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I Adaptation of the Covariance Matrix: Rank-one Update

In this first exercice we want to understand the so-called rank-one update mechanism to update the
covariance matrix in the CMA-ES algorithm. We consider thus the following algorithm implementing
solely the rank-one update (while the full CMA-ES algorithm combines other updates for the covariance
matrix and step-size adaptation)

[Objective: minimize f : Rn → R]
1. Initialize C0 = Id, m0 ∈ Rn, t = 0
2. set w1 ≥ w2 ≥ . . . wµ ≥ 0 with

∑
wi = 1; µeff = 1/

∑
w2
i , 0 < ccov < 1 (typically ccov ≈ 2/n2)

3. while not terminate

4. Sample λ independent candidate solutions:
5. Xi

t+1 = mt + yit+1 for i = 1 . . . λ
6. with (yit+1)1≤i≤λ i.i.d. following N (0,Ct)
7. Evaluate and rank solutions:
8. f(X1:λ

t+1) ≤ . . . ≤ f(Xλ:λ
t+1)

9. Update the mean vector:

10. mt+1 = mt +

µ∑
i=1

wiy
i:λ
t+1︸ ︷︷ ︸

yw
t+1

11. Update the covariance matrix using the rank-one update:
12. Ct+1 = (1− ccov)Ct + ccovµeffy

w
t+1(ywt+1)T

13. t=t+1

1. Why is the update in line 12 called the rank-one update?

2. Plot the lines of equal density of the initial sampling distribution N (m0,C0) (with C0 being equal
to the identity)

In order to understand geometrically the effect of adding the matrix ccovµeffy
w
t+1(ywt+1)T to the matrix

(1 − ccov)Ct (line 12 of the algorithm), we consider t = 0 and want to plot the lines of equal density
associated to the multivariate normal distribution with mean vector m1 and covariance matrix C1. In
order to simplify we assume that µeff = 1.

3. Compute the eigenvalues of the matrix A = ccovy
w
1 (yw1 )T . Hint: you can in particular show that

the matrix has a rank of 1, deduce how many non-zero eigenvalues the matrix has. You can also
show that yw1 is an eigenvector of the matrix and compute its associated eigenvalue.



4. We remind that for a symmetric matrix A of Rn we have Rn = Ker(A)
⊥⊕

Im(A). Show that there
exists an orthogonal basis of normalized eigenvectors of A of the form (yw1 /‖yw1 ‖, u2, . . . , un).

4. Show that the basis (yw1 /‖yw1 ‖, u2, . . . , un) is also a basis composed of eigenvectors of the matrix
C1 = (1− ccov)Id + ccovy

w
1 (yw1 )T . Compute the associated eigenvalues.

5. Assume n = 2, using the previous question plot the lines of equal density of N (m1,C1).

6. Deduce that the rank-one update increases the probability of successful steps1 to appear again.

II Running and Understanding CMA-ES

Download the MATLAB code of the CMA-ES algorithm (cmaes.m) on the webpage of Nikolaus Hansen
(the main author of the algorithm):

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

In Python, install CMA via

pip install cma

and import cma

import cma

1. Run the algorithm in dimension 10 to minimize the following functions

• felli(x) =
∑n
i=1((103)

i−1
n−1xi)

2

• ftablet(x) = 106x2
1 +

∑n
i=2 x

2
i

Use the option LogPlot=’on’ that shows the typical graphical output of the algorithm that displays
in particular the evolution of the mean vector, step-size and covariance matrix adapted in the CMA-
ES algorithm.

In Python, use

import numpy as np

res = cma.fmin(cma.ff.elli, np.ones(10), 1e-3)

cma.plot()

2. Explain the different plots that appear on the screen.

3. Identify and explain the two main (convergence) phases observed.

4. What is the relationship between the eigenvalues of the covariance matrix in the end and the
eigenvalues of the Hessian matrix of the functions?

5. Connect the asymptotic convergence rate on the convex quadratic function that corresponds to the
slope of the last part of the convergence graph with the convergence rate on the sphere function.
Explain.

6. The function fellirot(x) is defined by fellirot(x) = felli(Px) where P is a rotation matrix (sam-
pled uniformly among the rotation matrices). Run the CMA-ES algorithm on fellirot et felli

(cmaes(’felli’,x0,sigma0) et cmaes(’fellirot’,x0,sigma0)). Understand and explain the
differences observed in the graphical output.

7. Compare now the convergence rate of CMA-ES and of the (1 + 1)-ES with one-fifth success rule

on felli−2(x) =
∑n
i=1((102)

i−1
n−1xi)

2 for n = 10. For this you can for instance report the number
of function evaluations that both algorithms need to reach 10−6 for 6 different runs. Explain the
differences observed.

1The terminology “step” refers to what is added to the mean to create a new solution. For instance in Line 5. of the
algorithm, the first sampled solution equals X1

t+1 = mt + y1
t+1. We call y1

t+1 the step that created the solution X1
t+1.
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8. We consider now the function

frastrigin(x) = 10n+

n∑
i=1

(x2
i − 10 cos(2πxi))

Show that the function is multimodal (We remind that a function to be minimized is multimodal
if it has more than one local optimum).

9. The default population size (the parameter λ) in CMA-ES equals 4 + b(3 log(n))c. Run 5 times
the CMA-ES algorithm with its default population size to minimize the Rastrigin function in
dimension 10 starting with a point sampled according to rand(10,1) and with initial step-size
equal to 10: (cmaes(’frastrigin’,rand(10,1),10)). Mesure the success probability. Realize the
same experiment by multiplying the default population size by 2, 4, 8, 16, 32. What do you observe?
Explain.
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