plus (elitist) and comma (non-elitist) selection

(1 + M)-ES: selection in {parents} U {offspring}
(1, A)-ES: selection in {offspring}

ES algorithms emerged in the community of bio-inspired methods where a parallel between
optimization and evolution of species as described by Darwin served in the origin as inspiration
for the methods. Nowadays this parallel is mainly visible through the terminology used:
candidate solutions are parents or offspring, the objective function is a fitness function, ...

(1+1)-ES
Sample one offspring from parent m

x=m+oN(0,C)
If x better than m select

m<— X



The (u/p, A)-ES - Update of the mean vector

Non-elitist selection and intermediate (weighted) recombination
Given the j-th solution point x; = m+o y;
<~
~M0,C)
Let x;.) the i-th ranked solution point, such that
f(x1a) <o < f(xan)-
Notation: we denote y;.\ the vector such that x;., = m+ oy;.\
Exercice: realize that y;.» is generally not distributed as A/(0, C)

The best 1 points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.



The (u/p, A)-ES - Update of the mean vector
Non-elitist selection and intermediate (weighted) recombination

Given the j-th solution point x; = m+o y;

~—
~M0,C)
Let x;.) the i-th ranked solution point, such that
fx1a) <0 < f(xan)
Notation: we denote y;.\ the vector such that x;., = m+ oy;.\

Exercice: realize that y;.» is generally not distributed as N'(0, C)
The new mean reads

o
m < E Wi X-\
i=1
where
1 . ~ A
wi > >w, >0, YU wi =1, STowz v =g

The best 1 points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.



The (u/p, A)-ES - Update of the mean vector
Non-elitist selection and intermediate (weighted) recombination

Given the j-th solution point x; = m+o y;

~—
~M0,C)
Let x;.) the i-th ranked solution point, such that
fx1a) <0 < f(xan)
Notation: we denote y;.\ the vector such that x;., = m+ oy;.\

Exercice: realize that y;.» is generally not distributed as N'(0, C)
The new mean reads

W W
m < E Wi Xj\ = m+UE Wi Yix
i=1 i=1

=
=Yw
where
wp > >w, >0, S owi=1 -1 _. ~ A
1= =M > i=1 Wi rOSE w2 w7

The best 1 points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.



Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

f(xea) < f(x2n) < ... < f(xan)

g(f(an)) < g(f(en)) < ... < g(f(xan)) Ve
g is strictly monotonically increasing
g preserves ranks



Problem Statement

Stochastic search algorithms - basics

Adaptive Evolution Strategies

Step-size control



Why Step-Size Control?

function value
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Why Step-Size Control?
(5/5w. 10)-ES. 11 runs
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Why Step-Size Control?
(5/5w. 10)-ES. 2x11 runs
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Why Step-Size Control?
(5/5w.10-ES

— with optimal step-size [{
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Why Step-Size

(5/54.10)-ES
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Why Step-Size Control?
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Step-size control
Theory

> On well conditioned problem (sphere function f(x) = ||x||?) step-size
adaptation should allow to reach (close to) optimal convergence rates
need to be able to solve optimally simple scenario (linear function,
sphere function) that quite often (always?) need to be solved when
addressing a real-world problem

> |s it possible to quantify optimal convergence rate for step-size adaptive
ESs?



Lower bound for convergence
Exemplified on (141)-ES

Consider a (1+1)-ES with any step-size adaptation mechanism
(141)-ES with adaptive step-size

[teration k:

)~<k+1 = i(»li/—'_ \(T,/:/ Nk+1 with (Nk)k i.i.d. NN(0,|)

offspring parent  step—size

o K i F(Xign) < F(X4)
kit X otherwise



Lower bound for convergence (II)
Exemplify on (1+1)-ES

Theorem
For any objective function f : R" — R, for any y* € R”"

Elln{[Xerr =y 1 = E[In[[Xe = y*ll]  — 7

lower bound

where T=max,ep+ E[IN7 ]| e +oN]|]
~—
(1,0,...,0)

-

=:p(o)



"Tight" lower bound

Theorem
Lower bound reached on the sphere function f(x) = g(||x — y*||),
(with g : R — R, increasing mapping) for step-size proportional to
the distance to the optimum where

with 0 1= oopt
such that ¢(oopt) = 7.



