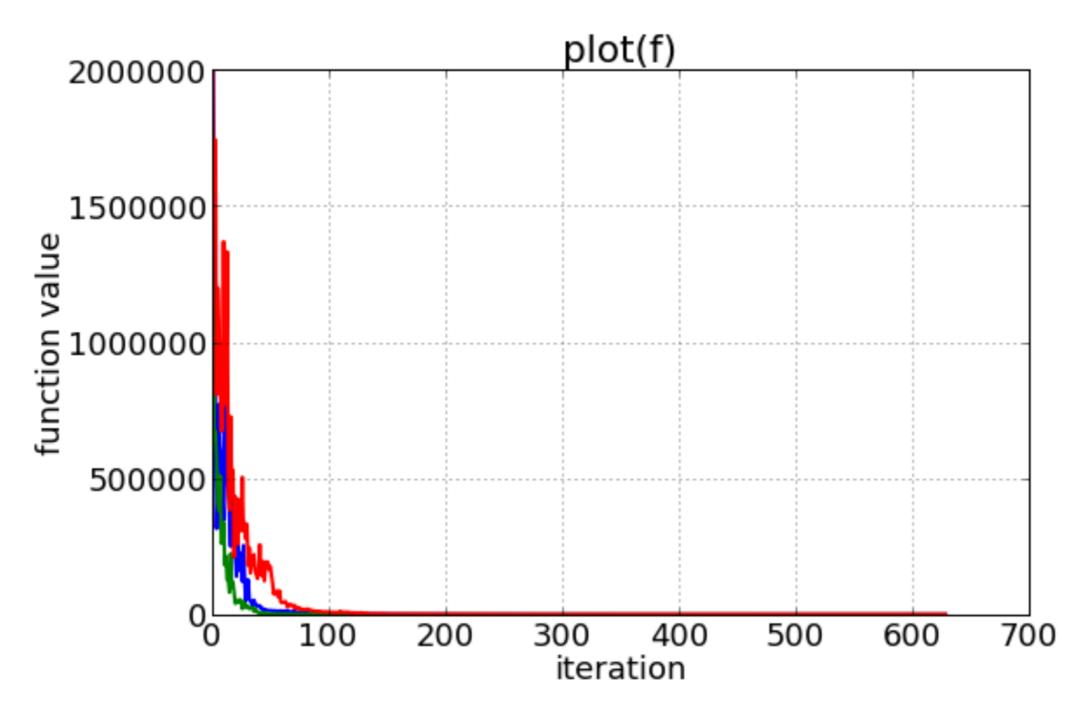
Performance Assessment in Optimization

Anne Auger, CMAP & Inria credits to N. Hansen for some slides

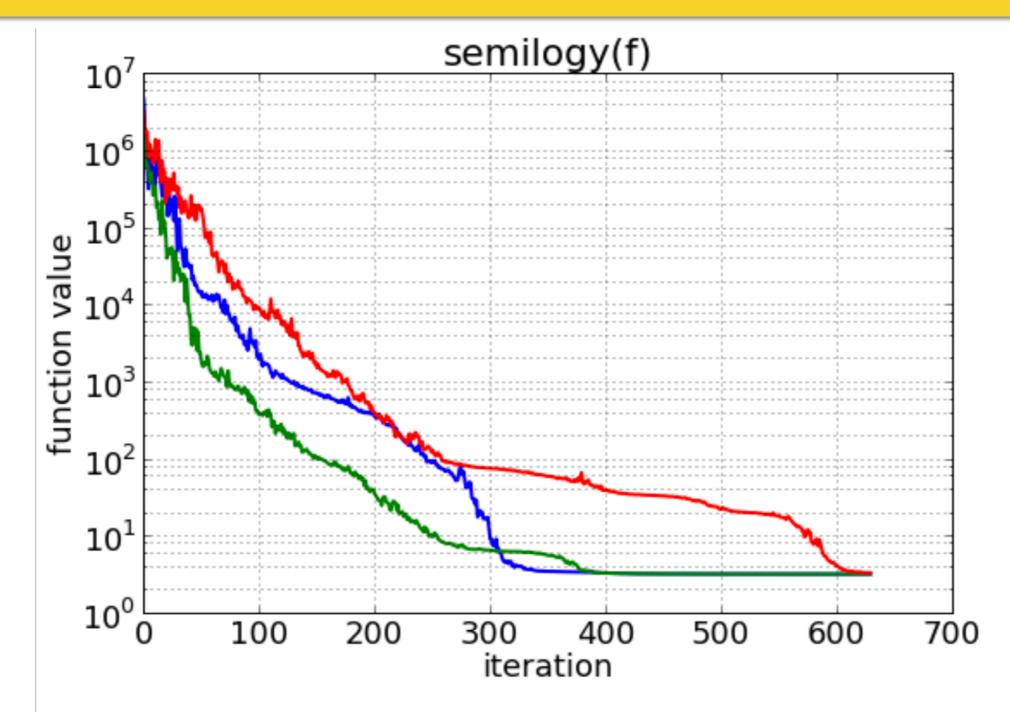
Visualization and presentation of single runs

Displaying 3 runs (three trials)



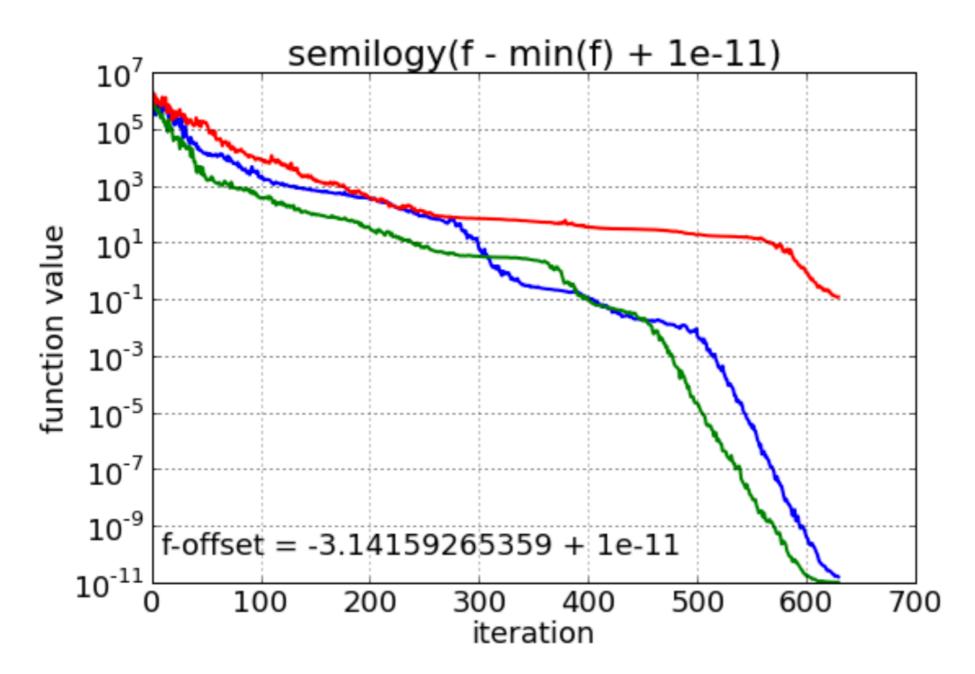
not like this (it's unfortunately a common picture)

Displaying 3 runs (three trials)



better like this (shown are the same data), caveat: fails with negative f-values

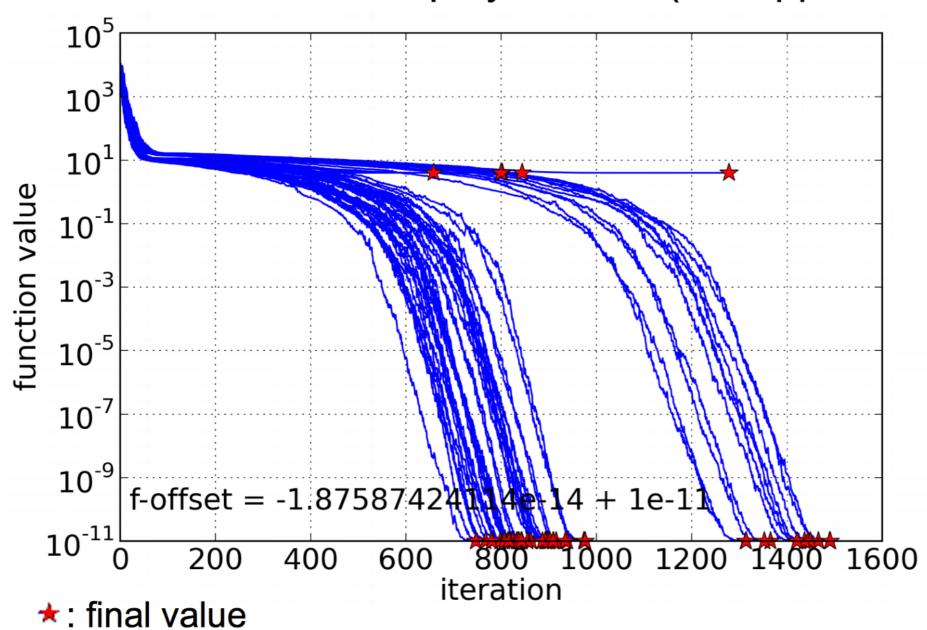
Displaying 3 runs (three trials)



even better like this: subtract minimum value over all runs

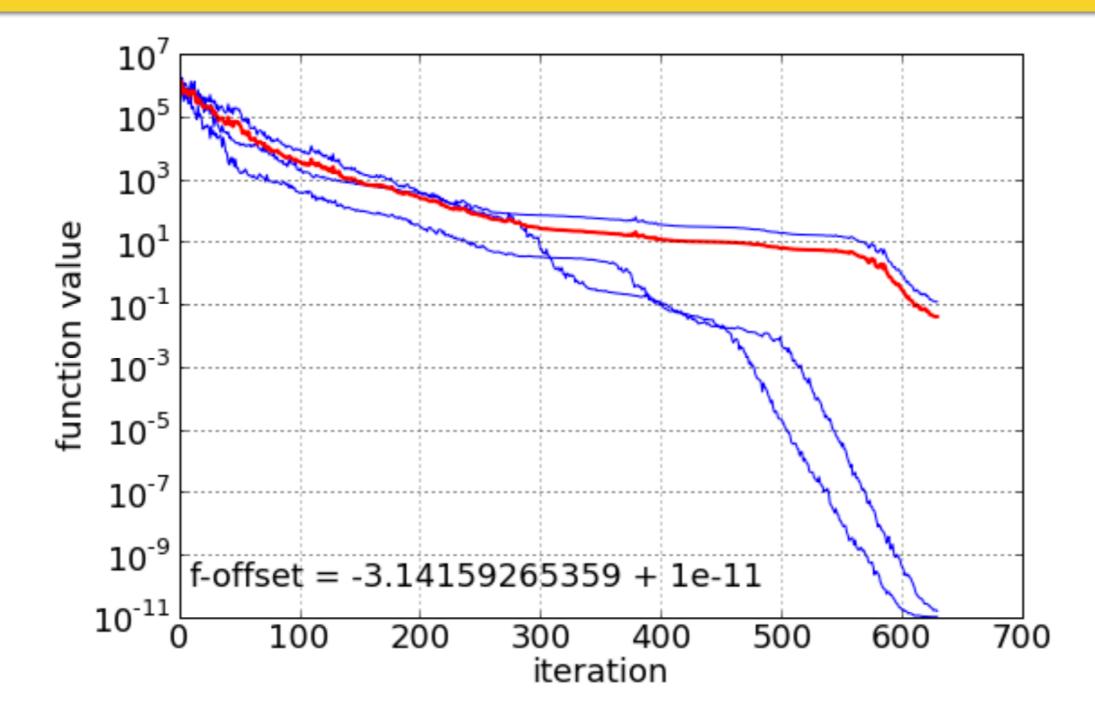
Displaying 51 runs

don't hesitate to display all data (the appendix is your friend)



observation: three different "modes", which would be difficult to represent or recover in single statistics

Which Statistics?



