
Derivative-Free / Black-box Optimization
Task: minimize a numerical objective function (also called 
!tness function or loss function)   
  

without derivatives (gradient). : search space, dimension 
of the search space 
Also called zero-order black-box optimization

Ω n :
f : Ω ⊂ ℝn → ℝ, x ↦ f(x) ∈ ℝ

x
The function is seen by the algorithm as a zero-order oracle [a 
!rst order oracle would also return gradients] that can be 
queried at points and the oracle returns an answer  



Reminder: Local versus Global Optimum

global minimum local minimum

local maximum
n=1



Examples: Optimization of the Design of a Launcher



Control of the Alignement of Molecules
application domain: quantum physics or chemistry

In the case of a real lab experiment: the objective function is 
a real black-box



Co"ee Tasting Problem (A real Black-box)



A last Application



What is the Goal?

•We want to !nd  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

why?

•In general we will never !nd x⋆



What is the Goal?

•We want to !nd  such that  for all x⋆ f(x⋆) ≤ f(x) x

x⋆ ∈ argminx f(x)

•In general we will never !nd x⋆

•Because of the numerical/continuous nature of the search 
space we typically never hit exactly , we instead converge 
to a solution: 

we want to !nd  such that 

x⋆

xt ∈ ℝn lim
t→∞

f(xt) = min f

of course we want fast convergence



Level Sets of a Function



Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading 
(as 1-D optimization is “trivial”, see slides related to curse of 
dimensionality), we therefore often represent level-sets of 
functions 

Examples of level sets in 2D

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0

10

20

30

40

50

ℒc = {x ∈ ℝn | f(x) = c,}, c ∈ ℝ



Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 

http://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/applet/directional_derivative_mountain
http://mathinsight.org/applet/directional_derivative_mountain


Level Sets: Topographic Map

The function is the altitude

3-D picture

Topographic map



Level Set: Exercice

Consider a convex-quadratic function
f : x 7! 1

2(x� x
⇤)TH(x� x

⇤) = 1
2

P
i hi,i (xi � x

⇤
i )

2 + 1
2

P
i 6=j hi,j (xi � x

⇤
i )(xj � x

⇤
j )

with H a symmetric, positive, de!nite matrix

1. Assume n=2, H =


1 0
0 1

�
plot the level sets of f 

2. Same question with H =


1 0
0 9

�

3. Same question with H = P


1 0
0 9

�
P

T with P 2 R2⇥2

P orthogonal



What Makes an Optimization Problem Di"icult?



What Makes a Function Di"icult to Solve?
Why stochastic search?



Ruggedness

A cut of a 4-D function that can easily be solved with the 
CMA-ES algorithm

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value

easy! But how does it scale when n increases?

1-D optimization is trivial



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. 

How many points would you need to get a similar coverage (in 
terms of distance between adjacent points) in dimension 10? 



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. To get similar coverage, in terms of distance between 
adjacent points, of the 10-dimensional space [0,1]10 would 
require 10010 = 1020 points. A 100 points appear now as 
isolated points in a vast empty space. 

Consequence: a search policy (e.g. exhaustive search) that is 
valuable in small dimensions might be useless in moderate or 
large dimensional search spaces. 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 

import timeit 
timeit.timeit('import numpy as np ;  
np.sum(np.ones(10)*np.ones(10))', number=1000000) 
> 7.0521080493927

7 seconds for 106 evaluations of  

We would need more than 108 days for evaluating 1020 points 

[As a reference: origin of human species: roughly 6 x 108 days]

f(x) =
P10

i=1 x
2
i



Separability

a weak de!nition of separability

Given , let us de!ne the 1-D 
functions that are cuts of  along the di"erent coordinates:

f : x = (x1, …, xn) ∈ ℝn ↦ f(x) ∈ ℝ
f

f i
(xi

1,…,xin)(y) = f(xi
1, …, xi

i−1, y, xi
i+1, …, xi

n)

for , with (xi
1, …, xi

n) ∈ ℝn−1 (xi
1, …, xi

n) = (xi
1, …, xi

i−1, xi
i+1, …, xi

n)

De!nition: A function  is separable if for all i, for all 
, for all 

f
(xi

1, …, xi
n) ∈ ℝn−1 ( ̂xi

1, …, ̂xi
n) ∈ ℝn−1

argminy f i
(xi

1,…,xin)(y) = argminy f i
( ̂xi

1,…, ̂xin)(y)



Separability (cont)

Proposition: Let  be a separable then for all f x j
i

argmin f(x1, …, xn) = (argmin f1
(x1

2,…,x1n)(x1), …, argmin f n
(xn

1,…,xn
n−1)(xn))

and  can be optimized using  minimization along the 
coordinates.

f n

Exercice: prove the previous proposition



Example: Additively Decomposable Functions

Exercice: Let  for  having a unique 

argmin. Prove that  is separable. We say in this case that  is 
additively decomposable.

f(x1, …, xn) =
n

∑
i=1

hi(xi) hi

f f

Example: Rastrigin function

f(x) = 10n +
n

∑
i=1

(x2
i − 10 cos(2πxi))

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3



Non-separable Problems

Separable problems are typically easy to optimize. Yet di"icult 
real-word problems are non-separable. 

One needs to be careful when evaluating optimization algorithms 
that not too many test functions are separable and if so that the 
algorithms do not exploit separability. 

Otherwise: good performance on test problems will not re"ect 
good performance of the algorithm to solve di#icult problems

Algorithms known to exploit separability:  
Many Genetic Algorithms (GA), Most Particle Swarm Optimization 
(PSO)



Non-separable Problems
Building a non-separable problem from a separable one



Ill-conditioned Problems - Case of Convex-quadratic functions

Exercice: Consider a convex-quadratic function 
 with  a symmetric, positive, de!nite 

(SPD) matrix. 
1. why is it called a convex-quadratic function? What is the Hessian 

matrix of  ? 
The condition number of the matrix  (with respect to the 
Euclidean norm) is de!ned as

f(x) = 1
2 (x − x⋆)H(x − x⋆) H

f
H

cond(H) = λmax(H)
λmin(H)

with  and  being respectively the largest and smallest 
eigenvalues.

λmax() λmin()



Ill-conditioned Problems

Ill-conditioned means a high condition number of the Hessian 
matrix .H

Consider now the speci!c case of the function  

  1. Compute its Hessian matrix, its condition number 
  2. Plots the level sets of , relate the condition number to the 
axis ratio of the level sets of  
  3. Generalize to a general convex-quadratic function 

f(x) = 1
2 (x2

1 + 9x2
2)

f
f

Real-world problems are often ill-conditioned.  
   4. Why to you think it is the case? 
   5. why are ill-conditioned problems di"icult?  
      (see also  Exercice 2.5) 



Ill-conditioned Problems


