Derivative Free Optimization

Optimization and AMS Masters - University Paris Saclay

Exercices - Linear Convergence - CSA

Anne Auger anne.auger@inria.fr

http://www.cmap.polytechnique.fr/~anne.auger/teaching.html

I On linear convergence

For a deterministic sequence x_t the linear convergence towards a point x^* is defined as: The sequence $(x_t)_t$ convergences linearly towards x^* if there exists $\mu \in (0,1)$ such that

$$\lim_{t \to \infty} \frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|} = \mu \tag{1}$$

The constant μ is then the convergence rate.

We consider a sequence $(x_t)_t$ that converges linearly towards x^* .

1. Prove that (1) is equivalent to

$$\lim_{t \to \infty} \ln \frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|} = \ln \mu \tag{2}$$

2. Prove that (2) implies

$$\lim_{t \to \infty} \frac{1}{t} \sum_{k=0}^{t-1} \ln \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \ln \mu$$
 (3)

3. Prove that (3) is equivalent

$$\lim_{t \to \infty} \frac{1}{t} \ln \frac{\|x_t - x^*\|}{\|x_0 - x^*\|} = \ln \mu \tag{4}$$

We now consider a sequence of random variables $(x_t)_t$.

- 4. How can you extend the definition of linear convergence when $(x_t)_t$ is a sequence of random variables?
- 5. Looking at equations (1), (2), (4), there are actually different ways to extend linear convergence in the case of a sequence of random variables. Are those ways equivalent?

[This is the answer to questions 4. and 5. please do not read before to have thought about an answer to 4. and 5.] For a sequence of random variables $(x_t)_t$. We can define linear convergence by considering the expected log progress, that is the sequence converges linearly if

$$\lim_{t \to \infty} E\left[\ln \frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|}\right] = \ln \mu ,$$

Remark that in general

$$E\left[\ln\frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|}\right] \neq \ln E\left[\frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|}\right]$$

and thus defining linear convergence via $\lim_t E\left[\frac{\|x_{t+1}-x^*\|}{\|x_t-x^*\|}\right]$ would not be equivalent contrary to the deterministic case.

If we want to define the almost sure linear convergence we cannot use directly (1) or (2) as $\frac{\|x_{t+1}-x^*\|}{\|x_t-x^*\|}$ or $\ln \frac{\|x_{t+1}-x^*\|}{\|x_t-x^*\|}$ are random variables that will not convergence almost surely to a constant. We therefore have to resort to (5) and define the almost sure linear convergence of a sequence of random variables as

$$\lim_{t \to \infty} \frac{1}{t} \ln \frac{\|x_t - x^*\|}{\|x_0 - x^*\|} = \ln \mu \text{ a.s.}$$
 (5)

6. When you investigate the convergence of an algorithm numerically, how can you visualize whether (5) holds? What should you plot? [hint: think about the plots you have done when looking at the convergence of the (1+1)-ES with one-fifth success rule]

II Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic algorithm. More precisely we consider a $(1, \lambda)$ -ES algorithm whose state is given by $X_t \in \mathbb{R}^n$. At each iteration t, λ candidate solutions are sampled according to

$$X_{t+1}^i = X_t + U_{t+1}^i$$

with $(U_{t+1}^i)_{1 \leq i \leq \lambda}$ i.i.d. and $U_{t+1}^i \sim \mathcal{N}(0, I_d)$. Those candidate are evaluated on the function $f : \mathbb{R}^n \to \mathbb{R}$ to be minimized and then ranked according the their f values:

$$f(X_{t+1}^{1:\lambda}) \le \ldots \le f(X_{t+1}^{\lambda:\lambda})$$

where $i:\lambda$ denotes the index of the i^{th} best candidate solution. The best candidate solution is then selected that is

$$X_{t+1} = X_{t+1}^{1:\lambda}$$
.

We will compute for the linear function $f(x) = x_1$ to be minimized the conditional distribution of $X_{t+1}^{1:\lambda}$ (i.e. after selection) and compare it to the distribution of X_i^{t+1} (i.e. before selection).

