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I On linear convergence

For a deterministic sequence xt the linear convergence towards a point x∗ is defined as:

The sequence (xt)t convergences linearly towards x∗ if there exists µ ∈ (0, 1) such that

lim
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖

= µ (1)

The constant µ is then the convergence rate.

We consider a sequence (xt)t that converges linearly towards x∗.

1. Prove that (1) is equivalent to

lim
t→∞

ln
‖xt+1 − x∗‖
‖xt − x∗‖

= lnµ (2)

2. Prove that (2) implies

lim
t→∞

1

t

t−1∑
k=0

ln
‖xk+1 − x∗‖
‖xk − x∗‖

= lnµ (3)

3. Prove that (3) is equivalent

lim
t→∞

1

t
ln
‖xt − x∗‖
‖x0 − x∗‖

= lnµ (4)

For a sequence of random variables (xt)t. We can define linear convergence by considering the expected
log progress, that is the sequence converges linearly if

lim
t→∞

E

[
ln
‖xt+1 − x∗‖
‖xt − x∗‖

]
= lnµ ,

Remark that in general

E

[
ln
‖xt+1 − x∗‖
‖xt − x∗‖

]
6= lnE

[
‖xt+1 − x∗‖
‖xt − x∗‖

]
and thus defining linear convergence via limtE

[
‖xt+1−x∗‖
‖xt−x∗‖

]
would not be equivalent contrary to the

deterministic case.



If we want to define the almost sure linear convergence we cannot use directly (1) or (2) as ‖xt+1−x∗‖
‖xt−x∗‖

or ln ‖xt+1−x∗‖
‖xt−x∗‖ will not convergence almost surely to a constant. We therefore have to resort to (5) and

define the almost sure linear convergence of a sequence of random variables as

lim
t→∞

1

t
ln
‖xt − x∗‖
‖x0 − x∗‖

= lnµ a.s. (5)

This will is illustrated as the log-distance to the optimum decreases to minus infinity as lnµ× t, that is
you observe asymptotically a line if you plot the convergence using a log-scale for the y-axis.

II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic
algorithm. More precisely we consider a (1, λ)-ES algorithm whose state is given by Xt ∈ Rn. At each
iteration t, λ candidate solutions are sampled according to

Xi
t+1 = Xt + U it+1

with (U it+1)1≤i≤λ i.i.d. and U it+1 ∼ N (0, Id). Those candidate are evaluated on the function f : Rn → R
to be minimized and then ranked according the their f values:

f(X1:λ
t+1) ≤ . . . ≤ f(Xλ:λ

t+1)

where i:λ denotes the index of the ith best candidate solution. The best candidate solution is then selected
that is

Xt+1 = X1:λ
t+1 .

We will compute for the linear function f(x) = x1 to be minimized the conditional distribution of X1:λ
t+1

(i.e. after selection) and compare it to the distribution of Xt+1
i (i.e. before selection).

1. What is the distribution of Xi
t+1 conditional to Xt? Deduce the density of each coordinate of Xi

t+1.

We remind that given λ random variables independent and identically distributed Y1, Y2, . . . , Yλ, the order
statistics Y(1), Y(2), . . . , Y(λ) are random variables defined by sorting the realizations of Y1, Y2, . . . , Yλ in
increasing order. We consider that each random variable Yi admits a density f(x) and we denote F (x)
the cumulative distribution function, that is F (x) = Pr(Y ≤ x).

2. Compute the cumulative distribution of Y(1) and deduce the density of Y(1).

3. Let U1:λ
t+1 be the random vector such that

X1:λ
t+1 = Xt + U1:λ

t+1

Express for the minimization of the linear function f(x) = x1, the first coordinate of U1:λ
t+1 as an

order statistic.

4. Deduce the conditional distribution and conditional density of the random vector X1:λ
t+1.

III Cumulative Step-size Adaptation (CSA)

In this exercice, we want to understand the normalization constants in the CSA algorithm and how they
implement the idea explained during the class. The pseudo-code of the (µ/µ, λ)-ES with CSA step-size
adaption is given in the following.
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[Objective: minimize f : Rn → R]
1. Initialize σ0 > 0, m0 ∈ Rn, p0 = 0, t = 0
2. set w1 ≥ w2 ≥ . . . wµ ≥ 0 with

∑
wi = 1; µeff = 1/

∑
w2
i , 0 < cσ < 1 (typically cσ ≈ 4/n), dσ > 0

3. while not terminate

4. Sample λ independent candidate solutions :
5. Xi

t+1 = mt + σty
i
t+1 for i = 1 . . . λ

6. with (yit+1)1≤i≤λ i.i.d. following N (0, Id)
7. Evaluate and rank solutions:
8. f(X1:λ

t+1) ≤ . . . ≤ f(Xλ:λ
t+1)

9. Update the mean vector:

10. mt+1 = mt + σt

µ∑
i=1

wiy
i:λ
t+1︸ ︷︷ ︸

ywt+1

11. Update the path:

12. pt+1 = (1− cσ)pt +
√

1− (1− cσ)2√µeffy
w
t+1

13. Update the step-size:

14. σt+1 = σt exp
(
cσ
dσ

(
‖pσ‖

E[‖N (0,Id)‖] − 1
))

15. t=t+1

1. Assume that the objective function f is random, i.e. for instance f(Xi
t+1)i are i.i.d. according to

U[0,1]. What is the distribution of
√
µeffy

w
t+1 ?

2. Assume that pt ∼ N (0, Id) and that the selection is random, show that pt+1 ∼ N (0, Id)

3. Deduce that under random selection

E [lnσt+1|σt] = lnσt

and then that the expected log step-size is constant.
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