(Log)-Linear convergence of scale-invariant step-size ES

Theorem

The (1+1)-ES with step-size proportional to the distance to the
optimum o = o||x|| converges (log)-linearly on the sphere function
f(x)=g(||x|]), (with g : R — R, increasing mapping) in the sense

L[ Xkl
—In —— —p(o) =: CR o
k[ Xol| ko0 #o) arn(?)

almost surely.
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Asymptotic results

When n — oo

Theorem
Let o > 0, the convergence rate of the (1+1)-ES with
scale-invariant step-size on spherical functions satisfies at the limit

lim nx CR141) (%) = \;% exp < - 082> + 022¢ (_%)

n—o0o

where ® is the cumulative distribution of a normal distribution.
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Summary of theory results
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Adaptive Evolution Strategies
Mean Vector Adaptation

Step-size control
Theory
Algorithms

Covariance Matrix Adaptation



Methods for Step-Size Control

> 1/5-th success rule?®, often applied with “+"-selection
increase step-size if more than 20% of the new solutions are
successful, decrease otherwise

wa

> o-self-adaptation®, applied with “,"-selection
mutation is applied to the step-size and the better one, according to

the objective function value, is selected

simplified “global” self-adaptation

» path length control? (Cumulative Step-size Adaptation, CSA)®, applied

with “,"-selection

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
“Schwefel 1981, Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies,
Evol. Comput. 9(2)

eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN
v



One-fifth success rule

i 3

increase o decrease o



One-fifth success rule

Probability of success (ps) Probability of success (ps)

1/2 1/5 “too small”



One-fifth success rule

ps: # of successful offspring / # offspring (per iteration)

o o X exp <1 « Ps = ptarget> Increase o if Ps > Prarget
3 1 — Prarget Decrease o if ps < prarget

(1+1)-ES
Ptarget = 1/5
IF offspring better parent
ps =1, 0 < o x exp(1/3)
ELSE
ps =0, o < o/ exp(1/3)1/4



Why 1/57
Asymptotic convergence rate and probability of success of
scale-invariant step-size (1+1)-ES
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sphere - asymptotic results, i.e. n = oo (see slides before)

1/5 trade-off of optimal probability of success on the sphere and
corridor



Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m+oy;
m < m-+oyw

Measure the length of the evolution path

the pathway of the mean vector m in the iteration sequence

-

e

4

decrease o

¢

increase o



Path Length Control (CSA)

The Equations

Sampling of solutions, notations as on slide “The (1/u, A)-ES - Update of
the mean vector” with C equal to the identity.

Initialize m € R", o € R, evolution path p, =0,
set ¢, =~ 4/n, d, =~ 1.



Path Length Control (CSA)

The Equations

Sampling of solutions, notations as on slide “The (1/u, A)-ES - Update of
the mean vector” with C equal to the identity.

Initialize m € R", o € R, evolution path p, =0,
set ¢, =~ 4/n, d, =~ 1.

m < m+oy, wherey, =>" wyj\ update mean
pr — (l—c)pr+1/1-1-¢c)2 Viw Yw
—— — S—~—

accounts for 1—c, 2accounts for w;

S A )) ,
c +— ox ep|l—|(=—r——-1 update step-size
P (do (EW(O,I) [

>1 <= ||p-|| is greater than its expectation




Step-size adaptation

What is achieved

function value

10

0

(14 1)-ES with one-fifth success rule (blue)

constant O]

random search

step-size o

adaptive
step-size ¢

optimal step—size
(scale invariant)