1. What is the distribution of X_{t+1}^i conditional to X_t ? Deduce the density of each coordinate of X_{t+1}^i .

We remind that given λ random variables independent and identically distributed $Y_1, Y_2, \ldots, Y_{\lambda}$, the order statistics $Y_{(1)}, Y_{(2)}, \ldots, Y_{(\lambda)}$ are random variables defined by sorting the realizations of $Y_1, Y_2, \ldots, Y_{\lambda}$ in increasing order. We consider that each random variable Y_i admits a density f(x) and we denote F(x) the cumulative distribution function, that is $F(x) = \Pr(Y \leq x)$.

- 2. Compute the cumulative distribution of $Y_{(1)}$ and deduce the density of $Y_{(1)}$.
- 3. Let $U_{t+1}^{1:\lambda}$ be the random vector such that

$$X_{t\perp 1}^{1:\lambda} = X_t + U_{t\perp 1}^{1:\lambda}$$

Express for the minimization of the linear function $f(x) = x_1$, the first coordinate of $U_{t+1}^{1:\lambda}$ as an order statistic.

4. Deduce the conditional distribution and conditional density of the random vector $X_{t+1}^{1:\lambda}$.

III Cumulative Step-size Adaptation (CSA)

In this exercice, we want to understand the normalization constants in the CSA algorithm and how they implement the idea explained during the class. The pseudo-code of the $(\mu/\mu, \lambda)$ -ES with CSA step-size adaption is given in the following.

```
[Objective: minimize f: \mathbb{R}^n \to \mathbb{R}]
1. Initialize \sigma_0 > 0, \mathbf{m}_0 \in \mathbb{R}^n, \mathbf{p}_0 = 0, t = 0
2. set w_1 \ge w_2 \ge \dots w_{\mu} \ge 0 with \sum w_i = 1; \mu_{\text{eff}} = 1/\sum w_i^2, 0 < c_{\sigma} < 1 (typically c_{\sigma} \approx 4/n), d_{\sigma} > 0
3. while not terminate
                        Sample \lambda independent candidate solutions :
5.
                                         \mathbf{X}_{t+1}^i = \mathbf{m}_t + \sigma_t \mathbf{y}_{t+1}^i \text{ for } i = 1 \dots \lambda
                          with (\mathbf{y}_{t+1}^i)_{1 \leq i \leq \lambda} i.i.d. following \mathcal{N}(\mathbf{0}, I_d) Evaluate and rank solutions:
6.
7.
                          f(\mathbf{X}_{t+1}^{1:\lambda}) \leq \ldots \leq f(\mathbf{X}_{t+1}^{\lambda:\lambda})
Update the mean vector:
8.
9.
                                          the mean vector \mathbf{m}_{t+1} = \mathbf{m}_t + \sigma_t \underbrace{\sum_{i=1}^{\mu} w_i \mathbf{y}_{t+1}^{i:\lambda}}_{\mathbf{y}_{t+1}^w}
10.
                             Update the path:
11.
                            \mathbf{p}_{t+1} = (1 - c_{\sigma})\mathbf{p}_{t} + \sqrt{1 - (1 - c_{\sigma})^{2}}\sqrt{\mu_{\text{eff}}}\mathbf{y}_{t+1}^{w} Update the step-size:
12.
13.
                                           \sigma_{t+1} = \sigma_t \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|p_{\sigma}\|}{E[\|\mathcal{N}(0, I_d)\|]} - 1\right)\right)
14.
15.
                             t=t+1
```

- 1. Assume that the objective function f is random, i.e. for instance $f(X_{t+1}^i)_i$ are i.i.d. according to $\mathcal{U}_{[0,1]}$. What is the distribution of $\sqrt{\mu_{\text{eff}}}\mathbf{y}_{t+1}^w$?
- 2. Assume that $\mathbf{p}_t \sim \mathcal{N}(0, I_d)$ and that the selection is random, show that $\mathbf{p}_{t+1} \sim \mathcal{N}(0, I_d)$
- 3. Deduce that under random selection

$$E\left[\ln \sigma_{t+1} | \sigma_t\right] = \ln \sigma_t$$

and then that the expected log step-size is constant.