Derivative Free Optimization class
AMS & Optimization Masters

On the connection between affine-invariance,

convergence and learning second order information

Anne Auger
Inria and CMAP, Ecole Polytechnique

France



CMA-ES: a widely used randomized DFO algorithm [Hansen et al. 2001-2006]
for non-convex, non-smooth, difficult black-box problems
parameter-free

6.5 + 54 millions downloads for two main Python codes

does not even use function value

yet observed to learn “second-order” information in particular on
fx)=g((x —x*)"H(x —x*)), H> 0, g : R = R strict. increasing

sometimes presented as (randomized) quasi-Newton

How is that even possible??



uncover the simple and nice mathematical arguments behind
this learning
— illustrate proofs on quasi-Newton algorithms (BFGS)
simpler and illustrates the generality of the ideas

Disclaimer: results on quasi-Newton presented are not new nor
impressive stronger results exists
yet we show that they stem from simple fundamental properties



Adaptive Stochastic Optimization Algorithm
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CMA-ES - simplified setting 6, = (m,,0,C,) € R"XR_ X &"
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CMA-ES: Linear Convergence and Learning Inverse Hessian

|
For all f(x)=¢ <5(X — x) " H(x — x*)), with ¢ : Im(f) — R strict
increasing, H > 0 (SDP)
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BFGS algorithm

0, = (x,, B,

N

incumbent estimate of Hessian

1: initialize state 6y = (zg, Bg) € R™ x #(n,R), t =0
2: while stopping criterion not met do
3: compute p; = —B; 'V f(z:)

4: compute step-size: «; = LineSearch(z;, ps, f)
5: move in the direction of ps: Ti41 = T + upr = ¢ — o B, ly f(xy)
6: compute sy = oy
7: compute y; = Vf(zsi1) — Vf(xs)
. . ytyT BtStSTBt
8: update estimate of Hessian: B;1 = B i s T 5T B,s,

9: t=t+1
10: end while



On affine-invariance



Affine-invariance

on x — f(x) X X X, U



Affine-invariance

A € GLn(R)
on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy
HAR
(\\\»ca.ux. %mqntm



Affine-invariance

A € GLn(R)
on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy

| | | |
A7lxy A7y A7, ... ATlx



Affine-invariance

An algorithm is affine invariant if it produces the same trajectory
when optimizing f(x) or any f(Ax") with A € GLn(R)

up to the change of variable: x' = A~ 'x

on x — f(x) X X X, U
on x' — f(Ax") X X X, e Xy
| | | |

A7lxy A7y A7, ... ATlx

u
ko)



Affine-invariance: commutative diagram

An algorithm is affine-invariant if for all A € GLn(R), there exists
®, (a bijective change of state variables) s.t. the diagram

commutes:
x = f(x)
Xy » Xpr
4 A
change of
. ®A ¢A—1 ®A @A—l

state variables

v x' = f(AX) v

Ay > g

X' =®,x)=Ax



Affine-invariance: commutative diagram

often state not reduced to incumbent solutions
example: BFGS where 6, = (x,, B,)

Shbe g M6 B (mt, 88, &) ) )




Affine-invariance: commutative diagram

often state not reduced to incumbent solutions
example: BFGS where 6, = (x,, B,)

An algorithm is affine-invariant if for all A € GLn(R), there exists
a bijective change of state variables @, s.t. the diagram

commutes: f( )
x — f(x
Qt > 9t+
Change of (I)A q) » (I)A q) »
state variables A A
('9, x' — f(AX) v
t > Yr1+1

O = ®4(6)
0,= @, (0)



Affine-invariance: commutative diagram

Affine-invariance = rotational invariance

An algorithm is affine-invariant if for all A € GLn(R), there exists
a bijective change of state variables ®, s.t. the diagram

commutes: f( )
X (X

O, > Oy
change of ol o llo.
state variables A A~ A A~

b/ x'— f(Ax') \
! > Y+l
Ht, — (I)A(et)

0,= @, (0)



Affine-invariance of BFGS

The BFGS algorithm (with affine-invariant step-size) satisfies for all
A € GL(R") the commutative diagram:

affine-invariant step-size: constant, exact line-search, ..