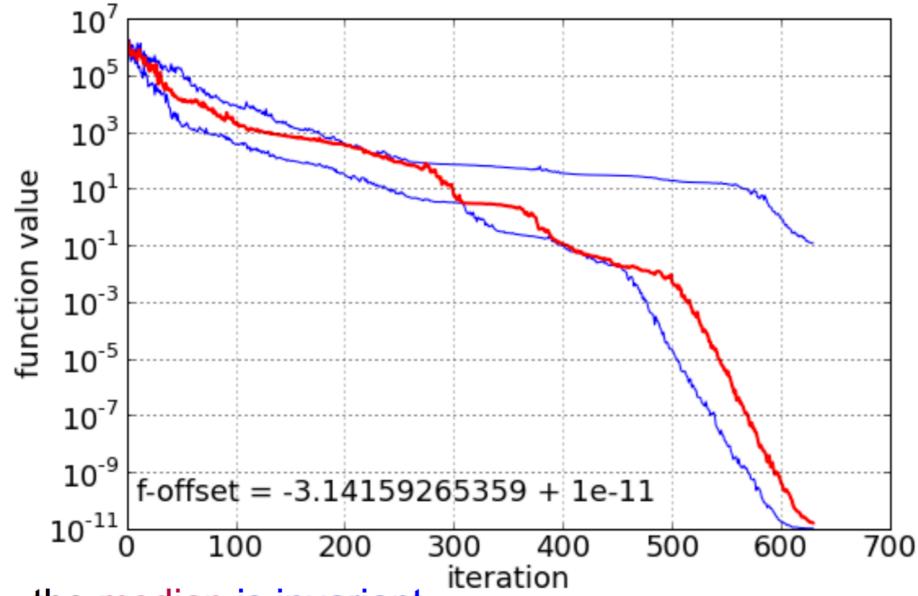
mean/average function value

tends to emphasize large values

More problems with average / expectations

- to reliably estimate an expectation (from the average) we need to make assumptions on the tail of the underlying distribution
 - these can not be implied from the observed data
 - AKA: the average is well-known to be (highly) sensitive to outliers (extreme events)
- rare events can only be analyzed by collecting a large enough number of data

Which Statistics?



the median is invariant

- unique for uneven number of data
- independent of log-scale, offset...

median(log(data))=log(median(data))

same when taken over x- or y-direction

Implications

-

use the median as summary datum

unless there are good reasons for a different statistics out of practicality: use an odd number of repetitions

more general: use quantiles as summary data

for example out of 15 data: 2nd, 8th, and 14th value represent the 10%, 50%, and 90%-tile

Benchmarking Black-Box Optimizers

Benchmarking: running an algorithm on several test functions

in order to evaluate the performance of the algorithm

Why Numerical Benchmarking?

Evaluate the performance of optimization algorithms

Compare the performance of different algorithms

understand strength and weaknesses of algorithms

help in design of new algorithms

On performance measures ...

Performance measure - What to measure?

CPU time (to reach a given target)

drawbacks: depend on the implementation, on the language, on the machine

time is spent on code optimization instead of science Testing heuristics, we have it all wrong, J.N. Hooker, 1995 Journal of Heuristics

Prefer "absolute" value: # of function evaluations to reach a given target

assumptions: internal cost of the algorithm negligible or measured independently

On performance measures - Requirements

"Algorithm A is 10/100 times faster than Algorithm B to solve this type of problems"

On performance measures - Requirements

"Algorithm A is 10/100 times faster than Algorithm B to solve this type of problems"

quantitative measures

As opposed to

F.	EFWA vs EFWA-NG		
	EFWA	EFWA-NG	<i>p</i> -value
f_1	-1.3999E+03	-1.3999E+03	2.316E-03
f_2	6.8926E+05	6.5258E+05	4.256E-01
f_3	7.7586E+07	6.4974E+07	8.956E-01
f_4	-1.0989E+03	-1.0989E+03	7.858E-01
f_5	-9.9992E+02	-9.9992E+02	4.290E-02
f_6	-8.5073E+02	-8.4462E+02	1.654E-01
1	C A CA (TO A)	Z 4001 - 04	~ = = ~ ·

displayed: mean f-value after

 3.10^5 f-evals (51 runs)

bold: statistically significant

concluded: "EFWA significantly

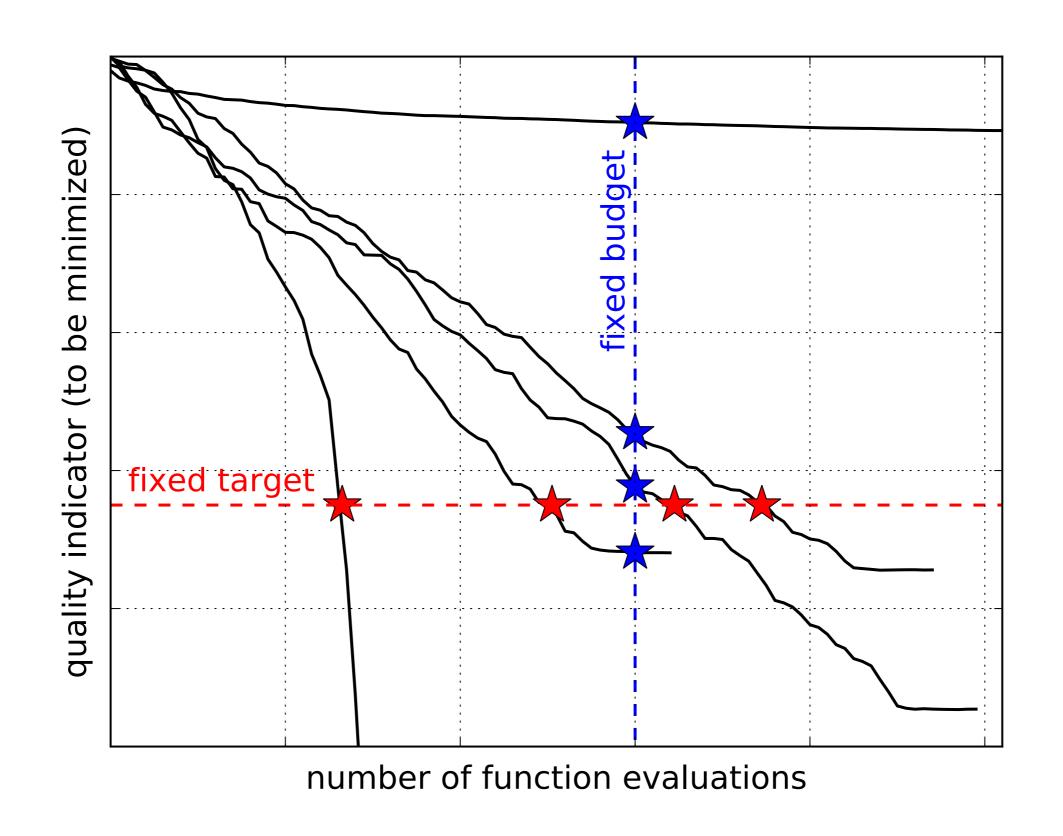
better than EFWA-NG"

Source: Dynamic search in fireworks algorithm, Shaoqiu Zheng, Andreas Janecek, Junzhi Li and Ying Tan CEC 2014

On performance measures - Requirements

a performance measure should be quantitative, with a ratio scale well-interpretable with a meaning relevant in the "real world" simple

Fixed Cost versus Fixed Budget - Collecting Data



Fixed Cost versus Fixed Budget - Collecting Data

Collect for a given target (several target), the number of function evaluations needed to reach a target

Repeat several times:

if algorithms are stochastic, never draw a conclusion from a single run

if deterministic algorithm, repeat by changing (randomly) the initial conditions

ECDF:

Empirical Cumulative Distribution Function of the Runtime

Cumulative Distribution Function (CDF)

Given a random variable T, the cumulative distribution function (CDF) is defined as

$$\mathrm{CDF}_T(t) = \mathrm{Pr}(T \leq t)$$
 for all $t \in$

0.8 density CDF
0.0 0.0 1 2 3 4 5 6

It characterizes the probability distribution of T

If two random variables have the same CDF, they have the same probability distribution

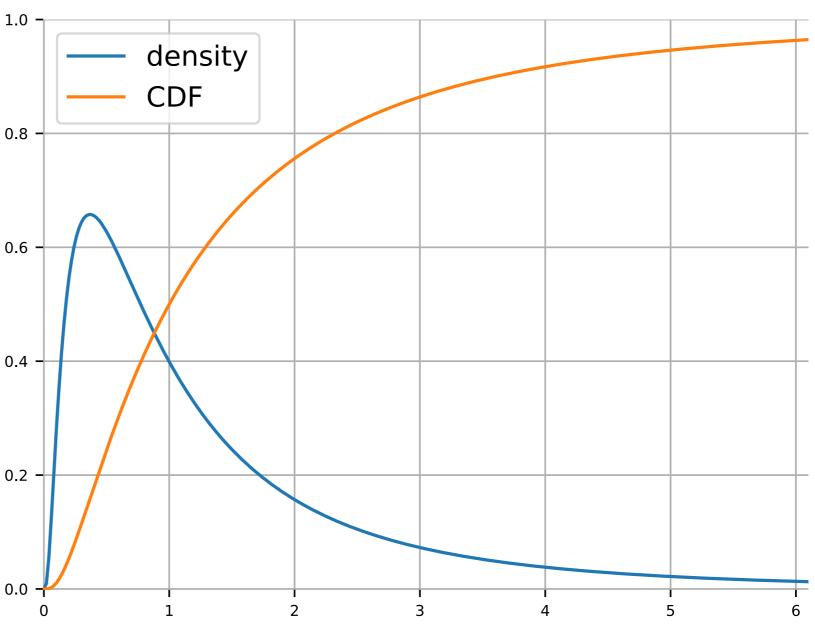
Cumulative Distribution Function (CDF)

dom variable T, the cumulat DF) is defined as

$$F_T(t) = \Pr(T \le t)$$
 fo o.6

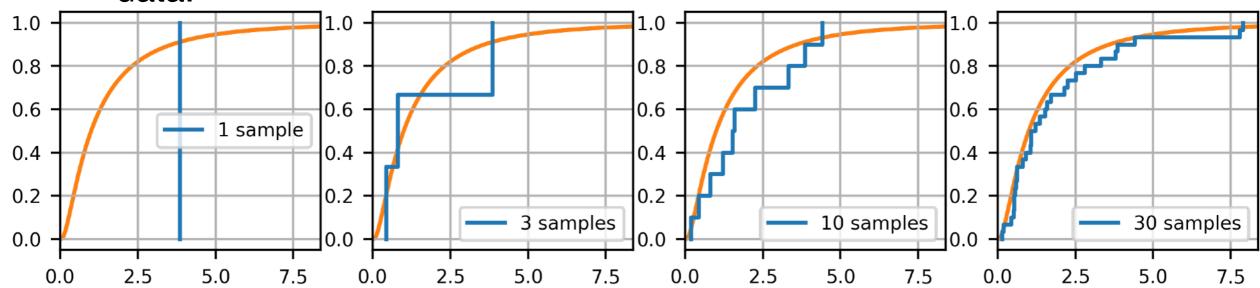
zes the probability distribution

om variables have the same (same pro



Empirical Cumulative Distribution Function

• Given a collection of data $T_1, T_2, ..., T_k$ (e.g. an empirical sample of a random variable) the *empirical* cumulative distribution function (ECDF) is a step function that jumps by 1/k at each value in the data.



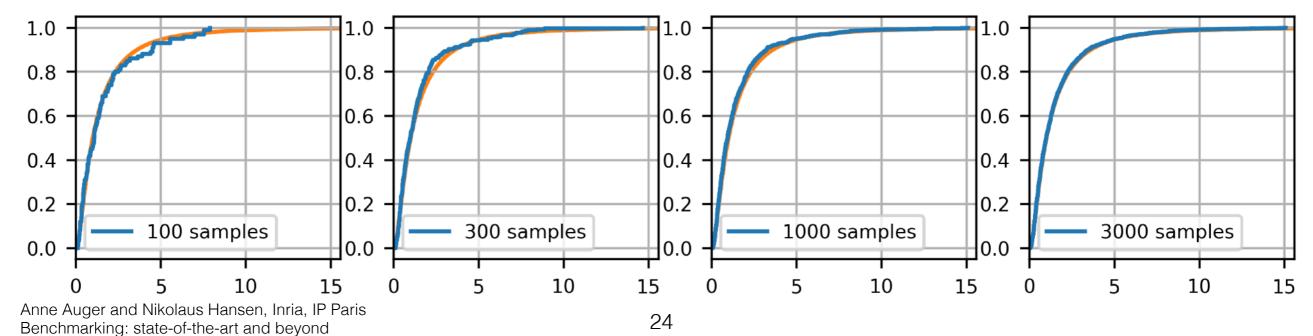
It is an estimate of the CDF that generated the points in the sample.

