How to update the different parameters m, σ, \mathbf{C} ?

1. Adapting the mean m

2. Adapting the step-size σ
3. Adapting the covariance matrix C

Why Step-size Adaptation?

Assume a (1+1)-ES algorithm with fixed step-size σ (and
$C=I_{d}$) optimizing the function $f(x)=\sum_{i=1}^{n} x_{i}^{2}=\|x\|^{2}$.

Initialize \mathbf{m}, σ
While (stopping criterion not met) sample new solution:

$$
\begin{aligned}
& \quad \mathbf{x} \leftarrow \mathbf{m}+\sigma \mathscr{N}\left(0, I_{d}\right) \\
& \text { if } f(\mathbf{x}) \leq f(\mathbf{m}) \\
& \mathbf{m} \leftarrow \mathbf{x}
\end{aligned}
$$

What will happen if you look at the convergence of $f(m)$?

Why Step-size Adaptation?

$(1+1)$-ES (red \& green)
$f(x)=\sum_{i=1}^{n} x_{i}^{2}$
in $[-2.2,0.8]^{n}$
for $n=10$
red curve: (1+1)-ES with optimal step-size (see later)
green curve: ($1+1$)-ES with constant step-size $\left(\sigma=10^{-3}\right)$

Why Step-size Adaptation?

red curve: (1+1)-ES with optimal step-size (see later)
green curve: (1+1)-ES with constant step-size ($\sigma=10^{-3}$)

Methods for Step-size Adaptation

$1 / 5$ th success rule, typically applied with " + " selection
[Rechenberg, 73][Schumer and Steiglitz, 78][Devroye, 72]
σ-self adaptation, applied with "," selection
random variation is applied to the step-size and the better one, according to the objective function value, is selected
path-length control or Cumulative step-size adaptation (CSA), applied with "," selection
[Ostermeier et al. 84][Hansen, Ostermeier, 2001]
two-point adaptation (TPA), applied with "," selection
test two solutions in the direction of the mean shift, increase or decrease accordingly the step-size

Step-size control: $1 / 5$ th Success Rule

increase σ

decrease σ

Step-size control: $1 / 5$ th Success Rule

Probability of success $\left(p_{s}\right)$ $1 / 2$

Probability of success $\left(p_{s}\right)$
$1 / 5$
"too small"

Step-size control: $1 / 5$ th Success Rule

probability of success per iteration:
$\mathrm{ps}=\frac{\text { \#candidate solutions better than } m}{\text { \#candidate solutions }}$
$\sigma \leftarrow \sigma \times \exp \left(\frac{1}{3} \times \frac{p_{s}-p_{\text {target }}}{1-p_{\text {target }}}\right)$
Increase σ if $p_{s}>p_{\text {target }}$
Decrease σ if $p_{s}<p_{\text {target }}$
$(1+1)$-ES

$$
p_{\text {target }}=1 / 5
$$

IF offspring better parent $[f(\mathbf{x}) \leq f(\mathbf{m})]$

$$
p_{s}=1, \sigma \leftarrow \sigma \times \exp (1 / 3)
$$

ELSE

$$
p_{s}=0, \sigma \leftarrow \sigma / \exp (1 / 3)^{1 / 4}
$$

$(1+1)$-ES with One-fifth Success Rule - Convergence

$(1+1)$-ES with one-fifth success rule (blue)

$f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2}$
in $[-0.2,0.8]^{n}$
for $n=10$

Path Length Control - Cumulative Step-size Adaptation (CSA)

step-size adaptation used in the $\left(\mu / \mu_{w}, \lambda\right)$-ES algorithm framework (in
CMA-ES in particular)

Main Idea:

$$
\begin{aligned}
& \boldsymbol{x}_{i}=\boldsymbol{m}+\sigma \boldsymbol{y}_{i} \\
& \boldsymbol{m} \leftarrow m+\sigma \boldsymbol{y}_{w}
\end{aligned}
$$

Measure the length of the evolution path the pathway of the mean vector m in the iteration sequence

CSA-ES

The Equations

Sampling of solutions, notations as on slide "The $(\mu / \mu, \lambda)$-ES - Update of the mean vector" with C equal to the identity.

Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $\boldsymbol{p}_{\sigma}=\mathbf{0}$, set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.
$\boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w} \quad$ where $\boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \quad$ update mean
$\boldsymbol{p}_{\sigma} \leftarrow\left(1-c_{\sigma}\right) \boldsymbol{p}_{\sigma}+\underbrace{\sqrt{1-\left(1-c_{\sigma}\right)^{2}}}_{\text {accounts for } 1-c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text {accounts for } w_{i}} \boldsymbol{y}_{w}$
$\sigma \leftarrow \sigma \times \underbrace{\exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|\boldsymbol{p}_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)} \quad$ update step-size
$>1 \Longleftrightarrow\left\|\boldsymbol{p}_{\sigma}\right\|$ is greater than its expectation

Convergence of $\left(\mu / \mu_{w}, \lambda\right)$-CSA-ES

2×11 runs

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \\
& \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

with optimal versus adaptive step-size σ with too small initial σ

Convergence of $\left(\mu / \mu_{w}, \lambda\right)$-CSA-ES

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \\
& \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

comparing number of f-evals to reach $\|m\|=10^{-5}: \frac{1100-100}{650} \approx 1.5$
Note: initial step-size taken too small $\left(\sigma_{0}=10^{-2}\right)$ to illustrate the step-size adaptation

Convergence of $\left(\mu / \mu_{w}, \lambda\right)$-CSA-ES

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \\
& \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

comparing optimal versus default damping parameter d_{σ} : $\frac{1700}{1100} \approx 1.5$

Optimal Step-size - Lower-bound for Convergence Rates

In the previous slides we have displayed some runs with "optimal" step-size.

Optimal step-size relates to step-size proportional to the distance to the optimum: $\sigma_{t}=\sigma\left\|x-x^{\star}\right\|$ where x^{\star} is the optimum of the optimized function (with σ properly chosen).

The associated algorithm is not a real algorithm (as it needs to know the distance to the optimum) but it gives bounds on convergence rates and allows to compute many important quantities.

The goal for a step-size adaptive algorithm is to achieve convergence rates close to the one with optimal step-size

We will formalize this in the context of the (1+1)-ES. Similar results can be obtained for other algorithm frameworks.

Optimal Step-size - Bound on Convergence Rate - $(1+1)$-ES

Consider a (1+1)-ES algorithm with any step-size adaptation mechanism:

$$
X_{t+1}=\left\{\begin{array}{l}
X_{t}+\sigma_{t} \mathcal{N}_{t+1} \text { if } f\left(X_{t}+\sigma_{t} \mathcal{N}_{t+1}\right) \leq f\left(X_{t}\right) \\
X_{t} \text { otherwise }
\end{array}\right.
$$

with $\left\{\mathcal{N}_{t}, t \geq 1\right\}$ i.i.d. $\sim \mathcal{N}\left(0, I_{d}\right)$
equivalent writing:

$$
X_{t+1}=X_{t}+\sigma_{t} \mathcal{N}_{t+1} 1_{\left\{f\left(X_{t}+\sigma_{t} \mathcal{N}_{t+1}\right) \leq f\left(X_{t}\right)\right\}}
$$

Bound on Convergence Rate - $(1+1)$-ES

Theorem: For any objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, for any $y^{\star} \in \mathbb{R}^{n}$
$E\left[\ln \left\|X_{t+1}-y^{\star}\right\|\right] \geq E\left[\ln \left\|X_{t}-y^{\star}\right\|\right]-\tau$ lower bound where $\tau=\max E\left[\ln ^{-}\left\|e_{1}+\sigma \mathcal{N}\right\|\right]$ with $e_{1}=(1,0, \ldots, 0)$ $\sigma \in \mathbb{R}>\underbrace{}_{=: \varphi(\sigma)}$

Theorem: The convergence rate lower-bound is reached on spherical functions $f(x)=g\left(\left\|x-x^{\star}\right\|\right)$ (with $g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ strictly increasing) and step-size proportional to the distance to the optimum $\sigma_{t}=\sigma_{\mathrm{opt}}\left\|x-x^{\star}\right\|$ with σ_{opt} such that $\varphi\left(\sigma_{\mathrm{opt}}\right)=\tau$.

Log－Linear Convergence of scale－invariance step－size ES

Theorem：The（1＋1）－ES with step－size proportional to the distance to the optimum $\sigma_{t}=\sigma\|x\|$ converges（log）－linearly on the sphere function $f(x)=g(\|x\|)$ almost surely：

$$
\frac{1}{t} \ln \frac{\left\|X_{t}\right\|}{\left\|X_{0}\right\|} \underset{t \rightarrow \infty}{\longrightarrow}-\varphi(\sigma)=: \mathrm{CR}_{(1+1)}(\sigma)
$$

$n=20$ and $\sigma=0.6 / n$

4ロ・4向｣

Asymptotic Results $(n \rightarrow \infty)$

Theorem

Let $\sigma>0$, the convergence rate of the ($1+1$)-ES with scale-invariant step-size on spherical functions satisfies at the limit

$$
\lim _{n \rightarrow \infty} n \times \mathrm{CR}_{(1+1)}\left(\frac{\sigma}{n}\right)=\frac{-\sigma}{\sqrt{2 \pi}} \exp \left(-\frac{\sigma^{2}}{8}\right)+\frac{\sigma^{2}}{2} \Phi\left(-\frac{\sigma}{2}\right)
$$

where Φ is the cumulative distribution of a normal distribution.
optimal convergence rate decreases to zero like $\frac{1}{n}$

