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General Problem

Evaluate the performance of optimization algorithms

Compare the performance of different algorithms

understand strength and weaknesses of algorithms

help in design of new algorithms



General Problem (cont.)

Algorithms are in general too complicated to be 
evaluated theoretically on the wide range of problems/
difficulties one is interested to solve

need to do some benchmarking, i.e. evaluate empirically 
on test functions the performance of an optimizer

run the optimizer several times independently on a set 
of benchmark function

display some statistical measures of performance



Test functions
Many real world problems share common difficulties: 

→ non separability (correlations between variables)  

→ ill-conditioned (certain direction steeper than others),  

→ ruggedness (noise, ...),  

→ multi-modality 

→ non-convexity 
Ideally an optimizer should cope with all of them 

function testbed: 

should “reflect reality”: should model typical difficulties 
one is willing to solve 
mainly non-convex and non-separable 
scalable with the search space dimension  
not too easy to solve, but yet comprehensible 



State-of-the-art  Test Suite
Black-Box Optimization Benchmarking test suite

noiseless / noisy testbed http://coco.gforge.inria.fr/doku.php?id=start

noiseless testbed noisy testbed

http://coco.gforge.inria.fr/doku.php?id=start


Performance measure

CPU time (to reach a given target)
drawbacks: depend on the implementation, on the 
language, on the machine

time is spent on code optimization instead of science
Testing heuristics, we have it all wrong, J.N. Hooker, 1995 
Journal of Heuristics

Prefer “absolute” value: # of function evaluations to reach a 
given target

assumptions: internal cost of the algorithm negligible or 
measured independently



Performance measure

empirically  
convergence graphs is all we have to start with 

the right presentation cannot be overestimated: details 
are important! 



Displaying 3 runs (three trials)



Displaying 3 runs (three trials)



Displaying 3 runs (three trials)



Displaying 51 runs



Which Statistics?



Which Statistics?



On performance measures 
Requirements
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“Algorithm A  is 10/100 times faster than 
Algorithm B to solve this type of problems”



On performance measures 
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15

“Algorithm A  is 10/100 times faster than 
Algorithm B to solve this type of problems”

quantitative measures



On performance measures 
Requirements
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“Algorithm A  is 10/100 times faster than 
Algorithm B to solve this type of problems”

quantitative measures
As opposed to

displayed: mean f-value after 
3.10^5 f-evals (51 runs)
bold: statistically significant
concluded: “EFWA significantly 
better than EFWA-NG”

Source: Dynamic search in fireworks algorithm, Shaoqiu Zheng, Andreas Janecek, Junzhi 
Li and Ying Tan CEC 2014



a performance measure should be 
quantitative, with a ratio scale 
well-interpretable with a meaning 
relevant in the “real world” 
simple 

On performance measures 
Requirements



Fixed Cost versus Fixed Budget 
Collecting Data
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Fixed Cost versus Fixed Budget 
Collecting Data
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Collect for a given target (several target), the number of 
function evaluations needed to reach a target

Repeat several times:

if algorithms are stochastic, never draw a conclusion from a 
single run

if deterministic algorithm, repeat by changing (randomly) the 
initial conditions



Displaying Performance 

  ECDF 

  Average RunTime (ART) 
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Displaying Performance 
ECDF
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Empirical Cumulative Distribution (ECDF) of Runtime 

also known as data profile

[Moré, Wild, Benchmarking Derivative-Free Optimization 
Algorithms, SIOPT 2009]
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Reconstructing a single run via ECDF…
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Aggregation …















Aggregation 
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over runs 

over test functions 

over targets 

not over dimension 







Displaying Performance 

  ECDF 

  Average RunTime (ART) 
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Which performance measure ?



Which performance measure ?



Expected Running Time (restart algo)

ERT = E[RT r] = 1�ps
ps

E[RTunsuccessful + E[RTsuccessful]

Estimator for ERT
bps = #succ

#Runs

\RTunsucc = Average Evals of unsuccessful runs

\RTsucc = Average Evals of successful runs

ART = #Evals
#success



Example: scaling behavior

A
R
T

A



Automatizing the benchmarking 
COCO platform 
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COCO platform - COmparing Continuous Optimizers