Empirical Cumulative Distribution Function

$$ECDF_{(T_1,...,T_k)}(t) = \frac{\text{number of } T_i \le t}{k} = \frac{1}{k} \sum_{i=1}^k 1_{\{T_i \le t\}}$$

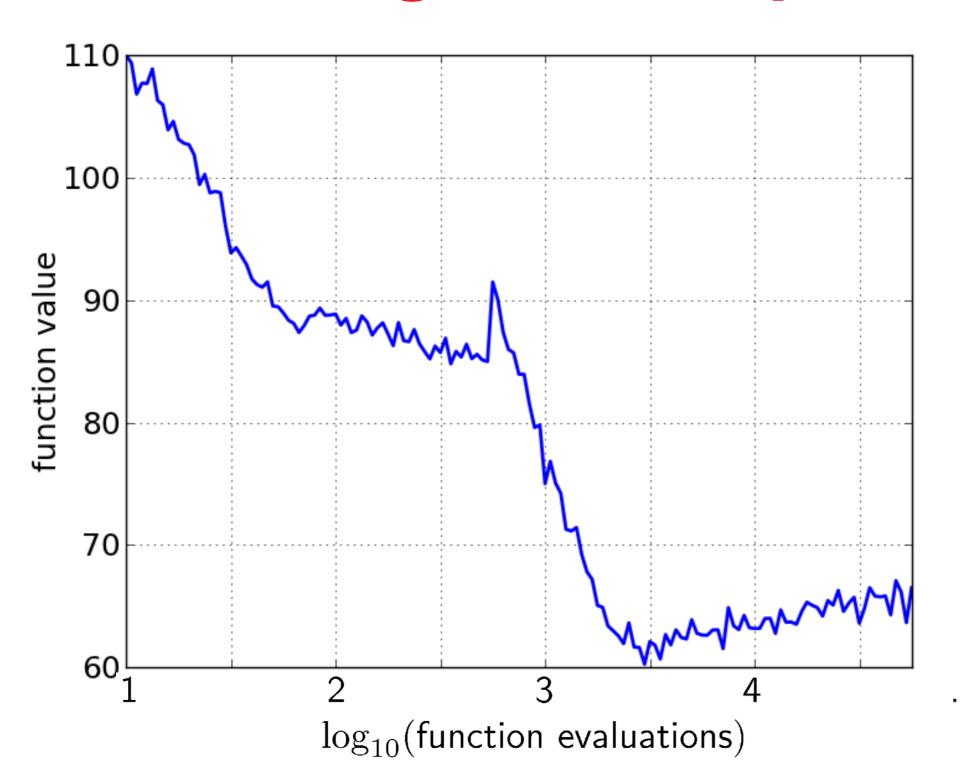
For $\{T_i: i\geq 1\}$ i.i.d. realization of a random variable T, by the LLN

$$\mathrm{ECDF}_{T_1,\ldots,T_k}(t) \xrightarrow[k \to \infty]{} \mathrm{CDF}_T(t)$$
 a.s. for all t

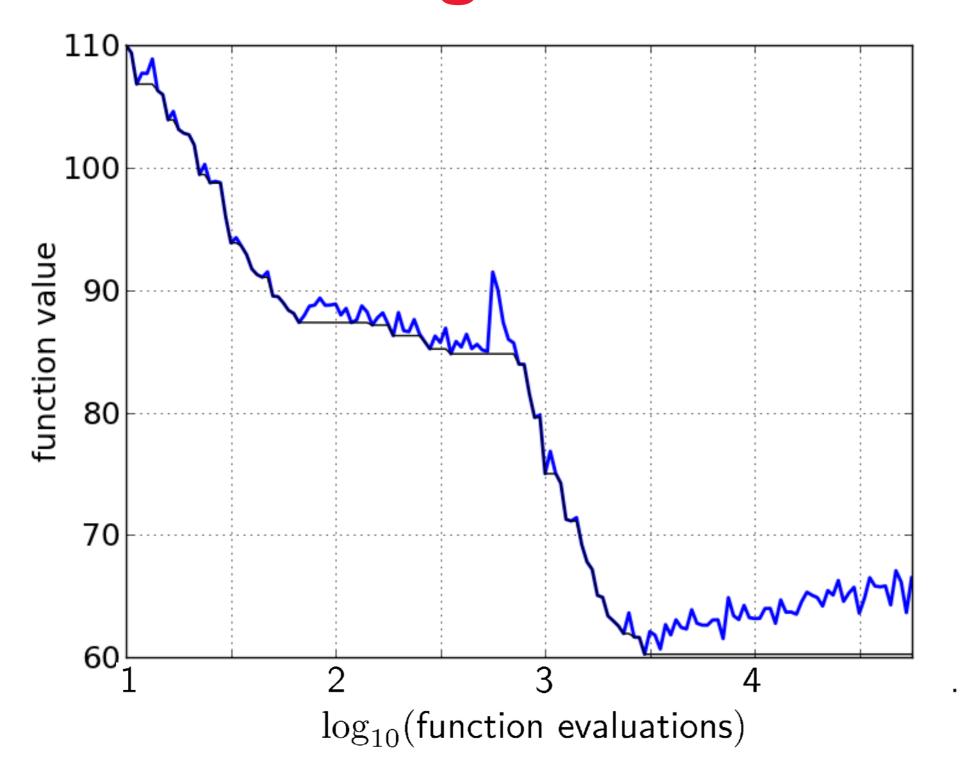


We display the ECDF of the runtime to reach target function values (see next slides for illustrations)

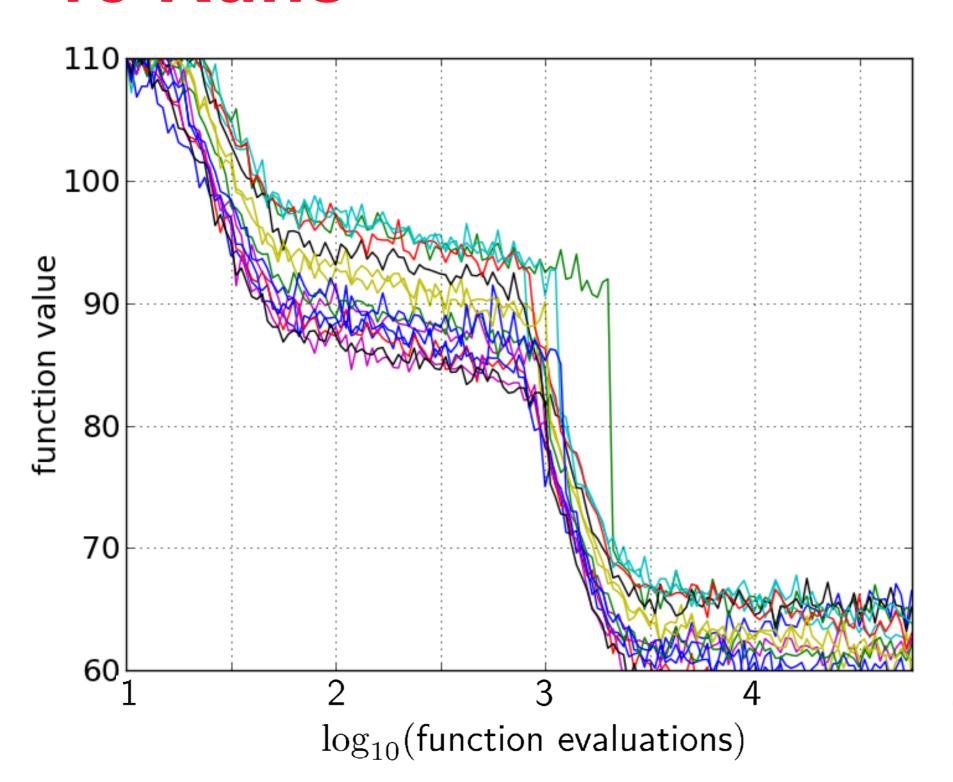
A Convergence Graph



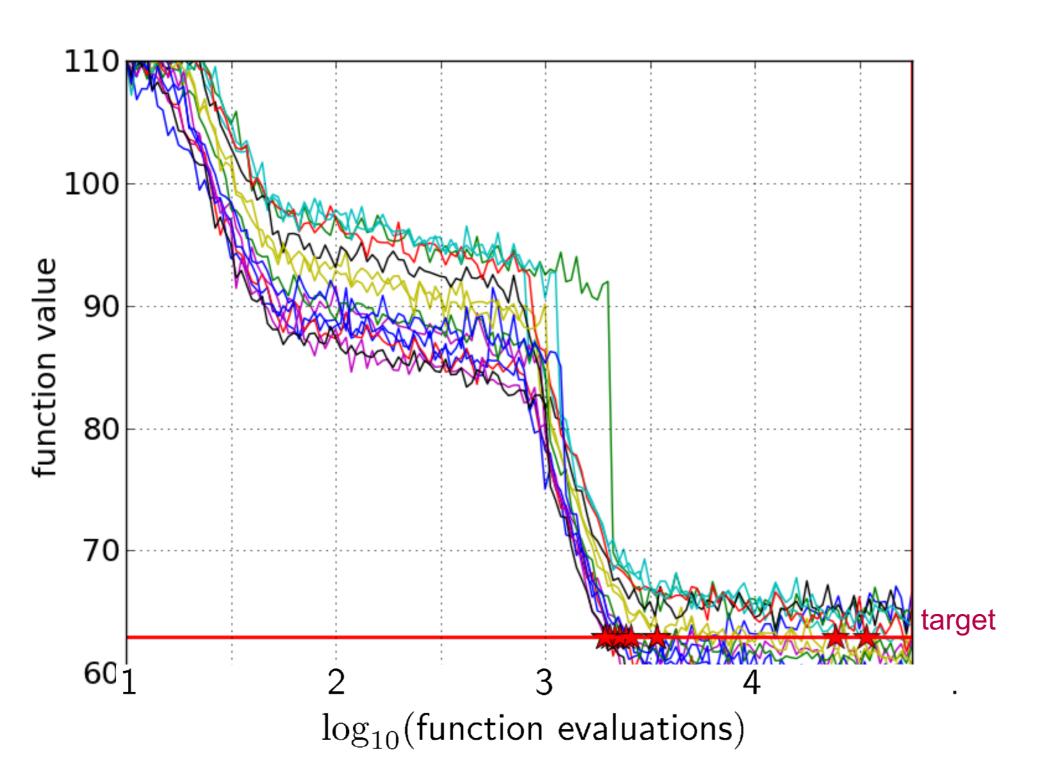
First Hitting Time is Monotonous



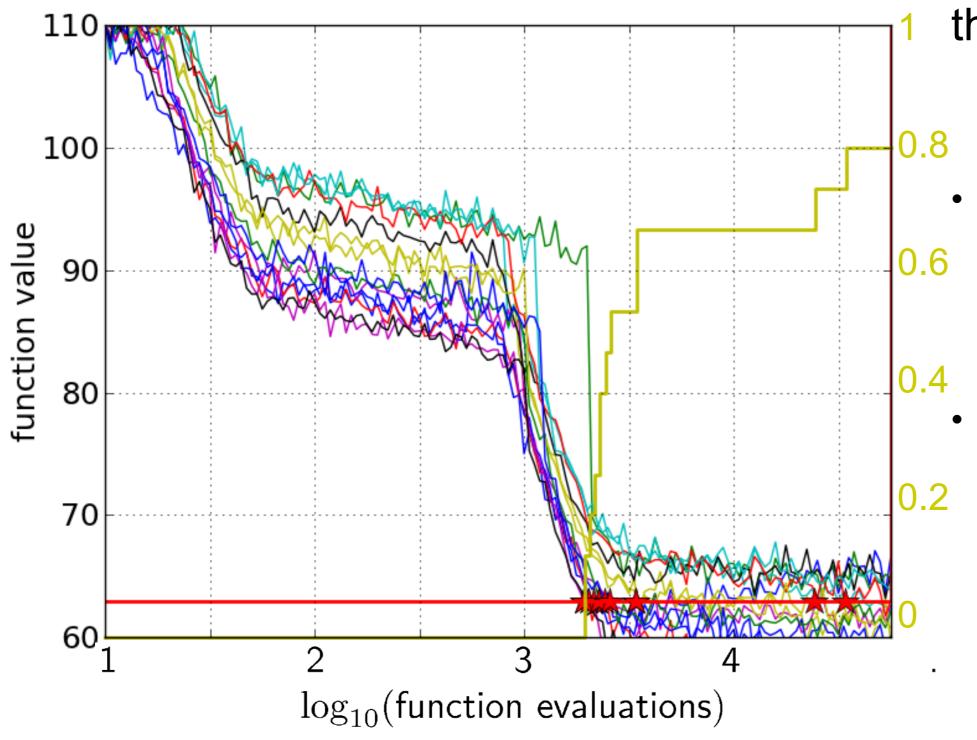
15 Runs



15 Runs ≤ 15 Runtime Data Points



Empirical Cumulative Distribution

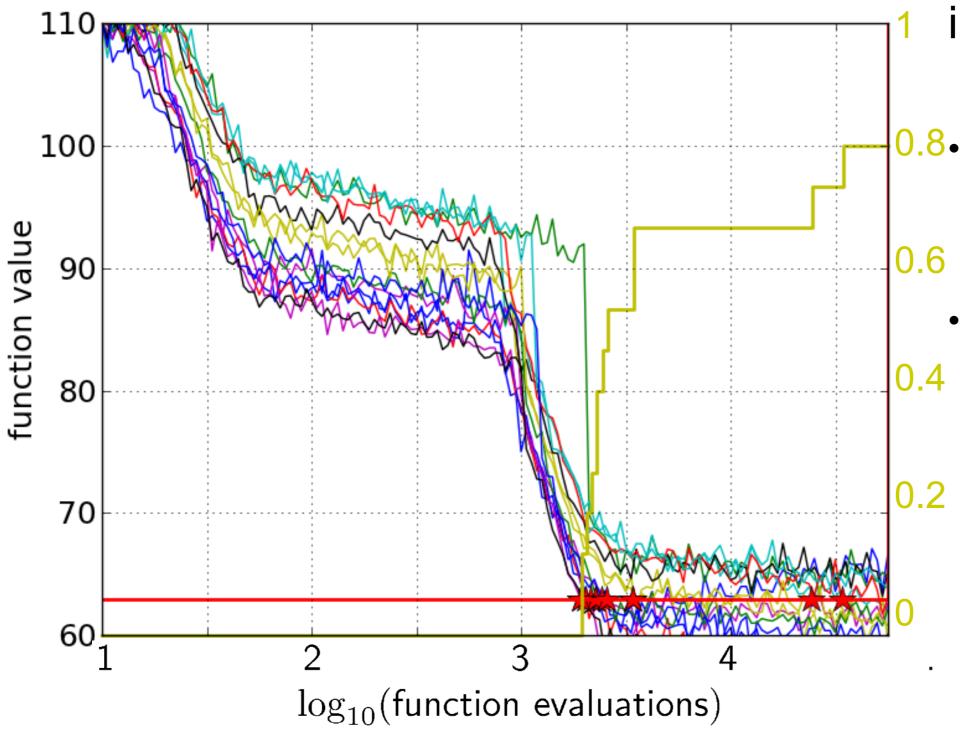


the ECDF of run lengths to reach the target

has for each data point a vertical step of constant size

displays for each x-value (budget) the count of observations to the left (first hitting times)

