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I On linear convergence
For a deterministic sequence x; the linear convergence towards a point z* is defined as:
The sequence (x;); convergences linearly towards z* if there exists u € (0,1) such that
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The constant p is then the convergence rate.

We consider a sequence (x;); that converges linearly towards z*.

1. Prove that (1) is equivalent to
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3. Prove that (3) is equivalent
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We now consider a sequence of random variables ().

4. How can you extend the definition of linear convergence when (z); is a sequence of random vari-
ables?

5. Looking at equations (1), (2), (4), there are actually different ways to extend linear convergence in
the case of a sequence of random variables. Are those ways equivalent?



[This is the answer to questions 4. and 5. please do not read before to have thought about
an answer to 4. and 5.] For a sequence of random variables (z;);. We can define linear convergence
by considering the expected log progress, that is the sequence converges linearly if
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Remark that in general
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If we want to define the almost sure linear convergence we cannot use directly (1) or (2) as or
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have to resort to (5) and define the almost sure linear convergence of a sequence of random variables as

In are random variables that will not convergence almost surely to a constant. We therefore
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6. When you investigate the convergence of an algorithm numerically, how can you visualize whether
(5) holds? What should you plot? [hint: think about the plots you have done when looking at the
convergence of the (1+1)-ES with one-fifth success rule]

IT Order statistics - Effect of selection

We want to illustrate the effect of selection on the distribution of candidate solutions in a stochastic
algorithm. More precisely we consider a (1, A\)-ES algorithm whose state is given by X; € R™. At each
iteration ¢, A candidate solutions are sampled according to

Xi =X+ Uy

with (U}, )1<i<x iid. and U/, ~ N(0, ;). Those candidate are evaluated on the function f: R™ — R
to be minimized and then ranked according the their f values:

FXY) << A
where i:\ denotes the index of the i*" best candidate solution. The best candidate solution is then selected

that is
Xepr = X3

We will compute for the linear function f(z) = 1 to be minimized the conditional distribution of X/}
(i.e. after selection) and compare it to the distribution of X/*! (i.e. before selection).

1. What is the distribution of X}, ; conditional to X;? Deduce the density of each coordinate of X ;.

We remind that given A random variables independent and identically distributed Y7, Ya, ..., Y, the order
statistics Y(1), Y(2), ..., ¥() are random variables defined by sorting the realizations of Y1,Ys,... Y} in
increasing order. We consider that each random variable Y; admits a density f(x) and we denote F(x)
the cumulative distribution function, that is F'(z) = Pr(Y < z).

2. Compute the cumulative distribution of Y{;y and deduce the density of Y(y).
3. Let Utlj\l be the random vector such that
X =X+ U3

Express for the minimization of the linear function f(z) = 1, the first coordinate of U} as an
order statistic.

4. Deduce the conditional distribution and conditional density of the random vector th+/\1



IIT Cumulative Step-size Adaptation (CSA)

In this exercice, we want to understand the normalization constants in the CSA algorithm and how they
implement the idea explained during the class. The pseudo-code of the (u/u, A\)-ES with CSA step-size
adaption is given in the following.

[Objective: minimize f: R™ — R]

1. Initialize g9 >0, mg €R", pg=0,t=0

2. set wy > wy > ...w, >0 with Y w; =15 pesg = 1/ > w2, 0 < ¢, < 1 (typically ¢, =~ 4/n), d, >0
3. while not terminate

4 Sample A independent candidate solutions :

5. Xip1 =my +opyy, fori=1...)

6 with (yé—kl)lSiS)\ ii.d. fOHOWng N(O, Id)

7 Evaluate and rank solutions:

8 FXEY) <. < AN

9 Update the mean vector:

n
10. m; 1 = my + oy Z wiyifl
i=1
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11. Update the path:
12. Pri1 = (1 —co)pe + /1= (1 = o)\ /lherry 1
13. Update the step-size:

_ o llpo I
14. Ot4+1 = O¢ €XP (;T (m-l))
15. t=t+1

1. Assume that the objective function f is random, i.e. for instance f(Xf_H)i are i.i.d. according to
Ujp,1)- What is the distribution of /ey’ ?

2. Assume that p; ~ AM(0, I;) and that the selection is random, show that p;y1 ~ N(0, 1)

3. Deduce that under random selection
E [hl Ot41 |O't] =1In ()7

and then that the expected log step-size is constant.