(x,, B,) * = JW - (X415 Bryp)
(I)A (DA_I (I)A q)A—l
. x' = f(AX')
(x,, B;) > (X4 1 t+1)

with (x/,B)) = ®,(x,B,) :== (A~ 'x,A'B.A)



Exercice: prove that the BFGS algorithm is affine-invariant

Let f : R® — R be a Frechet differentiable objective function. Consider the BFGS algorithm defined as
1: initialize state 8y = (z9,Bo) € R® xS, > (R), k=0
2: while stopping criterion not met do
3: compute di, = —B; 'V f(zk)
compute step-size: ay = LineSearch(zy, di, f)
move in the direction of di: Tr11 = T + ardx
compute sy = apdi
compute y, = V f(zp41) — V f(zk)
update estimate of Hessian: Bg11 = By +
9: k=k+1
10: end while

T T
Ye VY Bksksk Bk
T T
Yi Sk S; Bksk

We will assume for the sake of simplicity that the step-size ap = «a is constant.

Let A € R™"*"™ be an invertible matrix and let g € R™ and By € R™*™ with By > 0. Consider the sequence
(zx, Br)k>1 generated by the BFGS algorithm optimizing = — f(z). Let (zf,B}) = (A 1z, AT ByA) and
consider (z, B )rx>1 the sequence of states of the BFGS algorithm optimizing g(z’) = f(Az’) and initialized
in (zh, BY).

Prove that for all k > 1, (2}, B;) = (A~ 'zg, AT B A), i.e. that the BFGS algorithm is affine-invariant.

A <Sume o("ﬁm‘\a& SAE’{)'%@E

( See S'QJ()GJO.\‘Q ae(fe(l)ﬁm> 0(\(: a_(jmo\{m :?(/ﬂ( + o(&k)



Affine-invariance of CMA-ES

The CMA-ES algorithm is affine-invariant: for all A € GL(R") the

following commutative diagram holds:

x — f(x)
(m;, C;, ) > (M1, Ciits 0141)

4 4

(I)A ®A_1 (I)A q)A—l

(m;, C,, o;)

X' f(AX) y

/

> (M1, Gy 15 Oy 1)

®,(m,C,0)=A"m,A"1C(A™HT,0)



How affine-invariance and stability imply
learning a matrix proportional to Hessian
on convex-quadratic functions



Consequence of rotational invariance + stability

Lemma: Consider a rotational invariant function f: R” — R [such
that f(Rx) = f(x) for all R € O, (R)]

f is a radial function: f(x) = g(||x||)
example: f(x) = }/xTX = ;/||x||2



Consequence of rotational invariance + stability

Lemma: Consider a rotational invariant function f: R” — R [such
that f(Rx) = f(x) for all R € O, (R)]

f is a radial function: f(x) = g(||x||)

example: f(x) = yx'x = y||x||?

[stability] Suppose that 3! (x*, B¥*) € R" X & such that BFGS
converges globally to (x*, B*).

for all (x4, By), lim (x,, B,) = (x*, B*)

[— o0



Consequence of rotational invariance + stability

Lemma: Consider a rotational invariant function f: R” — R [such
that f(Rx) = f(x) for all R € O, (R)]

f is a radial function: f(x) = g(||x||)

example: f(x) = yx'x = y||x||?

[stability] Suppose that 3! (x*, B¥*) € R" X & such that BFGS
converges globally to (x*, B*).

for all (x4, By), lim (x,, B,) = (x*, B*)

[— o0

Then for all R
Rx* = x* = x* = ()
R'B*R = B* = B* =al,

1
Corollary: If f(x) = EHtz, lim B, = a V°f.

[— 00



Proof: uses only rotational invariance and stability



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(x;, By) A > (X415 By 1) > (x*, B¥)

I > o0




Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(X, B,) A > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(xz, B) > (X415 Bryy)

he diagram commutes with: (x/, B)) = ®4(x,,B) = (R'x,R'B,R)



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(X, B,) A > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(xz, B) > (X415 Bryy)

he diagram commutes with: (x/, B)) = ®4(x,,B) = (R'x,R'B,R)

Since f is rotational invariant f(Rx’) = f(x) so (x,, B;) optimizes f also.



