lll-conditioned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed” lines of equal function value (high
curvatures)

A

Condition number equals nine here. Condition numbers up to 10'°
are not unusual in real world problems.

gradient direction —f'(x)*



Part 11: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms

Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]

Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region /Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods

Evolutionary Algorithms (continuous domain)
Differential Evolution [Storn, Price 1997]
Particle Swarm Optimization [Kennedy and Eberhart 1995]
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004]
Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search

Define {P,: 0 € ®}, a family of probability distributions on R"

Generic template to optimize f : R" — R

Initialize distribution parameter €, set population size 4 € N

While not terminate

1. Sample xi, ..., x; according to P,
2. Evaluate x{,...,x; on f
3. Update parameters 0 <« F(0,x, ..., x;, f(x}), ..., f(x)))

the update of @ should drive P, to concentrate on the optima of f



To obtain an optimization algorithm we need:

O to define {Py, 0 € O}
® to define F the update function of 6



Which probability distribution to sample candidate
solutions?



Normal distribution - 1D case

Standard Normal Distribution

probability density
o
N

4 2 0 2

General case

probability density of the 1-D standard normal
distribution A/(0, 1)

p(x) = \/Z—W exp (—x;)

» Normal distribution N(m,az)

m

» A normal distribution is entirely determined by its mean value and

variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also

normally distributed

> Exercice: Show that m + oA (0,1) = N (m,o?)



Generalization to n Variables: Independent Case

. . 1 1
Assume X1~ (u,, 67) denote its density  p(x) = — eXP( - —(x — ﬂ1)2>

Zl 2012

: : 1 |
Assume X2~ N (u,, 0'22) denote its density  p(x,) = A exp( - 2—62(362 - ﬂz)2>
2 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

p(x17 x2) —



Generalization to n Variables: Independent Case

. . 1 1
Assume X1~ (u,, 67) denote its density  p(x) = — GXP( - —(x — ﬂ1)2>

Zl 2012

. . 1 1
Assume X2~ ./ (u,, o5) denote its density  p(x,) = A eXP( By Mz)2>
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with
1
2,4,

2
| oy 0
with x=@px) = ()" 2= ( >

2
O 02

1
pxi.xs) = pl)p(ey) = ——exp( = < (r =W Z7 (= )



Generalization to n Variables: Independent Case

. . 1 1
Assume X1~ (u,, 67) denote its density  p(x) = — GXP( - —(x — ﬂ1)2>

Zl 2012

. . 1 1
Assume X2~ ./ (u,, o5) denote its density  p(x,) = A eXP( By Mz)2>
1 2

Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector
with

pxy, xy) = plxpxy) = : eXp( - l(x —w'Z 7 (x - M)>
1>*2 1 2 2122 7
6z 0
with x=GLx)"  p= ()’ I 5
O 02

A

G
o1 > 0,




Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution

A random vector X = (X, ..., X)) € R" is a Gaussian vector
(or multivariate normal) if and only if for all real numbers
a,...,a,, the random variable ¢, X, + ... + a, X, has a normal

distribution.



Gaussian Vector - Multivariate Normal Distribution

A random variable following a 1-D normal distribution is determined by its

mean value m and variance 2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1,...,X,)" are random variables, each with
finite variance, then the covariance matrix X is the matrix whose (i, j) entries
are the covariance of (X;, X;)

¥ = cov(X;, Xj) = E [(Xi — pi)(X; — )]

where u; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

Y =E[(X —p)(X —p)]



Density of a n-dimensional Gaussian vector A (m, C):

1
Qo) C|"?

p/V(m.C)(x) =

exp <—%(x —m)'C ' (x - m)\

2-D Normal Distribution

The mean vector m:

determines the displacement

Is the value with the largest density
the distribution is symmetric around the mean
N(m,C)=m+ N(0,C)
The covariance matrix:

determines the geometrical shape (see next slides)



Geometry of a Gaussian Vector

Consider a Gaussian vector /4 (m, C), remind that lines of equal
densities are given by:

{x|A? = (x —m)'C~'(x — m) = cst)

