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In [6]: 1 n=5
2 default_popsize = 4+int(3*np.log(n))
3 res = cma.fmin(cma.ff.rastrigin, 1@%*np.ones(n), 10, {'popsize':1xdefault_popsize})
4 cma.plot()

(4_w,8)-aCMA-ES (mu_w=2.6,w_1=52%) in dimension 5 (seed=229793, Fri Jan 23 10:20:00 2026)
Iterat #Fevals function value axis ratio sigma min&max std t[m:s]
1 8 3.968707954379850e+02 1.0e+00 8.94e+00 9e+00 9e+00 0:00.0
2 16 2.836001566652973e+02 1.2e+00 9.94e+00 9e+00 1le+01 0:00.
3 24 2.482790101213030e+02 1.5e+00 9.47e+00 9e+00 1le+01 0:00.
100 800 1.989926126312014e+00 2.1e+00 2.17e-03 1e-04 2e-04 0:00.
184 1472 1.989918114186594e+00 2.1e+00 6.82e-07 4e-09 6e-09 0:00.
termination on {'tolfun': 1le-11} (Fri Jan 23 10:20:00 2026)
final/bestever f-value = 1.989918e+00 1.989918e+00 after 1473/1473 evaluations
incumbent solution: [ 7.87090245e-11, 9.94958637e-01, -2.48539450e-09, -3.91206338e-10, -9.94958638e-01]
std deviations: [4.51191323e-09, 4.73469851e-09, 4.25171675e-09, 5.73708814e-09, 4.90756493e-09]
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On Invariances



Evolution Strategies (ES) Invariance

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results

» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ Invariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole

class of functions

consequently, invariance is important for the evaluation of search
algorithms



Evolution Strategies (ES) Invariance

Rotational Invariance in Search Space

@ invariance to orthogonal (rigid) transformations R, where RR! =1
e.g. true for simple evolution strategies

recombination operators might jeopardize rotational invariance

f(x) < f(Rx)

|dentical behavior on f and fx

foox=f), xU=0=x
fr: x—f(Rx), x=0 =R (xo)

45 No difference can be observed w.r.t. the argument of f

4Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

5Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from
Nature PPSN VI

31



Main Invariances in Optimization

Invariance to strictly increasing transformations of f: identical behavior when optimizing

x = f(x)

x — g(f(x)) where g : Im(f) — R is strictly increasing

Translation invariance: identical behavior when optimizing

x = f(x)

x f(x—a)foralla e R”

Scale invariance: identical behavior when optimizing

X = f(x)

x — flax) forall a € R,

Rotational invariance: identical behavior when optimizing
x = f(x)

x — f(Rx) for all R is an orthogonal matrix

Affine invariance: identical behavior when optimizing

x = f(x)

x —~ f(Ax + b) for all A € R™" an invertible matrix and » € R”



Main Invariances in Optimization

Invariance to strictly increasing transformations of f: identical behavior when optimizing

x = f(x)

x — g(f(x)) where g : Im(f) — R is strictly increasing

Translation invariance: identical behavior when optimizing

x = f(x)

x f(x—a)foralla e R”

Scale invariance: identical behavior when optimizing

x = f(x) provided initial
x + f(ax) forall a € R, state is change
accordingly

Rotational invariance: identical behavior when optimizing
x = f(x)

x — f(Rx) for all R an orthogonal matrix

Affine invariance: identical behavior when optimizing

x = f(x)

x —~ f(Ax + b) for all A € R™" an invertible matrix and » € R”



Hierarchy of Invariance

Affine invariance

v I X

Rotational Invariance Scale-invariance translation invariance



Testing for invariances



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)

CMA-ES (Hansen &
Ostermeier 2001)

f(x) = g(x"Hx) with
H diagonal
g identity (for BFGS and

3 : NEWUOA)
| o o [ —H CMAES g any order-preserving =

1 I 1 I
10 o 2 4 6 8 10

10 10 10 10 10 10 strictly increasing function (for
Condition number all other)

SP1 = average number of objective function evaluations® to reach the target

function value of g7(107°)

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)

CMA-ES (Hansen &
Ostermeier 2001)

f(x) = g(x"Hx) with
H full
g identity (for BFGS and

] : NEWUOA)
| o o [ —H CMAES g any order-preserving =

1 I 1 I
10 o 2 4 6 8 10

10 10 10 10 10 10 strictly increasing function (for
Condition number all other)

SP1 = average number of objective function evaluations® to reach the target

function value of g7(107°)

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqgrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07
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Condition number

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)

CMA-ES (Hansen &
Ostermeier 2001)

f(x) = g(x"Hx) with

H full

g : x — x** (for BFGS and
NEWUOA)

g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations’ to reach the target

function value of g_1(10_9)

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms; SEA