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(X, B,) A > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(xz, B) > (X415 Bryy)

he diagram commutes with: (x/, B)) = ®4(x,,B) = (R'x,R'B,R)
Since f is rotational invariant f(Rx’) = f(x) so (x,, B;) optimizes f also.
Hence by stability (x/, B)) = (RTxt,RTBtR) — (x*, B*)



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(X, B,) A > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(xz, B) > (X415 Bryy)

he diagram commutes with: (x/, B)) = ®4(x,,B) = (R'x,R'B,R)
Since f is rotational invariant f(Rx’) = f(x) so (x,, B;) optimizes f also.
Hence by stability (x/, B)) = (RTxt,RTBtR) — (x*, B*)

//{\\(‘/\’d
(R'x*,R"B*R) °



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)
x = f(x)

(X, B,) > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(x;, By) > (X1, By)

he diagram commutes with: (x;, B)) = ®p(x,, B,) = (RTxt,RTBtR)
Since f is rotational invariant f(Rx’) = f(x) so (x,, B;) optimizes f also.
Hence by stability (x/, B)) = (RTxt,RTBtR) — (x*, B*)
//{\\(‘/\’d
(R'x*,R"B*R) °

Then for all R

Rx* = x*

R'B*R = B*



Proof: uses only rotational invariance and stability

Let (x,B,) = (x*,B*). Let R € O,(R)

(X, B,) A > (X415 By > (X, B*)
I > 0
x' = f(Rx')
(xz, B) > (X415 Bryy)

he diagram commutes with: (x/, B)) = ®4(x,,B) = (R'x,R'B,R)
Since f is rotational invariant f(Rx’) = f(x) so (x,, B;) optimizes f also.
Hence by stability (x/,B)) = (R"'x,R'B,R) — (x*, B¥)

S

&
(RTx*,RTB*R) >
Then for all R

Rx* = x* = x* = ()

R'B*R = B* = B* =al,



Consequence of affine-invariance + stability

Lemma: Consider A(x") = f(H"?x") with f rotational invariant, H > 0.

1
example: h(x) = nyTHx,H > ()



Consequence of affine-invariance + stability

Lemma: Consider A(x") = f(H"?x") with f rotational invariant, H > 0.

1
example: h(x) = nyTHx,H > ()

[stability on f| Suppose that 3! (x*, B*) € R" X & s.t. BFGS
optimizing f converges globally to (x*, B*).



Consequence of affine-invariance + stability

Lemma: Consider A(x") = f(H"?x") with f rotational invariant, H > 0.

1
example: h(x) = nyTHx,H > ()

[stability on f| Suppose that 3! (x*, B*) € R" X & s.t. BFGS
optimizing f converges globally to (x*, B*).

Then on h: limx; =0
[— 0
lim B, = aH.

[— 00



Consequence of affine-invariance + stability

Lemma: Consider A(x") = f(H"?x") with f rotational invariant, H > 0.

1
example: h(x) = nyTHx,H > ()

[stability on f] Suppose that 3! (x*, B¥) € R" X & s.t. BFGS
optimizing f converges globally to (x*, B*).

Then on h: limx; =0
[— 0
lim B, = aH.
[— 0

1
Corollary: If h(x") = EX’THx’,H >0, lim B/ = a V*f(x).

[— 00



Proof: uses only affine-invariance and stability

Consider (x/, B)) optimizing h.

¥ e h(x) = f(H"2x)
(x;, B)) > (X1, By

+1°




Proof: uses only affine-invariance and stability

Consider (x;, B)) optimizing h.
x = f(x)

(x, B,) > (X1 Bi 1)

(I)Hllz l I (DH_UQ l I (I)H—l/z

X' h(x) = f(H"?x")
(X7, By) > (X1, B1y)

By affine-invariance (x,, B,) = ®-in(x;, B)) = (H"*x, H~*B/H~ %)
optimizes f.



Proof: uses only affine-invariance and stability

Consider (x;, B)) optimizing h.

x = f(x)
(x, B,) > (X1 Bi 1) > (O’ald)

[ > o0
(I)HI/Z l I (DH_UQ l I (I)H—l/z

X' h(x) = f(H"?x")
(X7, By) > (X1, B1y)

By affine-invariance (x,, B,) = ®@_12(x/, B)) = (Hl/zxt, H‘l/th’H_l/z)
optimizes f.

By stability on f, then (x,, B,) — (0,al,), such that:
limx, = H 20 =0

[— 00
lim B = aH'*I,H"* = aH

[— 00



learning Hessian and convergence to the optimum on convex-
quadratic implied from:

@ affine-invariance

@ stability (convergence to unique point from any starting

point)

The same two ingredients and proof ideas applies to CMA-ES
to imply:
learning of inverse-Hessian by the covariance matrix on
g((x —x"H(x —x™)),H > 0

quite tricky to prove stability in the CMA-ES case
[see PhD thesis Armand Gissler]|



Thank you !



