
Performance Assessment in
Optimization

 Anne Auger

RandOpt Team
INRIA and CMAP, Ecole Polytechnique

anne.auger@inria.fr

1

General Problem

Evaluate the performance of optimization algorithms

Compare the performance of different algorithms

understand strength and weaknesses of algorithms

help in design of new algorithms

General Problem (cont.)

Algorithms are in general too complicated to be
evaluated theoretically on the wide range of problems/
difficulties one is interested to solve

need to do some benchmarking, i.e. evaluate empirically
on test functions the performance of an optimizer

run the optimizer several times independently on a set
of benchmark function

display some statistical measures of performance

Test functions
Many real world problems share common difficulties:

→ non separability (correlations between variables)

→ ill-conditioned (certain direction steeper than others),

→ ruggedness (noise, ...),

→ multi-modality

→ non-convexity
Ideally an optimizer should cope with all of them

function testbed:

should “reflect reality”: should model typical difficulties
one is willing to solve
mainly non-convex and non-separable
scalable with the search space dimension
not too easy to solve, but yet comprehensible

State-of-the-art Test Suite
Black-Box Optimization Benchmarking test suite

noiseless / noisy testbed http://coco.gforge.inria.fr/doku.php?id=start

noiseless testbed noisy testbed

http://coco.gforge.inria.fr/doku.php?id=start

Performance measure

CPU time (to reach a given target)
drawbacks: depend on the implementation, on the
language, on the machine

time is spent on code optimization instead of science
Testing heuristics, we have it all wrong, J.N. Hooker, 1995
Journal of Heuristics

Prefer “absolute” value: # of function evaluations to reach a
given target

assumptions: internal cost of the algorithm negligible or
measured independently

Performance measure

empirically
convergence graphs is all we have to start with

the right presentation cannot be overestimated: details
are important!

Displaying 3 runs (three trials)

Displaying 3 runs (three trials)

Displaying 3 runs (three trials)

Displaying 51 runs

Which Statistics?

Which Statistics?

On performance measures
Requirements

14

“Algorithm A is 10/100 times faster than
Algorithm B to solve this type of problems”

On performance measures
Requirements

15

“Algorithm A is 10/100 times faster than
Algorithm B to solve this type of problems”

quantitative measures

On performance measures
Requirements

16

“Algorithm A is 10/100 times faster than
Algorithm B to solve this type of problems”

quantitative measures
As opposed to

displayed: mean f-value after
3.10^5 f-evals (51 runs)
bold: statistically significant
concluded: “EFWA significantly
better than EFWA-NG”

Source: Dynamic search in fireworks algorithm, Shaoqiu Zheng, Andreas Janecek, Junzhi
Li and Ying Tan CEC 2014

a performance measure should be
quantitative, with a ratio scale
well-interpretable with a meaning
relevant in the “real world”
simple

On performance measures
Requirements

Fixed Cost versus Fixed Budget
Collecting Data

18

Fixed Cost versus Fixed Budget
Collecting Data

19

Collect for a given target (several target), the number of
function evaluations needed to reach a target

Repeat several times:

if algorithms are stochastic, never draw a conclusion from a
single run

if deterministic algorithm, repeat by changing (randomly) the
initial conditions

Displaying Performance

 ECDF

 Average RunTime (ART)

20

Displaying Performance
ECDF

21

Empirical Cumulative Distribution (ECDF) of Runtime

also known as data profile

[Moré, Wild, Benchmarking Derivative-Free Optimization
Algorithms, SIOPT 2009]

22

23

24

25

26

27

Reconstructing a single run via ECDF…

28

29

30

31

32

33

35

Aggregation …

Aggregation

42

over runs

over test functions

over targets

not over dimension

Displaying Performance

 ECDF

 Average RunTime (ART)

45

Which performance measure ?

Which performance measure ?

Expected Running Time (restart algo)

ERT = E[RT r] = 1�ps
ps

E[RTunsuccessful + E[RTsuccessful]

Estimator for ERT
bps = #succ

#Runs

\RTunsucc = Average Evals of unsuccessful runs

\RTsucc = Average Evals of successful runs

ART = #Evals
#success

Example: scaling behavior

A
R
T

A

Automatizing the benchmarking
COCO platform

50

COCO platform - COmparing Continuous Optimizers

