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CMA-ES: a widely used randomized DFO algorithm [Hansen et al. 2001-2006]
for non-convex, non-smooth, difficult black-box problems
parameter-free

6.5 + 54 millions downloads for two main Python codes

does not even use function value

yet observed to learn “second-order” information in particular on
fx)=g((x —x*)"H(x —x*)), H> 0, g : R = R strict. increasing

sometimes presented as (randomized) quasi-Newton

How is that even possible??



uncover the simple and nice mathematical arguments behind
this learning
— illustrate proofs on quasi-Newton algorithms (BFGS)
simpler and illustrates the generality of the ideas

Disclaimer: results on quasi-Newton presented are not new nor
impressive stronger results exists
yet we show that they stem from simple fundamental properties



Adaptive Stochastic Optimization Algorithm
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CMA-ES - simplified setting 6, = (m,,0,C,) € R"XR_ X &"
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CMA-ES: Linear Convergence and Learning Inverse Hessian

|
For all f(x)=¢ <5(X — x) " H(x — x*)), with ¢ : Im(f) — R strict
increasing, H > 0 (SDP)
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BFGS algorithm

0, = (x,, B,

N

incumbent estimate of Hessian

1: initialize state 6y = (zg, Bg) € R™ x #(n,R), t =0
2: while stopping criterion not met do
3: compute p; = —B; 'V f(z:)

4: compute step-size: «; = LineSearch(z;, ps, f)
5: move in the direction of ps: Ti41 = T + upr = ¢ — o B, ly f(xy)
6: compute sy = oy
7: compute y; = Vf(zsi1) — Vf(xs)
. . ytyT BtStSTBt
8: update estimate of Hessian: B;1 = B; i s T 5T B,s,

9: t=t+1
10: end while



On affine-invariance



Affine-invariance

on x — f(x) X X X, U



Affine-invariance

A € GLn(R)
on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy
HAR
(\\\»ca.ux. %mqntm



Affine-invariance

A € GLn(R)
on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy

| | | |
A7lxy A7y A7, ... ATlx



Affine-invariance

An algorithm is affine invariant if it produces the same trajectory
when optimizing f(x) or any f(Ax") with A € GLn(R)

up to the change of variable: x' = A~ 'x

on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy
| | | |

A7lxy A7y A7, ... ATlx

u
ko)



Affine-invariance: commutative diagram

An algorithm is affine-invariant if for all A € GLn(R), there exists
®, (a bijective change of state variables) s.t. the diagram

commutes:
x = f(x)
Xy » Xpr
4 A
change of
. ®A ¢A—1 ®A @A—l

state variables

v x' = f(AX) v

Ay > g

X' =®,x)=Ax



Affine-invariance: commutative diagram

often state not reduced to incumbent solutions
example: BFGS where 6, = (x,, B,)



Affine-invariance: commutative diagram

often state not reduced to incumbent solutions
example: BFGS where 6, = (x,, B,)

An algorithm is affine-invariant if for all A € GLn(R), there exists
a bijective change of state variables @, s.t. the diagram

commutes: f( )
x — f(x
Qt > 9t+
Change of (I)A q) » (I)A q) »
state variables A A
('9, x' — f(AX) v
t > Yr1+1

O = ®4(6)
0,= @, (0)



Affine-invariance: commutative diagram

Affine-invariance = rotational invariance

An algorithm is affine-invariant if for all A € GLn(R), there exists
a bijective change of state variables ®, s.t. the diagram

commutes: f( )
X (X

O, > Oy
change of ol o llo.
state variables A A~ A A~

b/ x'— f(Ax') \
! > Y+l
Ht, — (I)A(et)

0,= @, (0)



Affine-invariance of BFGS

The BFGS algorithm (with affine-invariant step-size) satisfies for all
A € GL(R") the commutative diagram:

affine-invariant step-size: constant, exact line-search, ..

(x,, B,) * = JW - (X415 Bryp)
(I)A (DA_I (I)A q)A—l
. x' = f(AX')
(x,, B;) > (X4 1 t+1)

with (x/,B)) = ®,(x,B,) :== (A~ 'x,A'B.A)



Exercice: prove that the BFGS algorithm is affine-invariant

Let f : R® — R be a Frechet differentiable objective function. Consider the BFGS algorithm defined as
1: initialize state 8y = (z9,Bo) € R® xS, > (R), k=0
2: while stopping criterion not met do
3: compute di, = —B; 'V f(zk)

4: compute step-size: oy = LineSearch(zy, di, f)

5: move in the direction of di: Tr11 = T + ardx

6: compute sy = apdi

7: compute yr = Vf(zr+1) — Vf(xk) . i

8: update estimate of Hessian: Bg11 = By + ZI;:FZ;;; B B:kas:ka

9: k=k+1
10: end while

We will assume for the sake of simplicity that the step-size ap = «a is constant.

Let A € R™"*"™ be an invertible matrix and let g € R™ and By € R™*™ with By > 0. Consider the sequence
(zx, Br)k>1 generated by the BFGS algorithm optimizing = — f(z). Let (zf,B}) = (A 1z, AT ByA) and
consider (z, B )rx>1 the sequence of states of the BFGS algorithm optimizing g(z’) = f(Az’) and initialized
in (zh, BY).

Prove that for all k > 1, (2}, B;) = (A~ 'zg, AT B A), i.e. that the BFGS algorithm is affine-invariant.