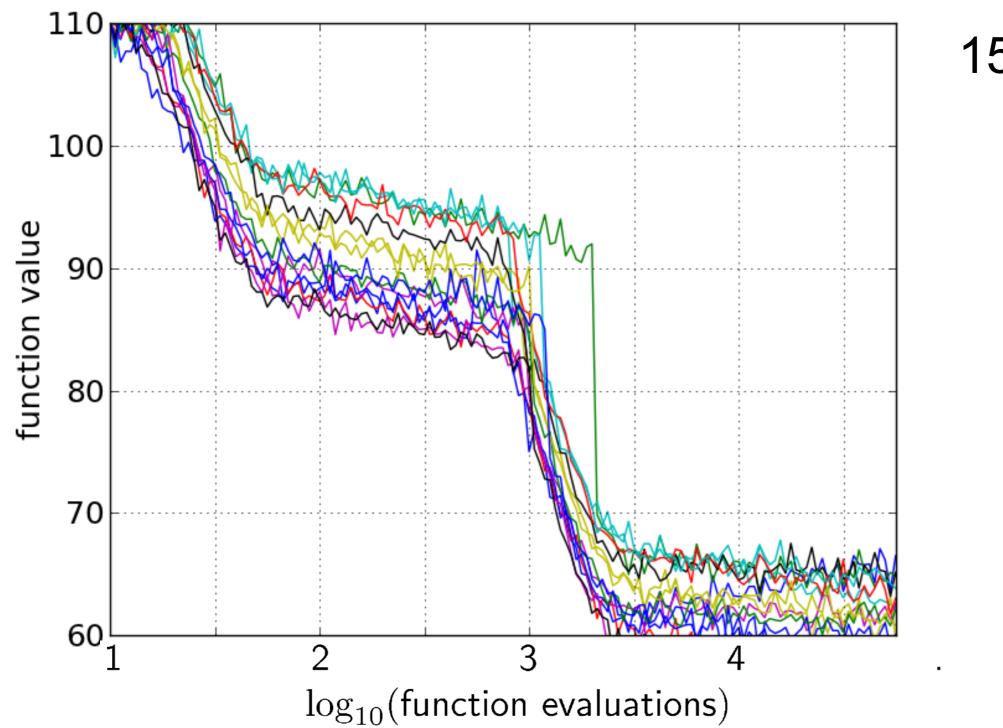
Empirical Cumulative Distribution



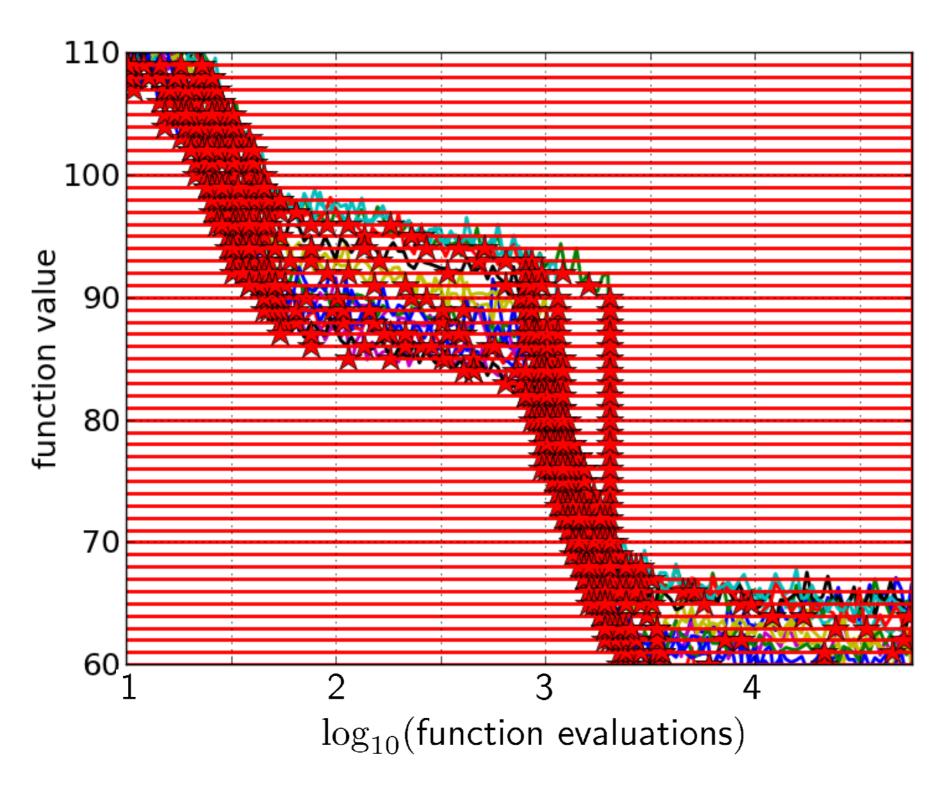
interpretations possible:

80% of the runs reached the target

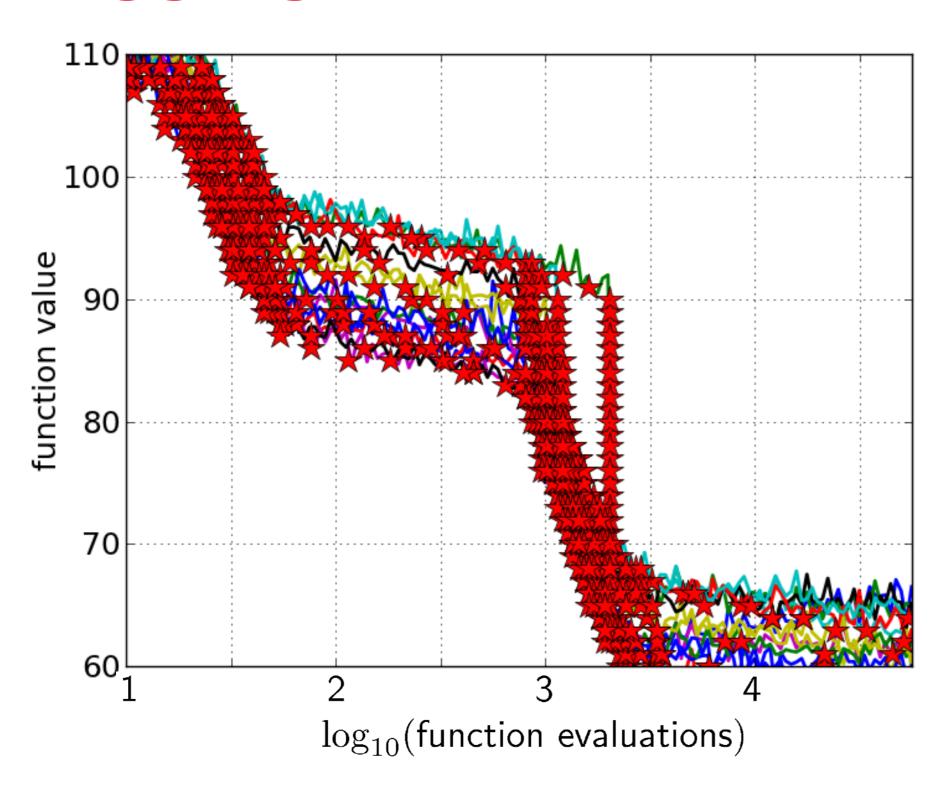
e.g. 60% of the runs need between 2000 and 4000 evaluations



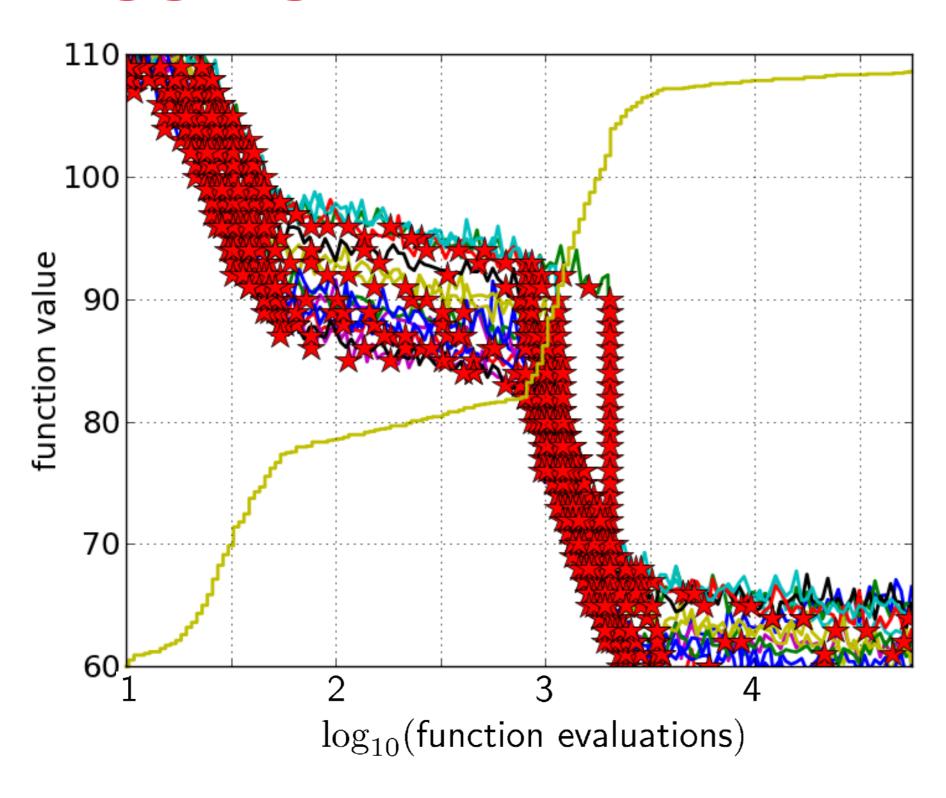
15 runs



15 runs50 targets

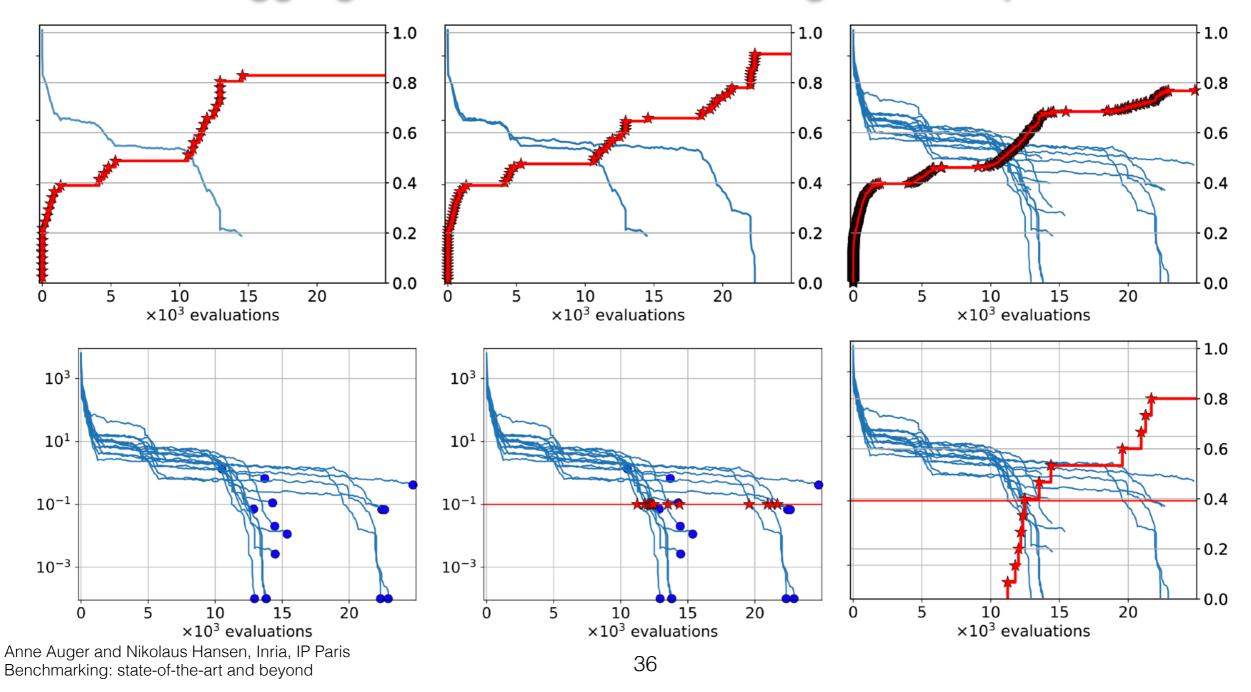


15 runs50 targets



15 runs50 targetsECDF with 750 steps

Aggregation of Several Convergence Graphs

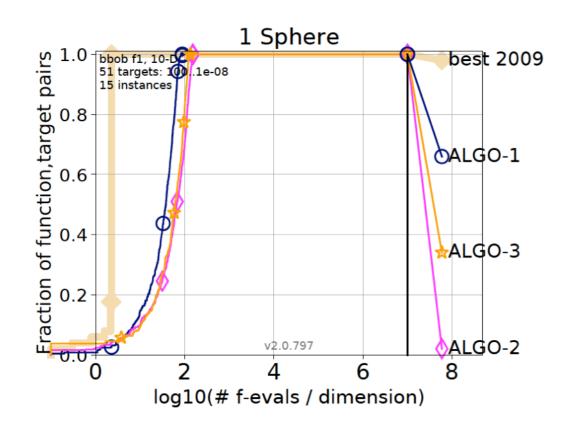


We can aggregate over:

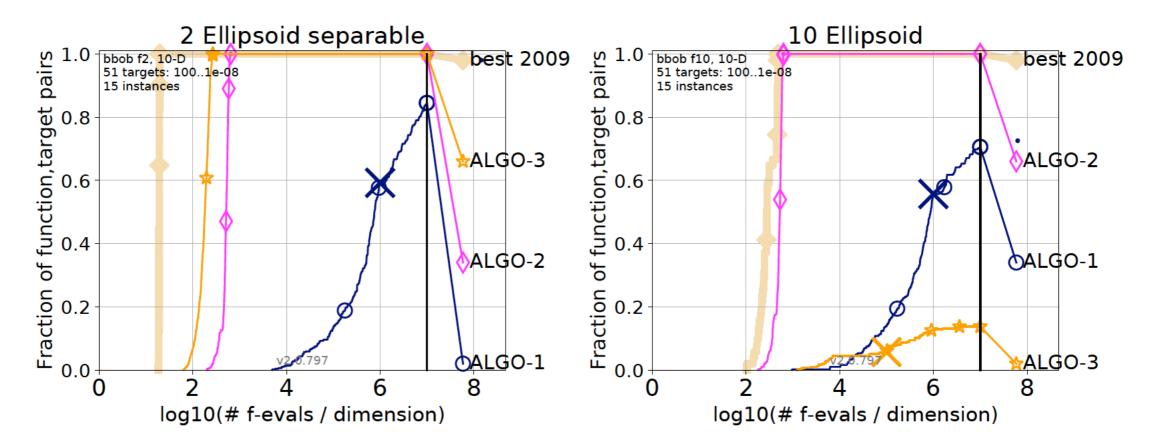
- different targets
- different functions and targets

We should not aggregate over dimension as functions of different dimensions have typically very different runtimes

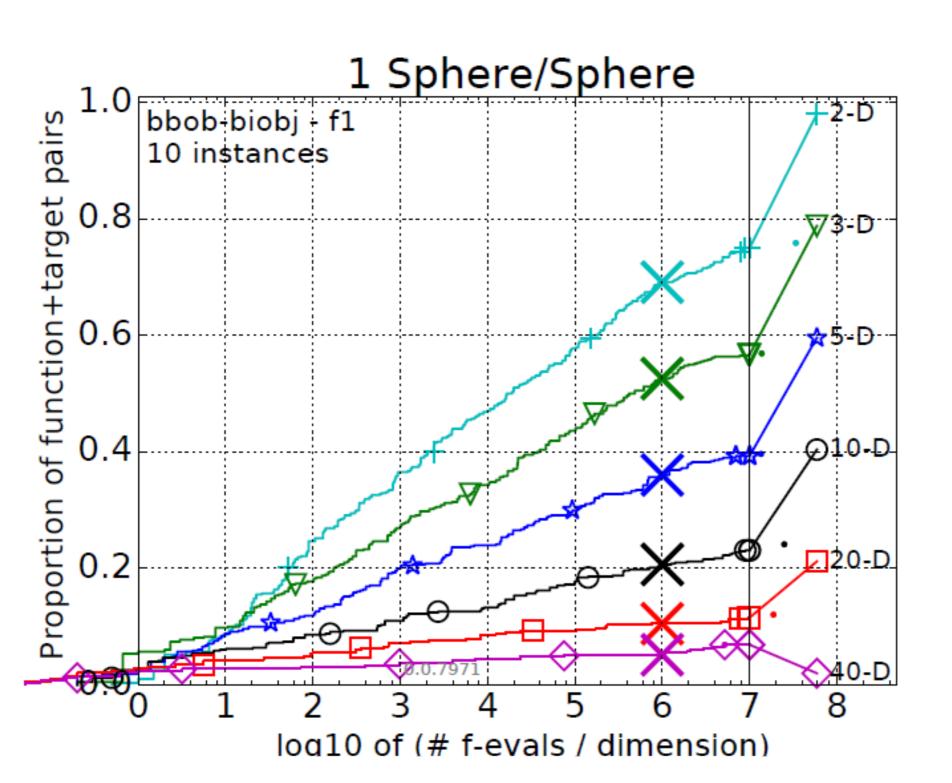
ECDF aggregated over targets - single functions



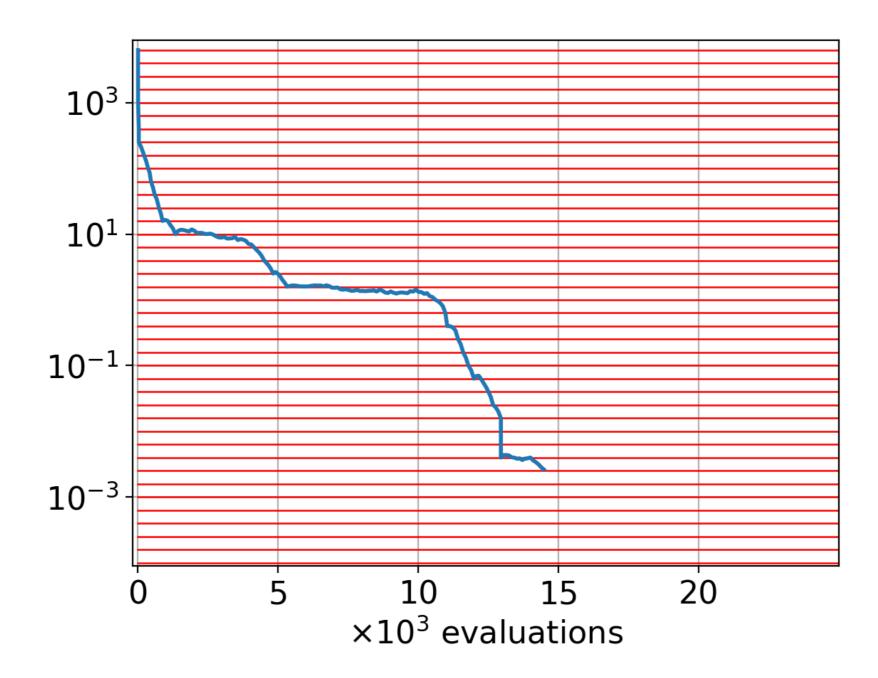
ECDF for 3 different algorithms

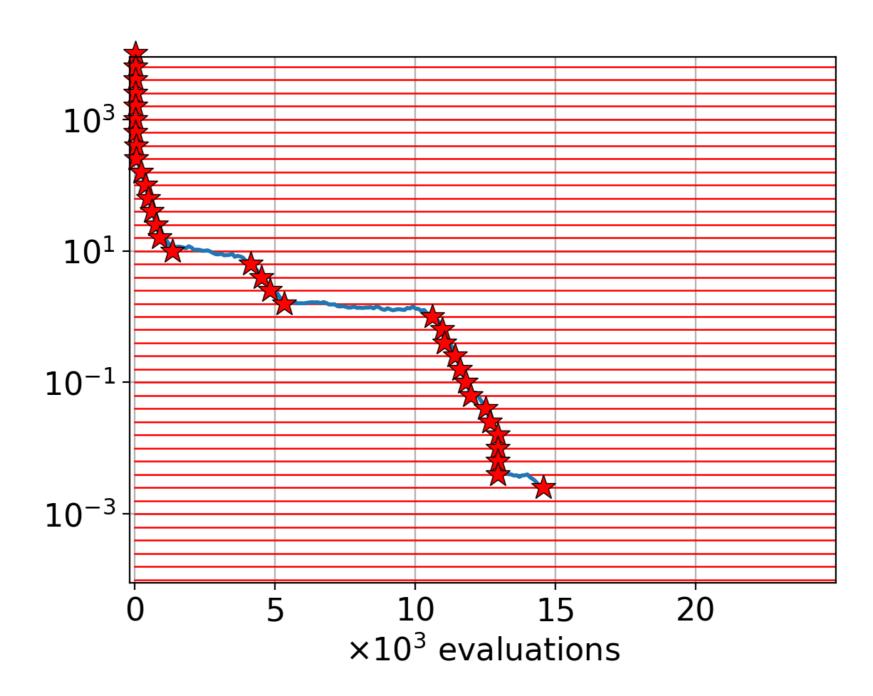


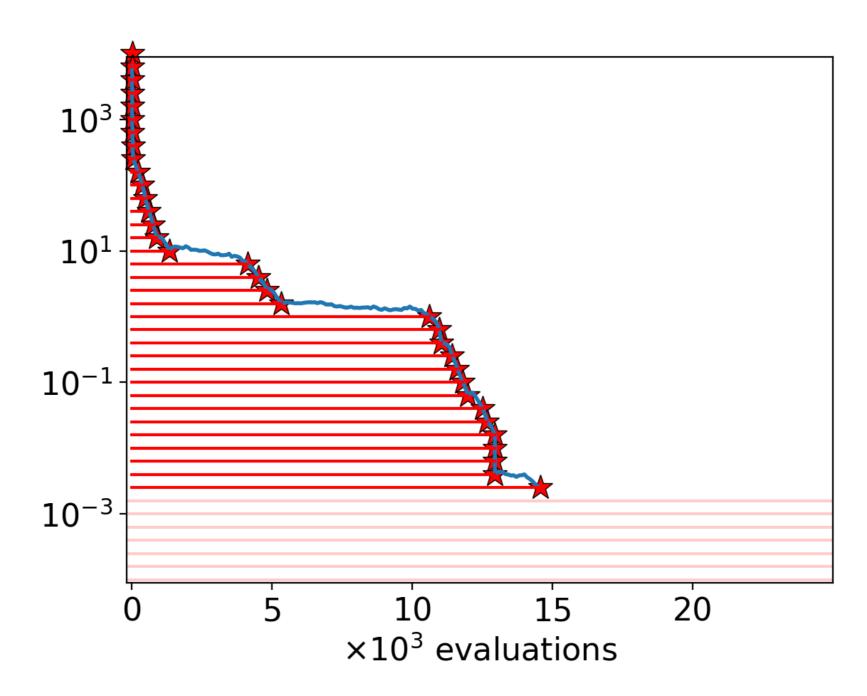
ECDF aggregated over targets - single function