Fx)=> x7
i=1

in [~0.2,0.8]"

for n=10

500 1000
function evaluations

71500

Linear convergence



Step-size adaptation

What is achieved
(5/5,10)-CSA-ES, default parameters

— with optimal step-size
10° b : — with step-size control
— respective step-size
— 10!
*
X n )
lE 107 f(x) = § Xi
-~ i=1
10° . n
in [—0.2,0.8]
- for n =30
10°

0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations



Adaptive Evolution Strategies
Mean Vector Adaptation

Step-size control
Theory
Algorithms

Covariance Matrix Adaptation



Evolution Strategies
Recalling

New search points are sampled normally
distributed

x; ~m+ o N;(0,C) fori=1,...,\

as perturbations of m, where x;, m € R", 0 € Ry,
C e R™n
where
» the mean vector m € R” represents the favorite solution
> the so-called step-size o € R4 controls the step length
» the covariance matrix C € R"*" determines the shape

of the distribution ellipsoid

The remaining question is how to update C.



Covariance Matrix Adaptation
Rank-One Update

m < M+0Yw, Yw=> 1 1Wiyix Yi~Ni(0C)

initial distribution, C = |



Covariance Matrix Adaptation
Rank-One Update

m < m+0yw, Yw=>'_ Wy Yi~Ni(0C)

initial distribution, C = |



Covariance Matrix Adaptation
Rank-One Update

m < m+0yw, Yw=> ' Wy Yi~Ni(0C)

¥Yw, movement of the population mean m (disregarding o)



Covariance Matrix Adaptation
Rank-One Update

m <« m+oyw, yW=Z7=1Wi,Vi:A7 yi ~N;(0,C)

mixture of distribution C and step y,,,
C+08xC+02xy,yl



Covariance Matrix Adaptation
Rank-One Update

m < M+0Yw, Yw=> 1 1Wiyix Yi~Ni(0C)

new distribution (disregarding o)



Covariance Matrix Adaptation
Rank-One Update

m < m+0yw, Yw=> ' Wy Yi~Ni(0C)

AT
\/

new distribution (disregarding o)




Covariance Matrix Adaptation
Rank-One Update

m < m+0yw, Yw=>'_ Wy Yi~Ni(0C)

a L
\/

movement of the population mean m




Covariance Matrix Adaptation
Rank-One Update

m < M+0Yw, Yw=> 1 1Wiyix Yi~Ni(0C)

mixture of distribution C and step y,,,
C+08xC+02xy,yl



Covariance Matrix Adaptation
Rank-One Update

m < M+0Yw, Yw=> 1 1Wiyix Yi~Ni(0C)

new distribution,
C+08xC+02xy,yl
the ruling principle: the adaptation increases the likelihood of

successful steps, y,, to appear again



Covariance Matrix Adaptation
Rank-One Update

Initialize m € R”, and C =1, set o = 1, learning rate c.oy ~ 2/n°

While not terminate

X

m

%

m+oyi, Yi NM(Ovc)v

w
m+oyw where y,, = Z Wi Yix

i=1

(1~ Co)C + Coovhiw Yy

rank-one

where p,, =



Adaptive Evolution Strategies
Mean Vector Adaptation
Step-size control
Covariance Matrix Adaptation

Rank-One Update



Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the search path the strategy takes over a

number of iteration steps. It can be expressed as a sum of consecutive steps of

the mean m.
An exponentially weighted sum

of steps y., is used

g
—i @
peocy (L—c) 'yl
i=0

exponentially

fading weights




Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the search path the strategy takes over a

number of iteration steps. It can be expressed as a sum of consecutive steps of

the mean m.
An exponentially weighted sum

of steps y., is used

g
—i @
peocy (L—c) 'yl
i=0

exponentially

fading weights

The recursive construction of the evolution path (cumulation):

pe +— (l-c)p+vV1I-(1-c)Vitw Yw
( ) V1—( )

F— m—m
decay factor normalization factor input = old

o

where p,, = ﬁ cc < 1. History information is accumulated in the

evolution path.



Cumulation
Utilizing the Evolution Path

We used y,yy, for updating C. Because ywys = —yuw(—yw)® the sign of y.,
is lost.




