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Motivation
CMA-ES: a widely used randomized DFO algorithm [Hansen et al. 2001-2006] 

for non-convex, non-smooth, difficult black-box problems 
parameter-free 

6.5 + 54 millions downloads for two main Python codes

does not even use function value 

yet observed to learn “second-order” information in particular on 
, ,  strict. increasing f(x) = g((x − x⋆)⊤H(x − x⋆)) H ≻ 0 g : ℝ → ℝ

How is that even possible?? 

sometimes presented as (randomized) quasi-Newton



Objectives

uncover the simple and nice mathematical arguments behind 
this learning  

→ illustrate proofs on quasi-Newton algorithms (BFGS) 
simpler and illustrates the generality of the ideas

Disclaimer: results on quasi-Newton presented are not new nor 
impressive                                           stronger results exists 

yet we show that they stem from simple fundamental properties



Adaptive Stochastic Optimization Algorithm

should drive  towards the optimummt

Given e.g.  
 ❶ Sample candidate solutions , i.e. 

 ,                                      
 i.i.d.,  

❷ Evaluate and rank candidate solutions 
 

 

❸ Update : 

θt = (mt, σt, Ct) ∈ ℝn × ℝ> × 𝒮n
++

Xi
t+1 ∼ 𝒩(mt, σ2

t Ct)
Xi

t+1 = mt + σt CtUi
t+1 i = 1,…, λ

{Ut, t ≥ 1} Ui
t+1 ∼ 𝒩(0,Id)

f (Xst+1(1)
t+1 ) ≤ … ≤ f (Xst+1(λ)

t+1 )

θt
θt+1 = F (θt, [Ust+1(1)

t+1 , …, Ust+1(λ)
t+1 ])



Ct+1 = (1−cμ − c1)Ct+cμ Ct (
μ

∑
i=1

wiU
st+1(i)
t+1 [Ust+1(i)

t+1 ]⊤) Ct

rank μ update

+c1 pc
t+1p⊤

t+1

rank 1 update

CMA-ES - simplified setting  θt = (mt, σt, Ct) ∈ ℝn × ℝ> × 𝒮n
++

            i.i.d                        Xi
t+1 = mt + σt CtUi

t+1 i = 1,…, λ {Ut, t ≥ 1} Ui
t+1 ∼ 𝒩(0,Id)

f (Xst+1(1)
t+1 ) ≤ … ≤ f (Xst+1(λ)

t+1 )

σt+1 = σt exp cσ

dσ

μeff∥ ∑μ
i=1 wiU

st+1(i)
t+1 ∥

E[∥𝒩(0,Id)∥] − 1

Sampling + ranking:

mt+1 =
μ

∑
i=1

wiX
st+1(i)
t+1 = mt + σt Ct

μ

∑
i=1

wiU
st+1(i)
t+1

Update of :θt
μ

∑
i=1

wi = 1, μeff = 1/∑ w2
i

Yin N(o,Ct)



CMA-ES: Linear Convergence and Learning Inverse Hessian

For all  , with  strict 

increasing,  (SDP) 

           with  

f(x) = g ( 1
2 (x − x⋆)⊤H(x − x⋆)) g : Im( f ) → ℝ

H ≻ 0

1
t

ln ∥mt − x⋆∥
∥m0 − x⋆∥ t→∞

− CR Ct ∝ αtH−1 αt → 0

Empirical observations:

Eig(H) = (10−6,1,…,1) Eig(H) = (1,…,106 i − 1
n − 1 , …,106)

- CR



BFGS algorithm

θt = (xt, Bt)

incumbent estimate of Hessian



On affine-invariance



Affine-invariance

on  x ↦ f(x) x0 x1 x2 … xt …



Affine-invariance

on  x ↦ f(x) x0 x1 x2 … xt …

x′ 0 x′ 1 x′ 2 … x′ t …on  x′ ↦ f(Ax′ )