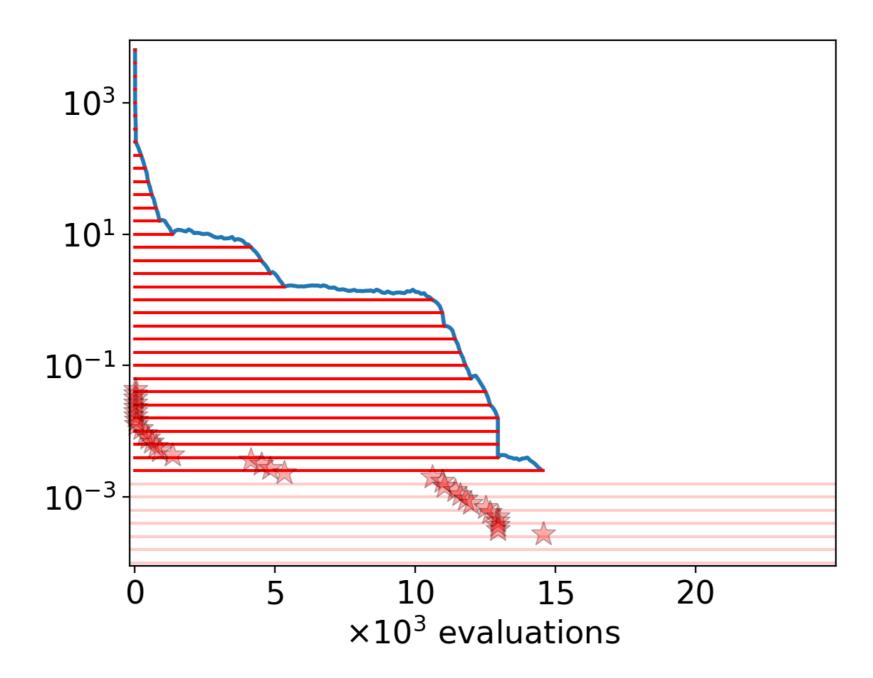


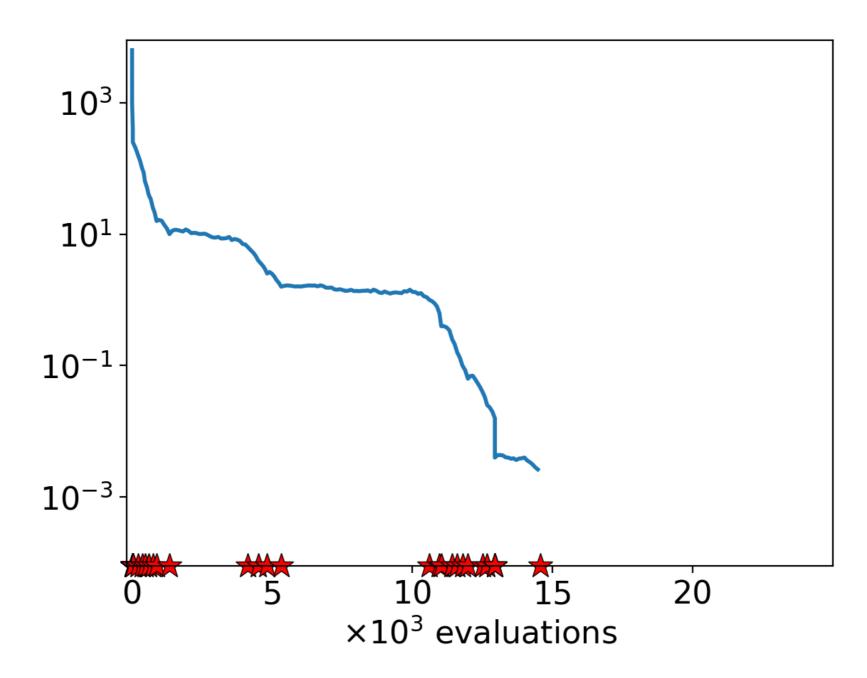
ECDF for a single algorithm different dimensions