Cumulation
Utilizing the Evolution Path

We used y,yy, for updating C. Because ywys = —yuw(—yw)® the sign of y.,
is lost.

A
V)




Cumulation
Utilizing the Evolution Path

We used y,yy, for updating C. Because ywys = —yuw(—yw)® the sign of y.,
is lost.

JANERN
Ny

The sign information is (re-)introduced by using the evolution path.

pe 4 (1—c) b+ V1= (1= c)\iwyw
~——

decay factor normalization factor

C + (11— coov)CH+ Coov pepe
——

rank-one

where 1, = ﬁ K L



Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n?) to O(n).(3)

The overall model complexity is n® but important parts of the
model can be learned in time of order n

3Hansen, Miiller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18



Rank-u Update

yi ~ N;(0,0),

m+aoyi,
Yw = Z,H:l Wi Yix

— mioyw

3 X

The rank-u update extends the update rule for large population
sizes \ using 1 > 1 vectors to update C at each iteration step.



Rank-u Update

~ Ni(0,C),

m+oyij, Yi
= Y wiyix

— mioyw Yw

3 X

The rank-u update extends the update rule for large population
sizes \ using 1 > 1 vectors to update C at each iteration step.

The matrix p
Cu= ) Wiyiryia
i=1

computes a weighted mean of the outer products of the best
steps and has rank min(u, n) with probability one.



Rank-u Update

= m+oy; yi ~ Ni(0,C),
— mtoyw Yw = Z,H:lwiyi:/\

3 X

The rank-u update extends the update rule for large population
sizes \ using 1 > 1 vectors to update C at each iteration step.
The matrix

o
Cu= ) Wiyiryia
i=1

computes a weighted mean of the outer products of the best
steps and has rank min(u, n) with probability one.
The rank-p update then reads

C < (1 - CCOV) C + CCOV C,u

where ceoy & iy /n? and ceoy < 1.



= i S YinYia Mpew < m+ i SoYia
C « (1-1)xC+1xCy,

sampling of calculating C where new distribution
A = 150 solutions uw=>50 w=---=
where C = | and w, = % and

oc=1 Ceov = 1



The rank-p update

> increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) 4
A

Therefore the rank-p update is the primary mechanism whenever a
large population size is used
A

4'Hamsen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18



The rank-p update

> increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) 4
A

Therefore the rank-p update is the primary mechanism whenever a
large population size is used
A

The rank-one update

» uses the evolution path and reduces the number of necessary

function evaluations to learn straight ridges from O(n?) to
O(n) .

4'Hamsen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18



The rank-p update

> increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) 4
A

Therefore the rank-p update is the primary mechanism whenever a
large population size is used
A

The rank-one update

» uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to

O(n) .

Rank-one update and rank-p update can be combined

4'Hamsen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18



Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Input: meR", 0 € Ry, A
Initialize: C=1, and p. =0, pU—O

Set: cc ~4/n, ¢, ~4/n, c1 = 2/n% ¢, ~ pw/n? a+c, <1,
dy ~ 1+ /B, and wj_1.. ,\suchthatuw—zu sz ~ 0.3

While not terminate

xi=m+oy;, yi ~ Ni(0,C), fori=1,...,)\

m I
m < Zi:l WiXj\x =M+ 0y where Yw = Zi:l Wi Yix

— (1 =c)pe + g <rsym V21— (1= )’ Vitw Yw
<~ (1 - Co)pcr + V ]- - (1 - CU)Q\/,UW C_%yw

C « (1 —c — CH) C+aqg Pcch + ¢, 27:1 Wi Yi:Ay?A

04— 0 X exp (;—f’ (E”

llpo |l

MO,

)

sampling

update mean
cumulation for C
cumulation for o
update C

update of o

Not covered on this slide: termination, restarts, useful output, boundaries

and encoding



Experimentum Crucis (0)

What did we want to achieve?