An algorithm is affine invariant if it produces the same trajectory 
when optimizing  or any  with   

up to the change of variable:  
f(x) f(Ax′ ) A ∈ GLn(ℝ)

x′ = A−1x

f(Ax()~
because oftranslation

invariance



Affine-invariance

on  x ↦ f(x) x0 x1 x2 … xt …

x′ 0 x′ 1 x′ 2 … x′ t …

A−1x0 A−1x1 A−1x2 … A−1xt …

= = = =

on  x′ ↦ f(Ax′ )

An algorithm is affine invariant if it produces the same trajectory 
when optimizing  or any  with   

up to the change of variable:  
f(x) f(Ax′ ) A ∈ GLn(ℝ)

x′ = A−1x
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(xo



Affine-invariance: commutative diagram

 x ↦ f(x)xt xt+1

x′ t x′ t+1
 x′ ↦ f(Ax′ )

ΦA

x′ t = ΦA(xt) = A−1xt

change of 
state variables

ΦA−1 ΦA ΦA−1

An algorithm is affine-invariant if for all , there exists 
 (a bijective change of state variables) s.t. the diagram 

commutes:

A ∈ GLn(ℝ)
ΦA



Affine-invariance: commutative diagram

example: BFGS where θt = (xt, Bt)
often state not reduced to incumbent solutions

#atefor CHA-Es :Of (mt, ot, Ct, pe, Pt)
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example: BFGS where θt = (xt, Bt)
often state not reduced to incumbent solutions

 x ↦ f(x)θt θt+1

θ′ t θ′ t+1

ΦA

θ′ t = ΦA(θt)
θt = ΦA−1(θ′ t)

ΦA−1 ΦA ΦA−1

 x′ ↦ f(Ax′ )

change of 
state variables

An algorithm is affine-invariant if for all , there exists 
a bijective change of state variables  s.t. the diagram 
commutes:
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Affine-invariance: commutative diagram

 x ↦ f(x)θt θt+1

θ′ t θ′ t+1

ΦA

θ′ t = ΦA(θt)
θt = ΦA−1(θ′ t)

ΦA−1 ΦA ΦA−1

example: BFGS where θt = (xt, Bt)
often state not reduced to incumbent solutions

 x′ ↦ f(Ax′ )

change of 
state variables

An algorithm is affine-invariant if for all , there exists 
a bijective change of state variables  s.t. the diagram 
commutes:

A ∈ GLn(ℝ)
ΦA

Affine-invariance  rotational invariance⇒



Affine-invariance of BFGS

The BFGS algorithm (with affine-invariant step-size) satisfies for all 
 the commutative diagram:A ∈ GL(ℝn)

 x ↦ f(x)(xt, Bt)

 x′ ↦ f(Ax′ )
ΦA ΦA−1 ΦA ΦA−1

(xt+1, Bt+1)

(x′ t, B′ t) (x′ t+1, B′ t+1)

with (x′ t, B′ t) = ΦA(xt, Bt) := (A−1xt, A⊤BtA)

affine-invariant step-size: constant, exact line-search, …



Exercice: prove that the BFGS algorithm is affine-invariant

I see separate correction) Assume optimal step-size
&v= argmin f(xk + <dk)



Affine-invariance of CMA-ES

The CMA-ES algorithm is affine-invariant: for all  the 
following commutative diagram holds:

A ∈ GL(ℝn)

ΦA(mt, Ct, σt) = (A−1mt, A−1Ct(A−1)⊤, σt)

 x ↦ f(x)(mt, Ct, σt)

 x′ ↦ f(Ax′ )

ΦA ΦA−1 ΦA ΦA−1

(mt+1, Ct+1, σt+1)

(m′ t, C′ t, σ′ t) (m′ t+1, C′ t+1, σ′ t+1)



How affine-invariance and stability imply 
learning a matrix proportional to Hessian 

on convex-quadratic functions



Consequence of rotational invariance + stability

Lemma: Consider a rotational invariant function  [such 
that  for all ] 

f : ℝn → ℝ
f(Rx) = f(x) R ∈ On(ℝ)

 is a radial function:  
example: 

f f(x) = g(∥x∥)
f(x) = γx⊤x = γ∥x∥2



Consequence of rotational invariance + stability

Lemma: Consider a rotational invariant function  [such 
that  for all ] 

f : ℝn → ℝ
f(Rx) = f(x) R ∈ On(ℝ)

 is a radial function:  
example: 

f f(x) = g(∥x∥)
f(x) = γx⊤x = γ∥x∥2

[stability] Suppose that   such that BFGS 
converges globally to .