Decompose ( = UAUT with U orthogonal, i.e.

u U, 0'12 0 u, -—
=1 2 J\u, —
0| o
Let Y = UT(x — m) , then in the coordinate system, (u1,u2), the
lines of equal densities are given by

, Y Y
{x|A“ = — + — = cst}
of 03



... any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)TC (x — m) =1}

Lines of Equal Density

N(m,c?l) ~ m+oN(0,1) N (m,D?)~ m+DN(0,I) N(m,C)Nm—i—C%N(O,I)

one degree of freedom o n degrees of freedom  (p2 4 ) /2 degrees of freedom
components are components are components are
independent standard independent, scaled correlated

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N/ (0,1) ~ A (0, AA™) holds for all
A.



Evolution Strategies

New search points are sampled normally

distributed
X; = m+oy; fori=1,...,\ with y; i.id. ~ N(0,C) "
as perturbations of m, where x;, m € R", 0 € Ry, s
C e R™"
where
» the vector m € R" represents the favorite solution
» the so-called o € R, controls the step length
> the C € R"™" determines the shape

of the distribution ellipsoid
here, all new points are sampled with the same parameters



Evolution Strategies

New search points are sampled normally

distributed S

.
oo

*******

PR AR

xi=m+oy; fori=1,..., Awithy;iid ~N(0,C).

< |In fact, the covariance matrix of the sampling distribution is
but it is convenient to refer to C as the covariance matrix (it is a
covariance matrix but not of the sampling distribution)

VV IINsI

» the vector m € R" represents the favorite solution
» the so-called o € R, controls the step length
> the C € R"™"™ determines the shape

of the distribution ellipsoid
here, all new points are sampled with the same parameters

,,,,,,,



How to update the different parameters m,o, C ?

1. Adapting the mean m



Update the Mean: a Simple Algorithm the (1+1)-ES

Notation and Terminology:

one solution kept one new solution
from one iteration (1 +1)'ES (offspring) sampled at
to the next each iteration

The 4+ means that we keep the best between current solution
and new solution, we talk about elitist selection

(14+1)-ES algorithm (update of the mean)

sample one candidate solution from the mean m
x =m+ o/ (0,0C)
if X is better than m (i.e. if f(x) < f(m)), select m

m < X



The (14-1)-ES algorithm is a simple algorithm, yet:
= the elitist selection is not robust to outliers
we cannot loose solutions accepted by “chance”, for instance that
look good because the noise gave it a low function value
= there is no population (just a single solution is sampled) which
makes it less robust

In practice, one should rather use a:

The u best solutions are A solutions are
selected and recombined sampled

(to form the new mean) at each iteration



The (u/u, 1)-ES - Update of the Mean Vector

Given the i-th solution point x; = m+ o0 y;
—~—
~M0,C)
Let x;., the i-th ranked solution point, such that

f(xlz)\) < --- < f(x)\:)\)-
Notation: we denote y;.» the vector such that x;.» = m+ oy;.\

Exercice: realize that y;. is generally not distributed as A (0, C)
The new mean reads

7
m < E W; X\
i=1

where
wp>---2>w, >0, Y w=1, s = [l R

i=1 Wi

B>

The best u points are selected from the new solutions
(non-elitistic) and weighted intermediate recombination is applied.



What changes in the previous slide if instead of
optimizing f, we optimize gof where g : Im(f) - R
is strictly increasing?



Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:

Update of all parameters uses only the ranking:

Jxp) < flx) < .0 < fxg)

g(f(x1.1) < 8(f(x.) < ... < 8(f(xy.0)
for all g : Im(f) — R strictly increasing



A Template for Comparison-based Stochastic Search

Define {P,: 0 € ®}, a family of probability distributions on R"

Generic template to optimize f : R" — R

Initialize distribution parameter €, set population size 4 € N

While not terminate

1.
2.
3.

Sample x, ..., x; according to P,
Evaluate x,...,x; on f
Rank the solutions and find 7 the permutation such

Update parameters 0 < F(0,x, ...,x;, )