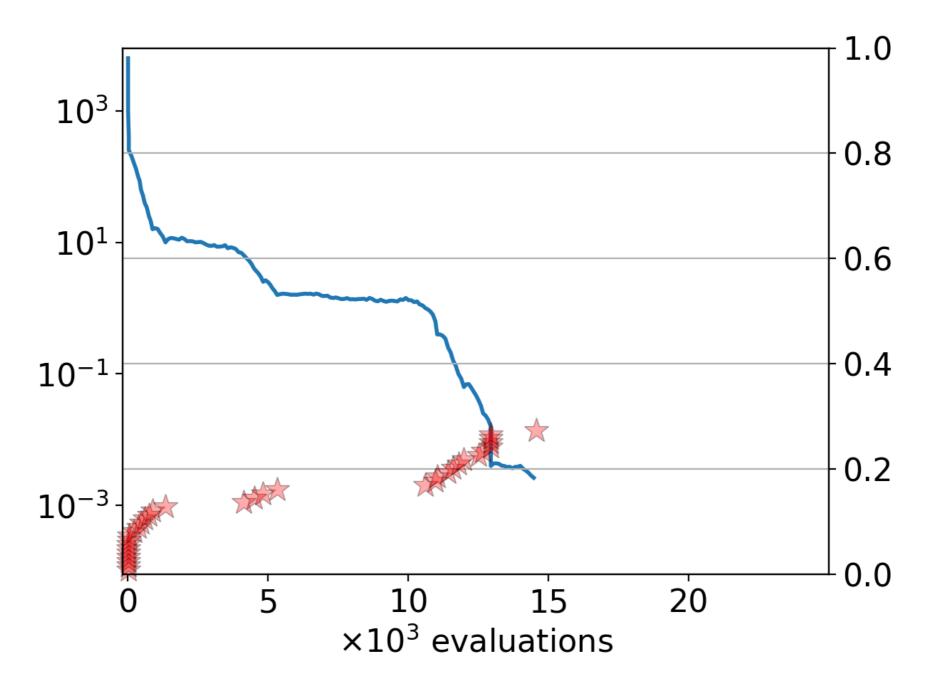


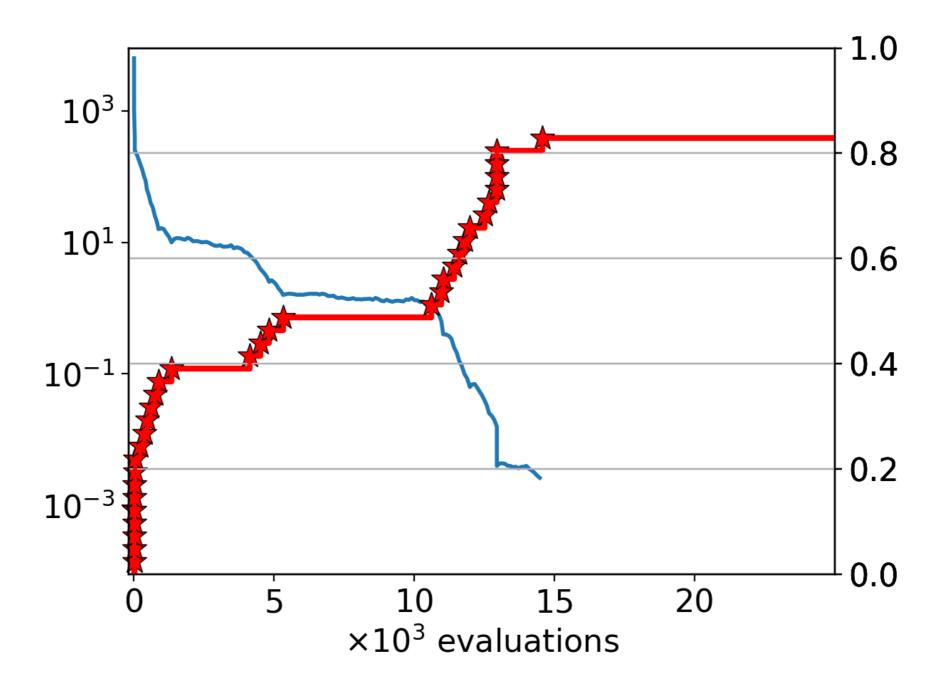


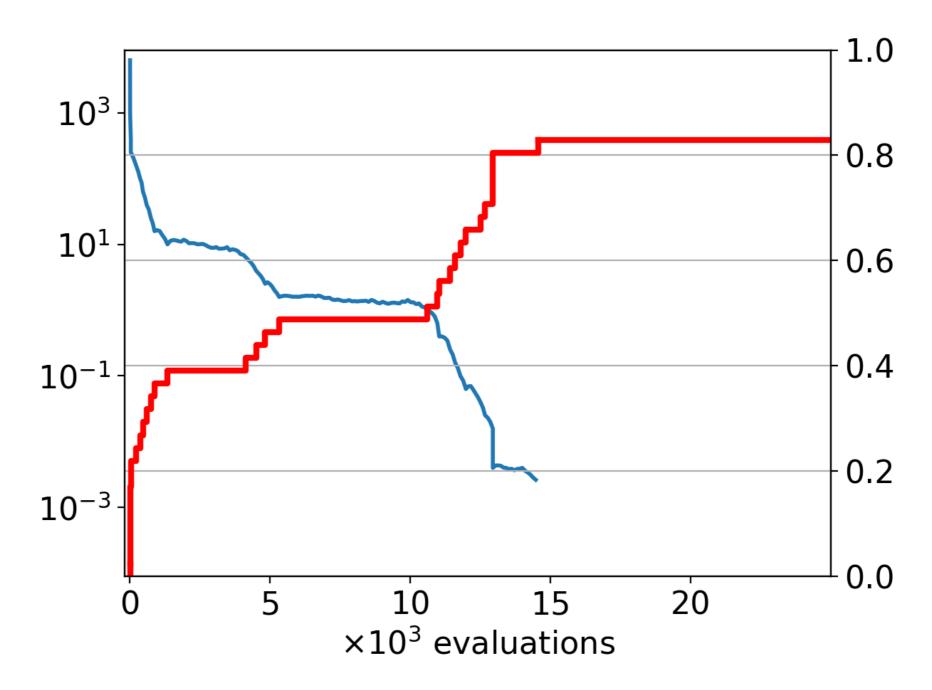


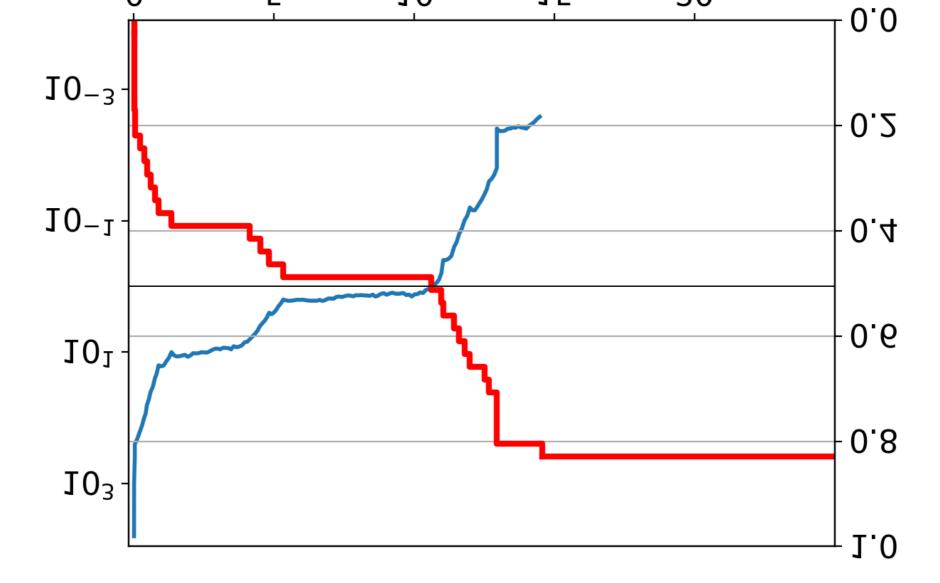


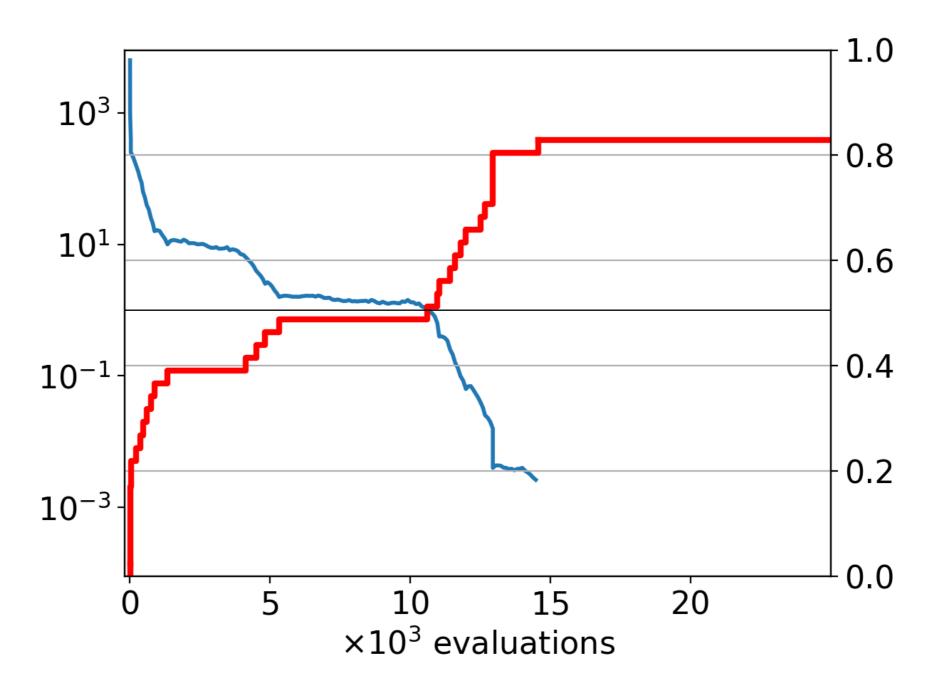


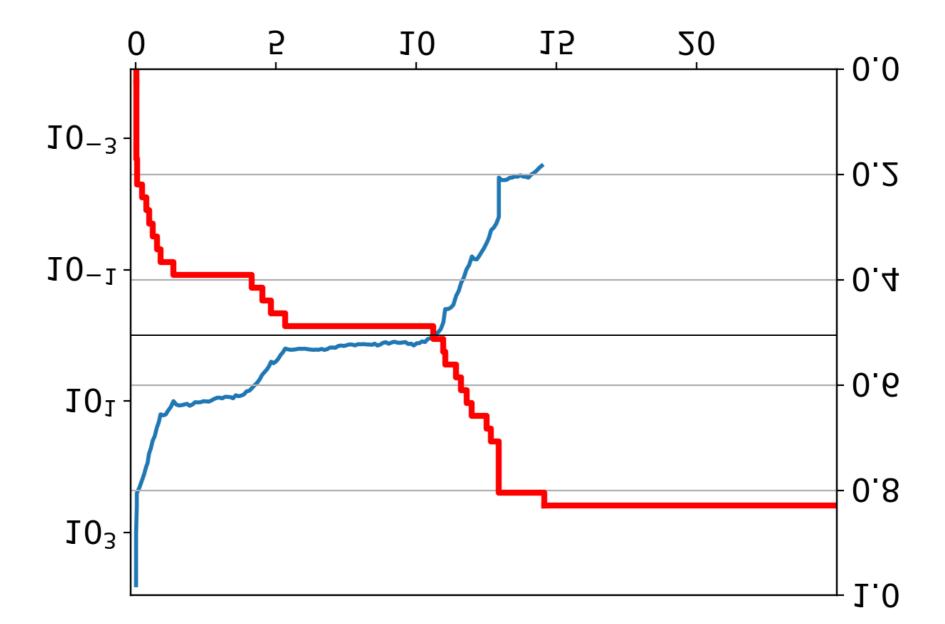




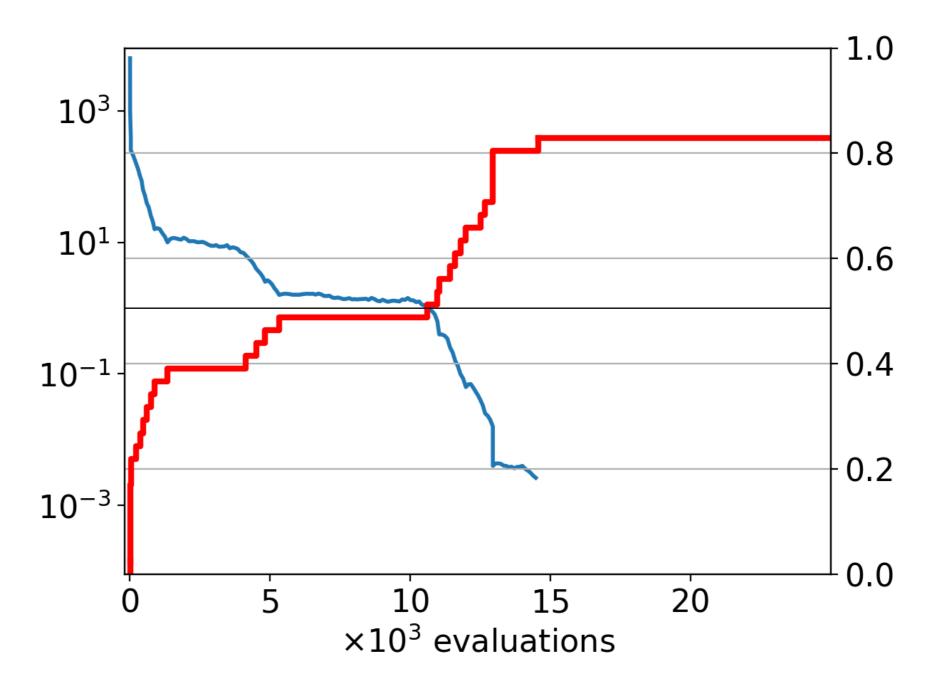




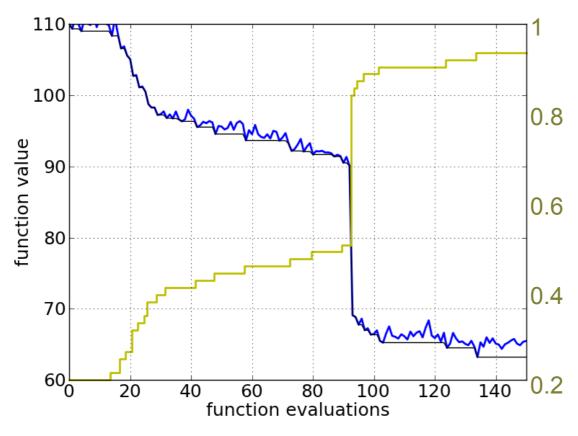




the ECDF recovers the monotonous graph, discretised and flipped



Runtime distribution from a single graph



the ECDF
recovers the
0.8 monotonous
graph,
0.6 discretised and
flipped

0

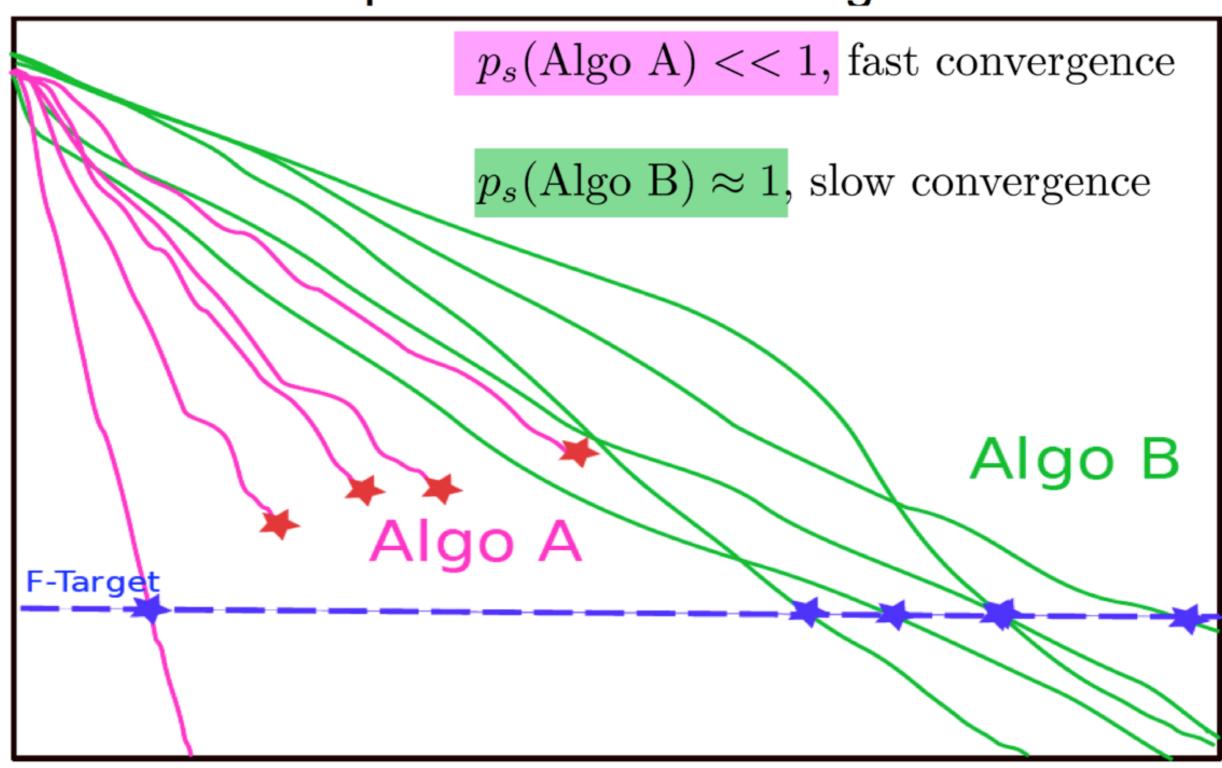
AKA runtime distribution

ERT/ART:

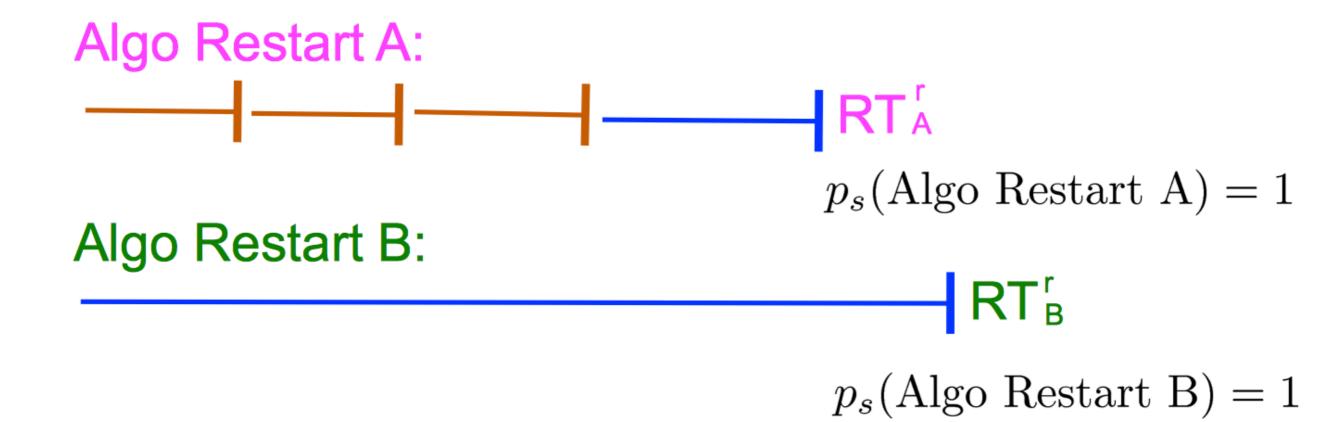
Average Runtime

Which performance measure?

to compare the two following scenario?



Which performance measure?



Expected Running Time (restart algo)

$$ERT = E[RT^r] = \frac{1-p_s}{p_s} E[RT_{\text{unsuccessful}} + E[RT_{\text{successful}}]$$

Estimator for ERT

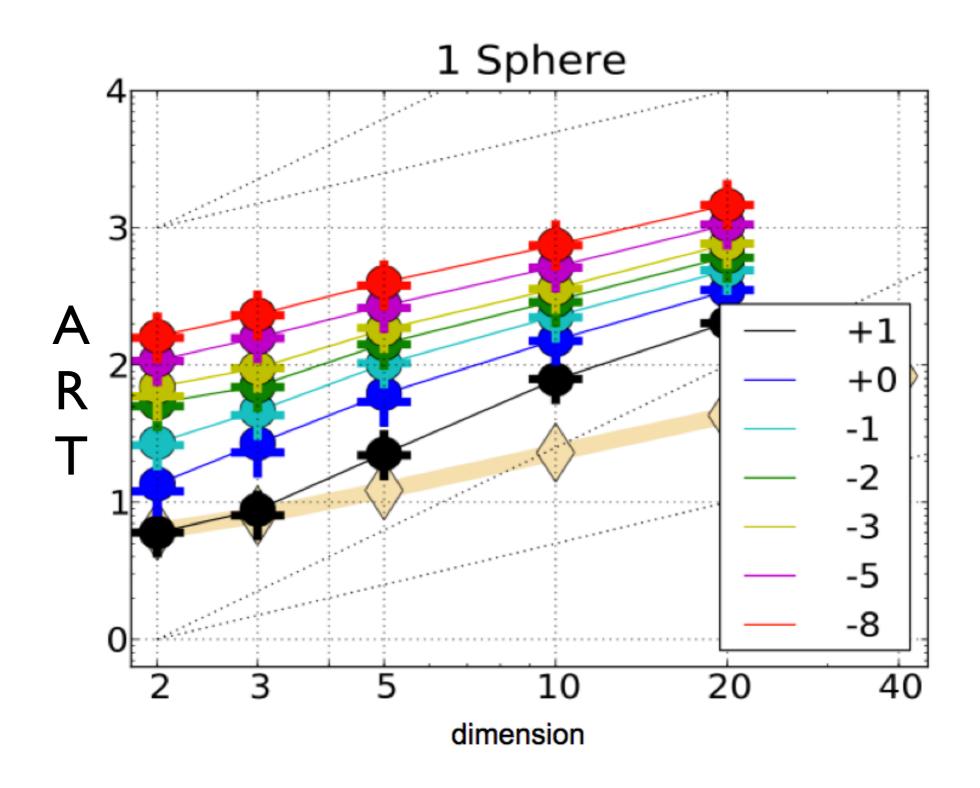
$$\widehat{p_s} = \frac{\# \text{succ}}{\# Runs}$$

 $\widehat{RT_{\text{unsucc}}} = \text{Average Evals of unsuccessful runs}$

 $\widehat{RT}_{\mathrm{succ}}$ = Average Evals of successful runs

$$ART = \frac{\text{\#Evals}}{\text{\#success}}$$

Example: scaling behavior



On Test functions

What is the Benchmark?

Choice of Test Problems

What to Benchmark?

Furious activity is no substitute for understanding (H.H. Williams)

Taking all possible functions from a repository?

What to Benchmark?

