
Ill-conditioned Problems



Part II: Algorithms



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Simplex downhill [Nelder and Mead 1965]
Pattern search, Direct Search [Hooke and Jeeves 1961]
Trust-region/Model Based methods (NEWUOA, BOBYQA) [Powell, 06,09]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

Differential Evolution [Storn, Price 1997] 
Particle Swarm Optimization [Kennedy and Eberhart 1995] 
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen, Ostermeier 2001] 
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002] 
Cross Entropy Method (same as EDAs) [Rubinstein, Kroese, 2004] 
Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated Annealing [Kirkpatrick et al. 1983]



A Generic Template for Stochastic Search 

Define , a family of probability distributions on  {Pθ : θ ∈ Θ} ℝn

Generic template to optimize f : ℝn → ℝ
Initialize distribution parameter , set population size  θ λ ∈ ℕ
While not terminate

1. Sample  according to  
2. Evaluate  on  
3. Update parameters 

x1, …, xλ Pθ
x1, …, xλ f

θ ← F(θ, x1, …, xλ, f(x1), …, f(xλ))

the update of  should drive  to concentrate on the optima of θ Pθ f



To obtain an optimization algorithm we need: 
         ➊ to define  
         ➋ to define  the update function of 

{Pθ, θ ∈ Θ}
F θ



Which probability distribution to sample candidate 
solutions?



Normal distribution - 1D case
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Assume X1 and X2 are independent, then (X1,X2) is a Gaussian vector 
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Generalization to n Variables: Independent Case

p(x1, x2) =
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Generalization to n Variables: Independent Case



A random vector  is a Gaussian vector 
(or multivariate normal) if and only if for all real numbers 

, the random variable  has a normal 
distribution. 

X = (X1, …, Xn) ∈ ℝn

a1, …, an a1X1 + … + anXn

Generalization to n Variables: General Case

Gaussian Vector - Multivariate Normal Distribution



Gaussian Vector - Multivariate Normal Distribution



Density of a n-dimensional Gaussian vector :'(m, C)

p'(m.C)(x) = 1
(2π)n/2 |C |1/2 exp (−1

2 (x −m)⊤C−1(x −m))
The mean vector : 
     determines the displacement 
     is the value with the largest density 
     the distribution is symmetric around the mean

m

'(m, C) = m + '(0,C)
The covariance matrix: 
        determines the geometrical shape (see next slides) 



Geometry of a Gaussian Vector

Consider a  Gaussian vector , remind that lines of equal 
densities are given by:

'(m, C)

{x |Δ2 = (x −m)TC−1(x −m) = cst}
Decompose                           with U orthogonal, i.e.C = UΛU⊤

C = (u1 u2
| | ) (σ2

1 0
0 | σ2

2) (u1 −
u2 −)

Let                                , then in the coordinate system, (u1,u2), the 
lines of equal densities are given by

Y = U⊤(x −m)

{x |Δ2 = Y2
1

σ2
1

+ Y2
2

σ2
2

= cst}
u1

u2

σ1

σ2

(μ1, μ2)





Evolution Strategies



Evolution Strategies

In fact, the covariance matrix of the sampling distribution is  
but it is convenient to refer to  as the covariance matrix (it is a 

covariance matrix but not of the sampling distribution)

σ2C
C



How to update the different parameters  ?m, σ, C
1. Adapting the mean  
2. Adapting the step-size  
3. Adapting the covariance matrix 

m
σ

C



Update the Mean: a Simple Algorithm the (1+1)-ES

(1+1)-ES
Notation and Terminology:

one new solution 
(offspring) sampled at 

each iteration

one solution kept 
from one iteration 

to the next

The + means that we keep the best between current solution 
and new solution, we talk about elitist selection

(1+1)-ES  algorithm (update of the mean)
sample one candidate solution from the mean m

x = m + σ'(0,C)
if  is better than  (i.e. if ), select x m f(x) ≤ f(m) m

m ← x



The (1+1)-ES algorithm is a simple algorithm, yet: 
•the elitist selection is not robust to outliers  
we cannot loose solutions accepted by “chance”, for instance that 

look good because the noise gave it a low function value 
•there is no population (just a single solution is sampled) which 
makes it less robust

In practice, one should rather use a:
-ES(μ/μ, λ)
 solutions are 

sampled 
at each iteration

λThe  best solutions are 
selected and recombined 
(to form the new mean)

μ



The -ES - Update of the Mean Vector(μ/μ, λ)



What changes in the previous slide if instead of 
optimizing , we optimize  where  

is strictly increasing?
f g ∘ f g : Im( f ) → ℝ



Invariance Under Monotonically Increasing Functions

Comparison-based/ranking-based algorithms:
Update of all parameters uses only the ranking:

f(x1:λ) ≤ f(x2:λ) ≤ … ≤ f(xλ:λ)

  
for all  strictly increasing
g ( f(x1:λ)) ≤ g ( f(x2:λ)) ≤ … ≤ g ( f(xλ:λ))

g : Im( f ) → ℝ



A Template for Comparison-based Stochastic Search 

Define , a family of probability distributions on  {Pθ : θ ∈ Θ} ℝn

Generic template to optimize f : ℝn → ℝ
Initialize distribution parameter , set population size  θ λ ∈ ℕ
While not terminate

1. Sample  according to  
2. Evaluate  on  
3. Rank the solutions and find  the permutation such  
             
4. Update parameters 

x1, …, xλ Pθ
x1, …, xλ f

π
f(xπ(1)) ≤ f(xπ(2)) ≤ … ≤ f(xπ(λ))

θ ← F(θ, x1, …, xλ, π)


