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Visualization and presentation of single runs



Displaying 3 runs (three trials)
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not like this (it's unfortunately a common picture)



Displaying 3 runs (three trials)
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better like this (shown are the same data),
caveat: fails with negative f-values




Displaying 3 runs (three trials)
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even better like this: subtract minimum value over
all runs




Displaying 51 runs

don't hesitate to display all data (the appendix is your friend)
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observation: three different "modes”, which would be difficult to
represent or recover in single statistics



Which Statistics?

function value

f-offset = -3.14159265359 + le-11
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iteration

mean/average function value

* tends to emphasize large values



More problems with average / expectations

- to reliably estimate an expectation (from the average) we need to
make assumptions on the tail of the underlying distribution

these can not be implied from the observed data

- AKA: the average is well-known to be (highly) sensitive to outliers (extreme
events)

rare events can only be analyzed by collecting a large enough
number of data

from Hansen GECCO 2019 Experimentation tutorial



Which Statistics?

function value

f-offset = -3.14159265359 + le-11
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_ o _ iteration
the median iIs invariant

* unique for uneven number of data

* independent of log-scale, offset...
median(log(data))=log(median(data))

e same when taken over x- or y-direction

10-11



Implications

e use the median as summary datum
unless there are good reasons for a different statistics
out of practicality: use an odd number of repetitions

e more general: use quantiles as summary data
for example out of 15 data: 2nd, 8th, and 14th
value represent the 10%, 50%, and 90%-tile

from Hansen GECCO 2019 Experimentation tutorial



Benchmarking Black-Box Optimizers

Benchmarking: running an algorithm on several test
functions

in order to evaluate the performance of the algorithm



Why Numerical Benchmarking?

Evaluate the performance of optimization algorithms

Compare the performance of different algorithms

understand strength and weaknesses of algorithms

help in design of new algorithms



On performance measures ..



Performance measure - What to measure?

CPU time (to reach a given target)
depend on the implementation, on the
language, on the machine

time is spent on code optimization instead of science
Testing heuristics, we have it all wrong, J.N. Hooker,
1995 Journal of Heuristics

Prefer "absolute” value: # of function evaluations to
reach a given target

internal cost of the algorithm negligible
or measured independently



On performance measures - Requirements

“Algorithm A is 10/100 times faster than
Algorithm B to solve this type of problems”



On performance measures - Requirements

“Algorithm A is 10/100 times faster than
Algorithm B to solve this type of problems”

As opposed to

B EFWA vs EFWA-NG
' EFWA EFWA-NG p-value

f1 -1.3999E+03 | -1.3999E+03 | 2.316E-03
f2 6.8926E+05 6.5258E+05 4.256E-01
f3 7. 7586E+07 6.4974E+07 8.956E-01
fa -1.0989E+03 | -1.0989E+03 | 7.858E-01
f5 -9.9992E+02 | -9.9992E+02 | 4.290E-02
fe -8.5073E+02 | -8.4462E+02 | 1.654E-01

- ~ 4 —— -
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guantitative measures

displayed: mean f-value after
3.1075 f-evals (51 runs)

bold: statistically significant
concluded: “EFWA significantly
better than EFWA-NG”

Source: Dynamic search in fireworks algorithm, Shaoqiu Zheng, Andreas Janecek, Junzhi
Li and Ying Tan CEC 2014



On performance measures - Requirements

a performance measure should be
quantitative, with a ratio scale
well-interpretable with a meaning
relevant in the “real world”

simple



Fixed Cost versus Fixed Budget - Collecting Data

quality indicator (to be minimized)

number of function evaluations



Fixed Cost versus Fixed Budget - Collecting Data

Collect for a given target (several target), the number of
function evaluations needed to reach a target

Repeat several times:

if algorithms are stochastic, never draw a conclusion from
a single run

if deterministic algorithm, repeat by changing (randomly)
the initial conditions



ECDF:

Empirical Cumulative Distribution Function of the
Runtime



Cumulative Distribution Function (CDF)

Given a random variable T the cumulative distribution
function (CDF) is defined as

CDF(f) = Pi(T < D) torait € |

4‘ L
0.0 < i i i i i i
0 1 2 3 4 5 6

If two random variables have the same CDF, they have the
same probability distribution

—— densi

It characterizes the probability distribution of T

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 21



Cumulative Distribution Function (CDF)
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Empirical Cumulative Distribution Function

- Given a collection of data 71,,7,,...,7, (€.g. an empirical sample of a

random variable) the empirical cumulative distribution function
(ECDF) is a step function that jumps by l/k at each value in the
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0.0 A

data.
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0.0 - 0.0 - 0.0 -!

0.0

2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

It is an estimate of the CDF that generated the points in the sample.