» reduce any convex-quadratic function

f(x) = xTHx

to the sphere model
f(x)=xTx

> lines of equal density align with lines of equal fitness

Cx H!



Experimentum Crucis (1)

f convex quadratic, separable

Object Variables (9-D)

biye:abs(f), cyan:{-min(), green:sigma, red:axis ratio
10

1)=3.0931e
(2)=2.2083¢
10 (6)=5.6127¢
(7)=2.7147¢
5 (8)=4.5138¢
| (9)=2.741e~
0 =-1.0864
(4)=-3.8371
10 [=2.66178883753772e-10 3
10 -5 3)=-6.9109
2000 4000 6000 0 2000 4000 6000
Principle Axes Lengths Stndard Deviations in Coordinates divided by sigma
2
10 10 1
2
3
4
5
6
7
8
10" 10°
0 2000 4000 6000 0 6000

function evaluations

0 00
function evaluations

flx)=>", 10a%x?,a =6

1



Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

biye:abs(f), cyan:{-min(), green:sigma, red:axis ratio
10

Object Variables (9-D)

(1)=2.0052¢
(5)=1.2552¢
(6)=1.2468¢
(9)=-7.3812
(4)=-2.9981
(7)=-8.3583
(3)=-2.0364
(2)=-2.1131
170 =7.91055728188042¢-10 (o201
2000 4000 6000 0 2000 4000 600!
. Principle Axes Lengths Standerd Devistions in Coordinatas dvided by sigma
i 1
A\
10° 107 I b :
e R\
107° : R¥a 5
6
9
10° 4
0 2000 4000 6000 0 2000 4000 6000

f(x)

function evaluations

=g (xTHx), g : R — R stricly increasing

function evaluations

C o< H! for all
g,H



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

BFGS (Broyden et al 1970)

. NEWUAO (Powell 2004)
DE (Storn & Price 1996)

PSO (Kennedy & Eberhart

1995)

CMA-ES (Hansen &

Ostermeier 2001)

f(x) = g(x"Hx) with

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

H diagonal
g identity (for BFGS and
= oe NEWUOA)
‘g‘ﬂ g any order-preserving =
% 10 10 10 10 10’ strictly increasing function (for
Condition number all other)

SP1 = average number of objective function evaluations® to reach the target
function value of g7*(107°)

5Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

BFGS (Broyden et al 1970)

. NEWUAO (Powell 2004)
DE (Storn & Price 1996)

/ PSO (Kennedy & Eberhart

X — 1995)

CMA-ES (Hansen &

Ostermeier 2001)

f(x) = g(x"Hx) with

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

H full
2 (4 Newuoa g identity (for BFGS and
10 = NEWUOA)
[ owes | g any order-preserving =
10 o " 10 0 10' strictly increasing function (for
Condition number all other)

SP1 = average number of objective function evaluations® to reach the target
function value of g7*(107°)

6Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

BFGS (Broyden et al 1970)
. NEWUAO (Powell 2004)

7 DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f(x) = g(x"Hx) with

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

H full
g : x — x*/* (for BFGS and
= oe NEWUOA)
‘g‘ﬂ g any order-preserving =
% 10 10 10 10 10’ strictly increasing function (for
Condition number all other)

SP1 = average number of objective function evaluations’ to reach the target
function value of g7*(107°)

7Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



Comparison during BBOB at GECCO 2009

24 functions and 31 algorithms in 20-D

v ‘ ‘ ‘ ‘ ‘ ‘ Tbest 200p
. . . . . . BIPOP-CNIA-ES
AMalGalyl IDEA
_‘iAMaLGaM IDEA
: : : : :VNS (Garlcia)
0.8 o 7~ ~MA-LS-Chain

4(1+1)-CMA-ES
7 _.Cauchy HDA

o
)

:PSO_Bouhds

ALPS-GA

< Z = <full NEWJOA
32 ~NELDER [Han)
<~ >JNELDERDoe)

