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Adaptive Evolution Strategies
Mean Vector Adaptation
Step-size control
Covariance Matrix Adaptation

Rank-One Update



Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a
number of iteration steps. It can be expressed as a sum of consecutive steps of

the mean m.
An exponentially weighted sum

of steps y. is used
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The recursive construction of the evolution path (cumulation):

pe +— (I—c)pe+vV1I—(1—c)2Viw yw
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decay factor normalization factor input =
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where ,, = ﬁ cc < 1. History information is accumulated in the evolution

path.



Cumulation
Utilizing the Evolution Path

We used y,y,, for updating C. Because yny, = —yw(—yw)" the sign of y,
is lost.
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Cumulation
Utilizing the Evolution Path

We used y,y,, for updating C. Because yny, = —yw(—yw)" the sign of y,
is lost.

The sign information is (re-)introduced by using the evolution path.

pe — (1—c) pe+ V1= (1—c)*V/twyw
H/—/ N -~ /

decay factor normalization factor

C <« (1 — Ccov)c + Ccov pcch
N——

rank-one

where @, = ﬁ ce < 1.
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Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from O(n?) to O(n).(3)

The overall model complexity is n? but important parts of the
model can be learned in time of order n

3Hansen, Miiller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp.- 1-18



Rank-u Update

m+oyij, Yi ~ M(07C)7

— MmMA+oyw Yw = ;ilwi}’i:)\

3 X

The rank-p update extends the update rule for large population
sizes \ using p > 1 vectors to update C at each iteration step.
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The rank-p update extends the update rule for large population
sizes A using 1 > 1 vectors to update C at each iteration step.
The matrix

7
C,u — Z Wiyi:AyEA
i=1

computes a weighted mean of the outer products of the best p
steps and has rank min(u, n) with probability one.



Rank-u Update

m+oyij, Yi ~ M(07C)7

— m+oyw Yw = }ilwi}’i:)\

3 X

The rank-p update extends the update rule for large population
sizes A using 1 > 1 vectors to update C at each iteration step.
The matrix

7
C,u — Z Wiyi:AyEA
i=1

computes a weighted mean of the outer products of the best p
steps and has rank min(u, n) with probability one.
The rank-p update then reads

C+ (1—ceov)C+ceov Cp

where Ceov & fiy/n? and coov < 1.



X — m—|—O'yI', Yi NN(O,C) C,LL — %Zyi:ky;'l;—‘)\

C <+ @(@1-1)xCH+1xCy,

sampling of calculating C where
A = 150 solutions uw=>50, w ==
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The rank-p; update

» increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) (*)
A

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
A

4Hansen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp.- 1-18
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The rank-p; update

» increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) (*)
A

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
A

The rank-one update

» uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to

O(n) .

4Hansen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp.- 1-18



The rank-p; update

» increases the possible learning rate in large populations

» can reduce the number of necessary iterations roughly from
O(n?) to O(n) (*)
A

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
A

The rank-one update

» uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to

O(n) .

Rank-one update and rank-u update can be combined

4Hansen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp.- 1-18



Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Input: me R", 0 € Ry, A
Initialize: C =1, and p. =0, p, =0,
Set: ¢c ~4/n, ¢, = 4/n, ¢ =~ 2/n? N,uw/n ,ca+c¢, <1,

da~1+\/“7 and w;—1  such that,uW— 11 3 ~ 0.3\

While not terminate
xi=m+oy;, yi ~ Ni(0,C), fori=1,...,A sampling
m<+ > wixpy=m+oy, wherey, =>" wyin update mean

Pc — (1 — Cc) Pc +3{||p°lﬂ5ml — (1 — Cc)2w/,uw Yw cumulation for C

pr <+ (1—c,)p, + \/1 — (1 — ¢, ) \/Ttw Czy, cumulation for o
C+—1l-ca—-—c)C+ ap p.t + Cu Y iy W,'y,':)\y;l?)\ update C
04— 0 X exp <§" (E||.|/|\I/?(JOHI)|| — 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries

and encoding



Rank-one and Rank-mu updates
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Rank-one and Rank-mu update - default pop size
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Rank-one and Rank-mu update

larger pop size
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Experimentum Crucis (0)
What did we want to achieve?

» reduce any convex-quadratic function

f(x) = x"Hx

to the sphere model
f(x)=x'x

> lines of equal density align with lines of equal fitness

Coc H1



Experimentum Crucis (1)

f convex quadratic, separable

bl%e:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D)
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Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

bl%e:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Obiject Variables (9-D)
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f(x) =g (x'Hx), g : R — R stricly increasing