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 23



Empirical Cumulative Distribution Function

of I; < t

number
ECDF(Tl,...,Tk)(t) =

k

1 k
—;Z Li7<n)

=1

For { I; : 1 > 1} i.i.d. realization of a random variable T, by the LLN

ECDFTI,. . -»Tk(t) — > CDFT(t) a.s. forall

- 100 samples
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Anne Auger and Nikolaus Hansen, Inria, IP Paris

Benchmarking: state-of-the-art and beyond
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We display the ECDF of the runtime to reach target
function values (see next slides for illustrations)
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First Hitting Time is Monotonous
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15 Runs £ 15 Runtime Data Points
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Empirical Cumulative Distribution
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Empirical Cumulative Distribution
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Aggregation
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Aggregation
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Aggregation
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Aggregation of Several Convergence Graphs
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We can aggregate over:
* different targets
* different functions and targets

We should not aggregate over dimension

as functions of different dimensions have typically very
different runtimes



ECDF aggregated over targets - single functions
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ECDF aggregated over targets - single function

ECDF for a
single algorithm
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Anne Auger and Nikolaus Hansen, Inria, IP Paris
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the ECDF recovers the monotonous graph, discretised and
flipped
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Anne Auger and Nikolaus Hansen, Inria, IP Paris
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Runtime distribution from a sinale aranh
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Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond o3



ERT/ART:
Average Runtime



Which performance measure ?

to compare the two following scenario?
ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1, slow convergence




Which performance measure ?

Algo Restart A:

I— | ———RTx

ps(Algo Restart A) =1

Algo Restart B:
—— R

ps(Algo Restart B) =1



Expected Running Time (restart algo)

ERT = E[RTT] = B E [RTunsuccessful + F [RTsuccessful]

S

Estimator for ERT
~ _ #fsucc
Ps = #Rlzlms

RT nsuce = Average Evals of unsuccessful runs

A

RT5.cc = Average Evals of successful runs

ART = #Evals

#success



Example: scaling behavior

1 Sphere

dimension

ART on f1 of a variant of CMA-ES - linear scaling



On Test functions



What is the Benchmark?

Choice of Test Problems

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 60



What to Benchmark?

Furious activity is no substitute for understanding
(H.H. Williams)

- Taking all possible functions from a repository?

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and bevond 61




What to Benchmark?

Furious activity is no substitute for understanding
(H.H. Williams)

Taking all possible functions from a repository?
Bad idea if

function difficulties are unbalanced
too many small dimensional problems, convex problems...

and performance are aggregated

Leads to bias in the performance assessment

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and bevond 62




What to Benchmark?

test functions should be representative of difficulties we want to test
therefore NFL has no relevance as assumption of being closed
under permutation has no relevance wrt real world problems

related to real-word difficulties
for performance to be generalizable to RW

scalable
dimension plays a big role in performance
curse of dimensionality

comprehensible but not too easy
BB optimization does not mean BB benchmarking

we should still hide properties from the solver (hide optimum, ...)
solvers should not be able to exploit the benchmark intentionally or not

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 63



Example: COCO/BBOB Test Suite(s)

Functions are

based on known analytical functions, modeling a “known” difficulty
related to real-world problems

comprehensible
scalable

difficult (also non-separable)
compared to typical standards (at that time)

guasi-randomized as instances
with arbitrary shifts and smallish irregularities
to avoid artificial exploits and mitigate overfitting, emulates repetition of experiments

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 64



Example: COCO/BBOB Test Suite(s)

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function

@ Ellipsoidal Function

@ Rastrigin Function

@ Biiche-Rastrigin Function
@ Linear Slope

2 Functions with low or moderate conditioning

f6
f7
f8
fo

@ Attractive Sector Function
@ Step Ellipsoidal Function
@ Rosenbrock Function, original

@ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 @ Ellipsoidal Function

f11 @ Discus Function

f12 @ Bent Cigar Function

f13 @ Sharp Ridge Function

f14 @) Different Powers Function

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond

65

4 Multi-modal functions with adequate global structure
f15 @ Rastrigin Function

f16 ) Weierstrass Function

f17 ) Schaffers F7 Function

f18 @) Schaffers F7 Functions, moderately ill-conditioned
f19 @ Composite Griewank-Rosenbrock Function F8F2

5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @ Katsuura Function

f24 @ Lunacek bi-Rastrigin Function



Consider Questions to be Answered

- what is the performance on a specific (class of) problem(s)?
-+ how does the algorithm scale with dimension?
- how does the algorithm perform on

- 1ll-conditioned problems

- multimodal problems

- does the algorithm exploit separability?

Anne Auger and Nikolaus Hansen, Inria, IP Paris
Benchmarking: state-of-the-art and beyond 66



COCO platform: automatizing the
benchmarking process



https://github.com/numbbo/coco

— —

() GitHub - numbbo/coco: N... X ‘ "‘ , .. u

':.. (- ' 2 | (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco c C?Search

Most Visited @ Getting Started ".Z algorithms [COmparin... O numbbo/numbbo - Gi...

O Personal Opensource Business Explore Pricing Blog Support  This repository Sign in

numbbo / coco ® Wwatch *star 16 YFork 14

<> Code ') Issues 113 1) Pull requests 2 Step 1 -
Numerical Black-Box Optimization Benchmarking down Ioad COCO

D 7,902 commits I 12 branches O 25 releases

Branch: master » New pull request ing@file Clone or download ~

L"J brockho committed on GitHub Merge pull request #1075 from numbbo/development

BB code-experiments Merge pull request #1071 from ttusar/debug 2 months ago
B code-postprocessing further clean up of postprocessing output, 2 months ago
BB code-preprocessing/archive-update Added empty last lines. 2 months ago
BB docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
B howtos Update documentation-howto.md 5 months ago
& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
= .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago

&) AUTHORS small correction in AUTHORS 4 months ago

a 1\ 2! arall =Talal=laaT=la a = = = aatalalsa ~Tala’



https://github.com/numbbo/coco

O GitHub - numbbo/coco: N... *

( “~ ) = | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/coco c C® Search

|2) Most Visited @ Getting Started v;’ algorithms [COmparin... o numbbo/numbbo - Gi...
corresponds to the master branch as linked above.

3.In a system shell, e¢d into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

python - run-c
python - run-java
python - run-matlab
python - run-octave
python - run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> ( <language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

r |
python do.py install-postprocessing Step 2 n

installation of post-processing

to (user-locally) install the post-processing. From
the builds to a new release.

5. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example_experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

O Java read me and example experiment

O Matlab/Octave read me and example experiment



[[algorithms]]

http://coco.gforge.inria.fr/doku.php?id=algorithms

[@, show pagesource [=J] Old revisions

Step 3:
downloading data

COMPARING CONTINUOUS OPTIMISERS: COCO

[&] Recent changes @, Sitemap §f Login

Search

The following table lists all algorithms related to the BBOB workshops and special sessions in the years 2009 till 2015 together with links to

their data. In order to sort the table according to some columns, please click on the corresponding table header. If available, the source
codes of the algorithms can be downloaded by clicking on the link with the corresponding algorithm name in the second column.

No Algorithm

N AW N

10

11

ALPS
AMALGAM
BAYEDA

BFGS
BIPOP-CMA-ES

Cauchy-EDA

CMA-ESPLUSSEL

DASA

DE-PSO

DIRECT

EDA-PSO

Year Author(s)

2009
2009
2009
2009
2009
2009

2009

2009

2009

2009

2009

Data

(Raw)
Hornb @ noiselessData
Y

Bosman et al. QnoiselessData

Gallagher @ noiselessData
Ros QnoiselessData
Hansen QnoiselessData
Posik QnoiselessData
Auger and .

9 QnmselessData
Hansen
Korosec and .
& QnmselessData

ilc

Garcia-Nieto

QnoiselessData
et al.

Posik QnoiselessData

El-Abd and

Q noiselessData
Kamel

Noiseless Data Noisy

(Raw)

QnoisyData
@ noisyData
QnoisyData
QnoisyData
QnoisyData

n/a

QnoisyData
@ noisyData

QnoisyData

n/a

QnoisyData

related PDFs and Remarks

@roF
@ PDFnoiseless @ PDFnoisy
@ PDFnoiseless @ PDFgi
@ PDFnoiseless @ PDH
@ PDFnoiseless @ PDF

@roF

@ PDFnoiseless @ PDF
@ PDFnoiseless @ PDFnoisy

@ PDFnoiseless @ PDFnoisy

@ roF

algorithm is deterministic and thus, only run on each

instance once

@ roF

Navigation

® Home

s @ Documentation

®m download latest old code

» @ new code homepage

= @ download new code directly
= @BBOB 2016

® BBOB 2015 @ GECCO

m Alg S

for the moment:
IPOP-CMA-ES

= BBOB 2013
® Algorithms

m Results

®m Schedule

m Downloads
® BBOB 2012

m Algorithms

® Results

m Downloads
® BROR 2010



https://github.com/numbbo/coco
"Q GitHub - numbbo/coco: N... . . . . ‘

(‘ > |0 a@ GitHub, Inc. (US) | https://github.com/numbbo/coco Search

|2 Most Visited @ Getting Started \’: algorithms [COmparin... o numbbo/numbbo : Gi...

6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

The name bbob_pproc will become cocopp in future. Any subfolder in the folder argu

data. That is, experiments from different batches can be in different folders collected

YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data resu
generated by different algorithms.

bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the

postprocessing (file templateBBOBarticle.html ).

8. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at https://github.com/numbbo

J/coco/issues.

Description by Folder