Furious activity is no substitute for understanding (H.H. Williams)

- Taking all possible functions from a repository?
- Bad idea if
 - function difficulties are unbalanced too many small dimensional problems, convex problems...
 - and performance are aggregated
- Leads to bias in the performance assessment

What to Benchmark?

test functions should be representative of difficulties we want to test

therefore NFL has no relevance as assumption of being closed under permutation has no relevance wrt real world problems

related to real-word difficulties

for performance to be generalizable to RW

scalable

dimension plays a big role in performance curse of dimensionality

comprehensible but not too easy

BB optimization does not mean BB benchmarking

• we should still hide properties from the solver (hide optimum, ...)

solvers should not be able to exploit the benchmark intentionally or not

Example: COCO/BBOB Test Suite(s)

Functions are

- based on known analytical functions, modeling a "known" difficulty related to real-world problems
- comprehensible
- · scalable
- difficult (also non-separable)

compared to typical standards (at that time)

quasi-randomized as instances

with arbitrary shifts and smallish irregularities to avoid artificial exploits and mitigate overfitting, emulates repetition of experiments

Example: COCO/BBOB Test Suite(s)

1 Separable Functions	
f1	Sphere Function
f2	Ellipsoidal Function
f3	Rastrigin Function
f4	Büche-Rastrigin Function
f5	
2 Functions with low or moderate conditioning	
f6	Attractive Sector Function
f7	Step Ellipsoidal Function
f8	Rosenbrock Function, original
f9	Rosenbrock Function, rotated
3 Functions with high conditioning and unimodal	
f10	Ellipsoidal Function
f11	Discus Function
f12	Bent Cigar Function
f13	Sharp Ridge Function
f14	Different Powers Function

4 Multi-modal functions with adequate global structure	
f15	Rastrigin Function
f16	Weierstrass Function
f17	Schaffers F7 Function
f18	Schaffers F7 Functions, moderately ill-conditioned
f19	Composite Griewank-Rosenbrock Function F8F2
5 Multi-modal functions with weak global structure	
f20	Schwefel Function
f21	
f22	Gallagher's Gaussian 21-hi Peaks Function
f23	
f24	■ Lunacek bi-Rastrigin Function

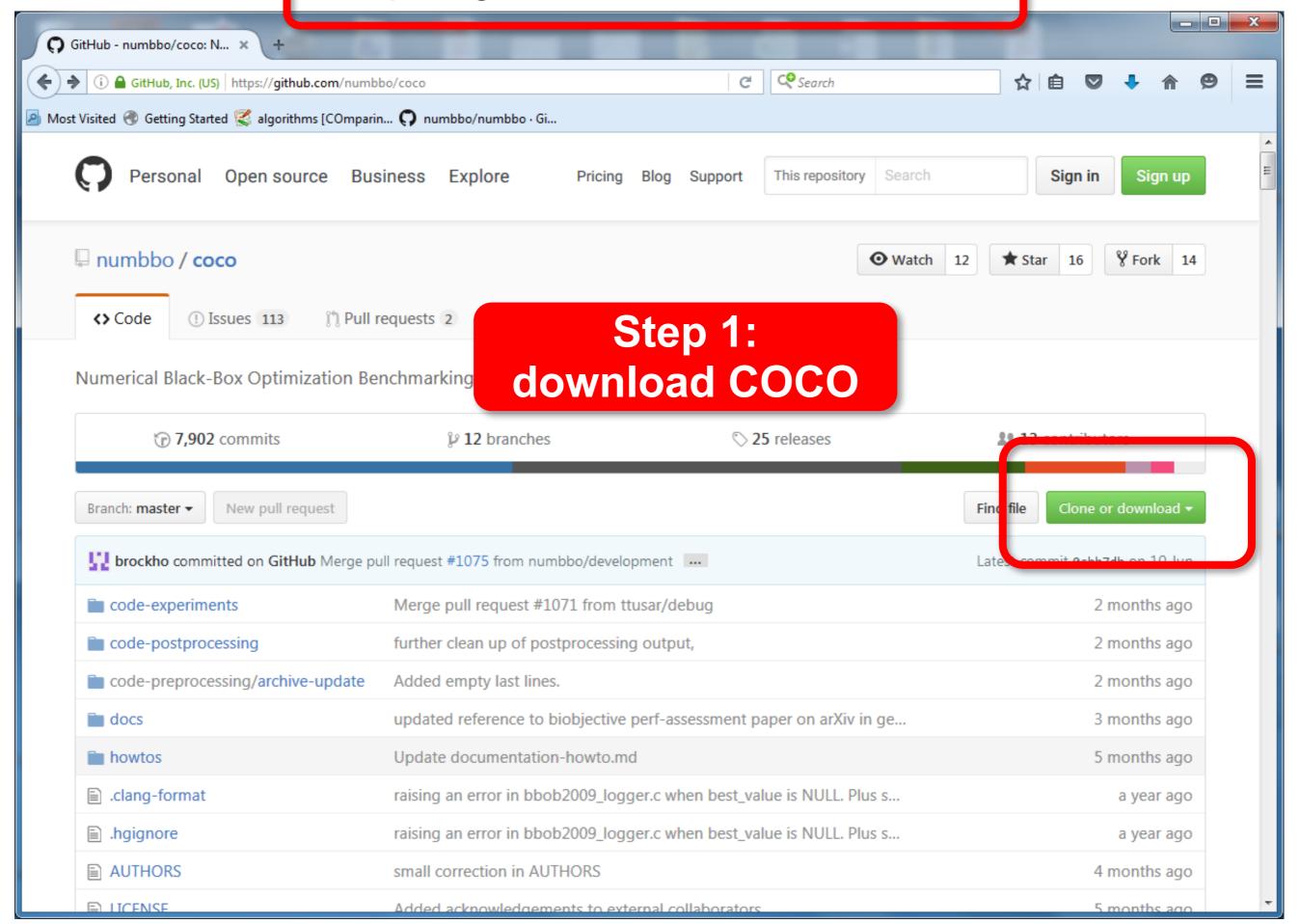
Consider Questions to be Answered

- what is the performance on a specific (class of) problem(s)?
- how does the algorithm scale with dimension?
- how does the algorithm perform on
 - ill-conditioned problems
 - multimodal problems
- does the algorithm exploit separability?

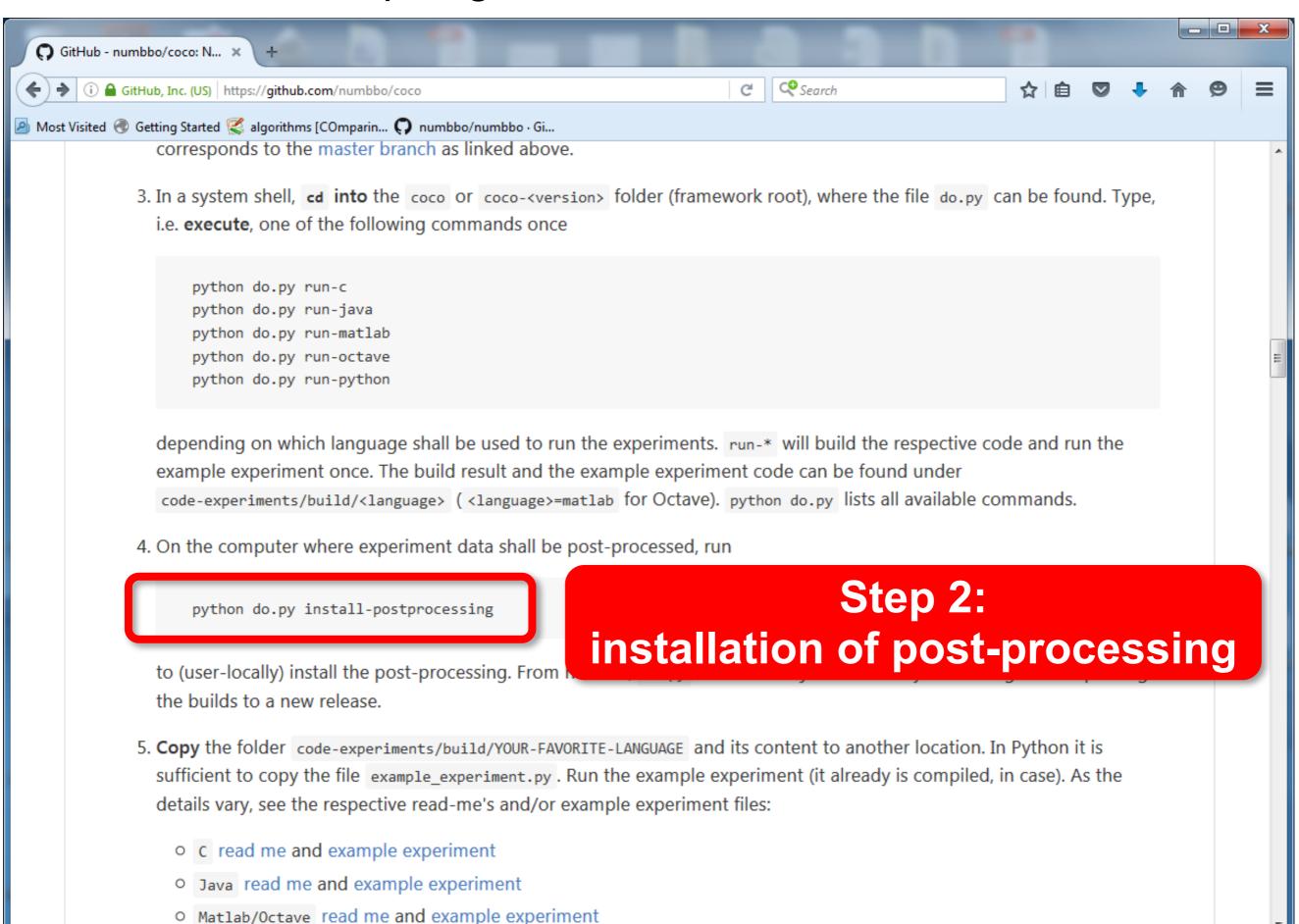
•

COCO platform: automatizing the benchmarking process

https://github.com/numbbo/coco

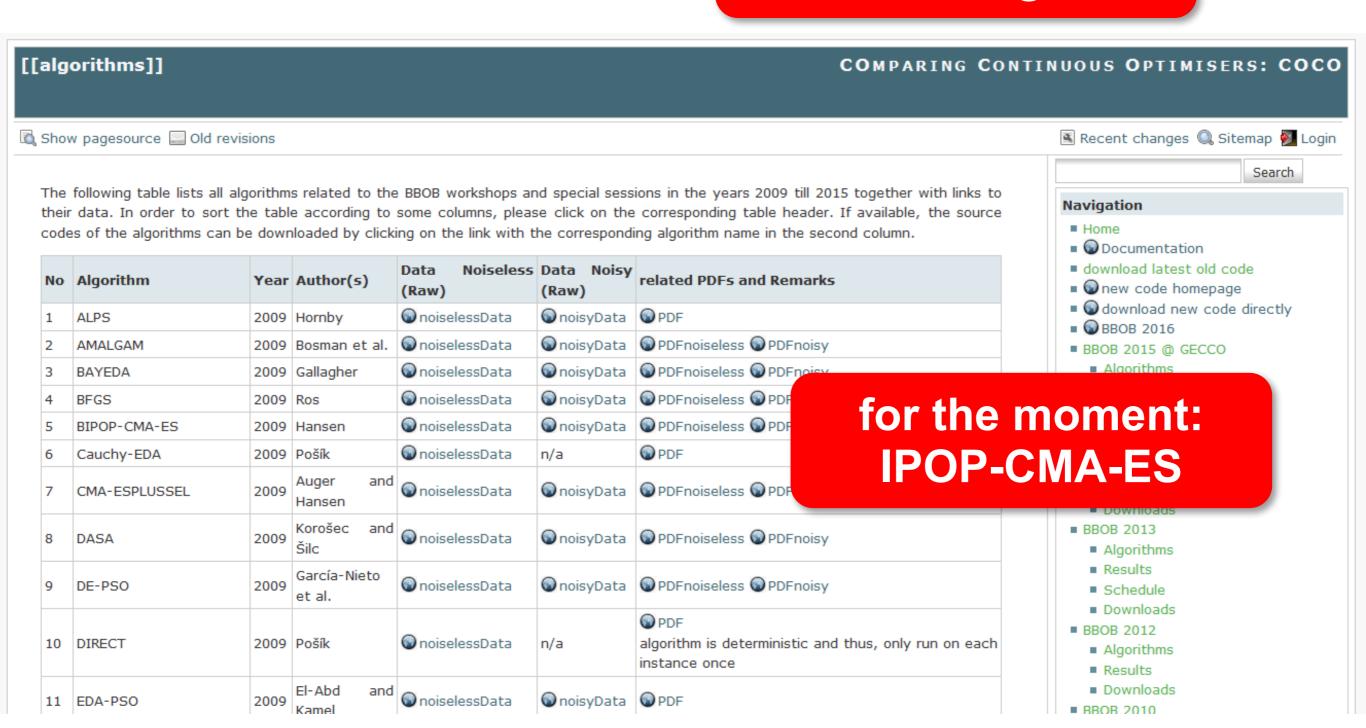


https://github.com/numbbo/coco



http://coco.gforge.inria.fr/doku.php?id=algorithms

Step 3: downloading data



https://github.com/numbbo/coco