∃! (x*, B*) ∈ ℝn × 𝒮>
(x*, B*)

for all ,  (x0, B0) lim
t→∞

(xt, Bt) = (x*, B*)
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Lemma: Consider a rotational invariant function  [such 
that  for all ] 
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f(Rx) = f(x) R ∈ On(ℝ)

 is a radial function:  
example: 

f f(x) = g(∥x∥)
f(x) = γx⊤x = γ∥x∥2

[stability] Suppose that   such that BFGS 
converges globally to .

∃! (x*, B*) ∈ ℝn × 𝒮>
(x*, B*)

for all ,  (x0, B0) lim
t→∞

(xt, Bt) = (x*, B*)

Then for all  
               

        

R
Rx* = x* ⇒ x* = 0
R⊤B*R = B* ⇒ B* = αId

Corollary: If , .f(x) = 1
2 ∥x∥2 lim

t→∞
Bt = α∇2f



Proof: uses only rotational invariance and stability
Let . Let (xt, Bt) → (x*, B*) R ∈ On(ℝ)

 x ↦ f(x)
(xt, Bt)

 x′ ↦ f(Rx′ )

(xt+1, Bt+1)

(x′ t, B′ t) (x′ t+1, B′ t+1)

t → ∞
(x*, B*)

The diagram commutes with: (x′ t, B′ t) = ΦR(xt, Bt) = (R⊤xt, R⊤BtR)
Since  is rotational invariant  so  optimizes  also. 
Hence by stability 

f f(Rx′ ) = f(x′ ) (x′ t, B′ t) f
(x′ t, B′ t) = (R⊤xt, R⊤BtR) → (x*, B*)

(R⊤x*, R⊤B*R) = 
by 

uni
city

Then for all  
                      

 for all     

R
Rx* = x* ⇒ x* = 0
R⊤B*R = B* R ⇒ B* = αId

ΦR
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Consequence of affine-invariance + stability

Lemma: Consider  with  rotational invariant, . h(x′ ) = f(H1/2x′ ) f H ≻ 0
example: h(x) = 1

2 γx⊤Hx, H ≻ 0

[stability on f] Suppose that   s.t. BFGS 
optimizing  converges globally to .

∃! (x*, B*) ∈ ℝn × 𝒮>
f (x*, B*)

Then on :        
        .

h lim
t→∞

x′ t = 0
lim
t→∞

B′ t = αH

Corollary: If , .h(x′ ) = 1
2 x′ 

⊤Hx′ , H ≻ 0 lim
t→∞

B′ t = α∇2f(x)
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Proof: uses only affine-invariance and stability

Consider  optimizing .(x′ t, B′ t) h
 x ↦ f(x)(xt, Bt)

 x′ ↦ h(x′ ) = f(H1/2x′ )

(xt+1, Bt+1)

(x′ t, B′ t) (x′ t+1, B′ t+1)

t → ∞
(0,αId)

By affine-invariance  
optimizes 

(xt, Bt) = ΦH−1/2(x′ t, B′ t) = (H1/2x′ t, H−1/2B′ tH−1/2)
f .

By stability on , then , such that:f (xt, Bt) → (0,αId)
 

.
lim
t→∞

x′ t = H−1/20 = 0
lim
t→∞

B′ t = αH1/2IdH1/2 = αH
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Recap

learning Hessian and convergence to the optimum on convex-
quadratic implied from: 
❶ affine-invariance 

❷ stability (convergence to unique point from any starting 
point)

The same two ingredients and proof ideas applies to CMA-ES 
to imply: 

learning of inverse-Hessian by the covariance matrix on  
g((x − x⋆)⊤H(x − x⋆)), H ≻ 0

quite tricky to prove stability in the CMA-ES case 
[see PhD thesis Armand Gissler]



Thank you !