~ Y JNEDA-PSO|
~ YPOEMS
“PSO
iMCS

‘Rosenbrqck

N \ESstep.
\Lsfminbrd
Nsimple GA

“DEPSO

‘DIRECT

L :BayEDAQ
= ; ~ = = <Monte Cgrlo

0 1 2 3 4 5 6 7 8

Running length / dimension

N
>

Proportion of functions

1 )
0.2 i

[9]

0.0



Comparison during BBOB at GECCO 2010

24 functions and 20+ algorithms in 20-D

1.y

0.8

o
)

Proportion of functions

e
>

0.2f--

0.0

Running length / dimension

Tbest 200p
:BIPOP-CNIA-ES
CMA+DEMOS
-IPOP-aCMA-ES
|~ IpOP.ChAEs
F ~ ,Adap DE|(F-AUC)
iDE (Unifqrm)
d 5S-DE
g (IPOP,r1)
CMA-ES
A-ES
A-ES
MA-ES
MA-ES
A-ES
UOA
h-ES
A-ES
DA
N-ES
A-ES
\Artif Bee[Colony
Basic RCGA
L YSPSA
~ = = <Monte Cgrlo
7 8



Comparison during BBOB at GECCO 2009

30 noisy functions and 20 algorithms in 20-D

1.y

0.8

o
)

Proportion of functions
o
»

0.2f--

Tbest 200
| ___——BIPOP-C]

:AMalLGa
,iAMaLGa

s /iMA-Ls-C
, /ALPS-GA
‘BayEDA
""" full NEWA
17(1+1)-E9]
DASA
/GLOBAL
4(1+1)-CN
’ EDA-PSO]
‘PSO
‘PSO_Bou|
" ~DEPSO. |
‘MCS
‘SNOBFIT
‘BFGS

p
A-ES
IDEA
IDEA

'/" VNS (Garcia)

ain

A-ES

hds

T~ ~Maonte C

rlo

0.0

Running length / dimension
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Comparison during BBOB at GECCO 2010

30 noisy functions and 10+ algorithms in 20-D

1.y

0.8

o
)

Proportion of functions

e
>

0.2f--

0.0

Tbest 200
| __—IPOP-aC
"~ BIPOP-C

~ ~ipop-cM
/CMA+DH
/CMA-EGY
/Basic RC
/(1,4ms)-
(1,2ms)-{
(1,4m)-C
(1,4)-CM
{(1,2m)-C
~(1,45)-CM
[ ——(1.2)-Cm
+(1,25)-C
. GLoBAL|

NEWUOA

\SPSA

(IPOP,r1)
GA
MA-ES
MA-ES
A-ES
f-ES
A-ES
A-ES
A-ES
A-ES

UOA

rlo

T~ ~Maonte C

Running length / dimension
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Adaptive Evolution Strategies
Mean Vector Adaptation
Step-size control
Covariance Matrix Adaptation

Rank-p Update



The Continuous Search Problem

Difficulties of a non-linear optimization problem are

» dimensionality and non-separabitity
demands to exploit problem structure, e.g. neighborhood

» ill-conditioning demands to acquire a second order model

> ruggedness demands a non-local (stochastic?) approach

Approach: population based stochastic search, coordinate system
independent and with second order estimations (covariances)



Main Features of (CMA) Evolution Strategies

1. Multivariate normal distribution to generate new search points
follows the maximum entropy principle

2. Rank-based selection
implies invariance, same performance on
g(f(x)) for any increasing g
more invariance properties are featured
3. Step-size control facilitates fast (log-linear) convergence
based on an evolution path (a non-local
trajectory)

4. Covariance matrix adaptation (CMA) increases the likelihood
of previously successful steps and can improve performance by

orders of magnitude
C «x H™! <= adapts a variable metric
<= new (rotated) problem representation
— f(x) = g(xT Hx) reduces to g(x"x)



Limitations
of CMA Evolution Strategies

» internal CPU-time: 10~8n? seconds per function evaluation on a
2GHz PC, tweaks are available

> better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
» small dimension (n < 10)

» small running times (number of f-evaluations < 100n)
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