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On Invariances



Evolution Strategies (ES) Invariance

Invariance
The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest number of hypotheses or axioms.

— Albert Einstein

Empirical performance results
I from benchmark functions
I from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong non-empirical statement about
generalization

generalizing (identical) performance from a single function to a whole
class of functions

consequently, invariance is important for the evaluation of search
algorithms
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Evolution Strategies (ES) Invariance

Rotational Invariance in Search Space
invariance to orthogonal (rigid) transformations R, where RR

T = I

e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

f (x) $ f (Rx)

Identical behavior on f and fR

f : x 7! f (x), x
(t=0) = x0

fR : x 7! f (Rx), x
(t=0) = R

�1(x0)

No difference can be observed w.r.t. the argument of f45
4Salomon 1996. ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A

survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
5Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from

Nature PPSN VI
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Main Invariances in Optimization

Invariance to strictly increasing transformations of f: identical behavior when optimizing 
x ↦ f(x)

Translation invariance: identical behavior when optimizing
x ↦ f(x)

x ↦ g( f(x)) where g : Im( f ) → ℝ is strictly increasing

x ↦ f(x − a) for all a ∈ ℝn

Rotational invariance: identical behavior when optimizing

x ↦ f(Rx) for all R is an orthogonal matrix
x ↦ f(x)

Affine invariance: identical behavior when optimizing

x ↦ f(Ax + b) for all A ∈ ℝn×n an invertible matrix and b ∈ ℝn
x ↦ f(x)

Scale invariance: identical behavior when optimizing

x ↦ f(αx) for all α ∈ ℝ>

x ↦ f(x)
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x ↦ f(x) provided initial 
state is change 

accordingly



Hierarchy of Invariance

Affine invariance

Rotational Invariance Scale-invariance translation invariance
⇐ ⇐ ⇐



Testing for invariances



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number �
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Ellipsoid dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f (x) = g(xT
Hx) with

H diagonal
g identity (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations5 to reach the target
function value of g�1(10�9)

5Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number �
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Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f (x) = g(xT
Hx) with

H full
g identity (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations6 to reach the target
function value of g�1(10�9)

6Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number �
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Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f (x) = g(xT
Hx) with

H full
g : x /� x1/4 (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations7 to reach the target
function value of g�1(10�9)

7Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA


