Derivative-Free / Black-box Optimization

Task: minimize a numerical function (also called
fitness function or loss function)

fTQCR">R,x— f(x) R

without derivatives (gradient). €: search space, n :dimension
of the search space

Also called optimization
X - =
The function is seen by the algorithm as a zero-order a

first order oracle would also return gradients| that can be
queried at points and the oracle returns an answer



Reminder: Local versus Global Optimum

n=1

local maximum I\
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global minimum local minimum



Examples: Optimization of the Design of a Launcher
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= Scenario: multi-stage launcher brings a
satellite into orbit

= Minimize the overall cost of a launch

= Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

23 continuous parameters to optimize
+ constraints




Control of the Alignement of Molecules

application domain: quantum physics or chemistry

CH
ke

Objective function:
via numerical simulation

or a real experiment

possible application in drug design

In the case of a real lab experiment: the objective function is
a real black-box



Coffee Tasting Problem (A real Black-box)

Coffee Tasting Problem

» Find a mixture of coffee in order to keep the coffee taste from
one year to another

» Objective function = opinion of one expert

@0 °

Quasipalm

M. Herdy: “Evolution Strategies with subjective
selection”, 1996



A last Application

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yciSFul1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures”, SIGGRAPH Asia, 2013.



What is the Goal?

= We want to find x* such that f(x*) < f(x) for all x

= In general we will never find x*

why?



What is the Goal?

= We want to find x* such that f(x™) < f(x) for all x

= In general we will never find x*

» Because of the numerical/continuous nature of the search
space we typically never hit exactly x*, we instead converge
to a solution:

we want to find x, € R"” such that Iim f(x,) = minf

[— 00

of course we want convergence



| evel Sets of a Function



| evel Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading
(as 1-D optimization is “trivial”, see slides related to curse of
dimensionality), we therefore often represent level-sets of

functions

Examples of level sets in 2D
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| evel Sets: Visualization of a Function

)
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8=0 P 7 fla)=487

o—— a=(6.7,1.1) D.f(a) = 2.00 u=(-091,-042)  Duf(a)=2.00 .

u=(-091,-042) Vf(a)=(-1.81,-0.85) 1Vf(a)i=2.00 Vf(a) = (-1.81, -0.85) 1Vf(a)1 =2.00

Source: Nykamp DQ), “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain


http://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/applet/directional_derivative_mountain
http://mathinsight.org/applet/directional_derivative_mountain

Level Sets: Topographic Map

The function is the altitude




L evel Set: Exercice

Consider a convex-quadratic function

fram gl —a) Hx —a*) = 5 30 hig (xi — ) + 5 30,5 hiy (20 — xf) (2 — =

with H a symmetric, positive, definite matrix

1. Assume n=2,

2. Same question with H =

H =

3. Same question with H = P

plot the level sets of f

Pl with P € R?*?
P orthogonal

*
J
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What Makes an Optimization Problem Difficult?



What Makes a Function Difficult to Solve?

Why stochastic search?

» non-linear, non-quadratic, non-convex
on linear and quadratic functions
much better search policies are
available

> ruggedness

non-smooth, discontinuous,
multimodal, and/or noisy
function

» dimensionality (size of search space)

(considerably) larger than three

> non-separability
dependencies between the

objective variables
» ill-conditioning

gradient direction Newton directio



Ruggedness
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A cut of a 4-D function that can easily be solved with the
CMA-ES algorithm



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f:]0,1] =R 7



Why is Optimization a non-trivial Problem?

Curse of dimensionality
if n=1, which simple approach could you use to minimize:

f:10,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality
if n=1, which simple approach could you use to minimize:

f:]0,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:

. S ——

f:10,1] =R 7

set a regular grid on [0,1]

evaluate on f all the points of the grid

return the lowest function va

x

UE

easy! But how does it scale when n increases?

1-D optimization is trivial
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Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
0,1].

How many points would you need to get a similar coverage (in

terms of distance between adjacent points) in dimension 107



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

Example: Consider placing 100 points onto a real interval, say
[0,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]1° would
require 10010 = 1020 points. A 100 points appear now as
isolated points in a vast empty space.

Consequence: a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or

large dimensional search spaces.



Curse of Dimensionality

How long would it take to evaluate 1020 points?



Curse of Dimensionality

How long would it take to evaluate 1020 points?

import timeit

timeit.timeit('import numpy as np ;
np.sum(np.ones(10)*np.ones(10))", number=1000000)
> 7.0521080493927

7 seconds for 106 evaluations of f(x) = 2321 513@2

We would need more than 108 days for evaluating 1020 points

[As a reference: origin of human species: roughly 6 x 108 days]



Separability

Given f: x = (x{,...,x,) € R" > f(x) € R, let us define the 1-D

functions that are cuts of f along the different coordinates:

l

Pty @) =S s X Yo X0 0)

. . o . . . . . .
for (x;,...,x,) € R"", with (x{,...,x,) = (x;, ...,xi’_l,xl?ﬂ, s X))
Definition: A function f is if for all i, for all

(Xf, ---,X,f;) c R™!, for all ()Ac"l, ...,)2;) c R"!
argminyﬂx{,...,x,g)(y ) = argminyf(lfcil R )(Y)

a weak definition of separability



Separability (cont)

Proposition: Let f be a then for all x{

argmin f(x;, ..., x,) = <argmin Jﬁg | .,x%)(xﬁa ...,argminf, (r)lcl . .,x,’,}_l)(x”)>

and f can be optimized using n minimization along the

coordinates.

Exercice: prove the previous proposition



Example: Additively Decomposable Functions

Exercice: Let f(x,...,x,) = Z h(x;) for h; having a unique

=1

argmin. Prove that f is separable. We say in this case that f is

additively decomposable.

Example: Rastrigin function

f(x) = 10n+ )’ (x? — 10 cos(27x;))
i=1
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Non-separable Problems

Separable problems are typically easy to optimize. Yet

One needs to be careful when evaluating optimization algorithms
that not too many test functions are separable and if so that the
algorithms do not exploit separability.

Otherwise: good performance on test problems will not reflect

good performance of the algorithm to solve difficult problems

Algorithms known to exploit separability:
Many Genetic Algorithms (GA), Most Particle Swarm Optimization
(PSO)



Non-separable Problems

Building a non-separable problem from a separable one

Rotating the coordinate system

» f . x+— f(x) separable
» f : x — f(Rx) non-separable

R rotation matrix
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Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278



lll-conditioned Problems - Case of Convex-quadratic functions

Exercice: Consider a convex-quadratic function

1
f(x) = E(X — x*)H(x — x™) with H a symmetric, positive, definite
(SPD) matrix.

1. why is it called a convex-quadratic function? What is the H
matrix of f 7
The condition number of the matrix H (with respect to the

Euclidean norm) is defined as

Amax(H)
cond(H) = )

() being respectively the largest and smallest

with 4. () and A

eigenvalues.

max min



lll-conditioned Problems

lll-conditioned means a high condition number of the Hessian

matrix H.

Consider now the specific case of the function f(x) = 5()612 + 9x22)

1. Compute its Hessian matrix, its condition number

2. Plots the level sets of f, relate the condition number to the
axis ratio of the level sets of f

3. Generalize to a general convex-quadratic function
Real-world problems are often ill-conditioned.

4. Why to you think it is the case?

5. why are ill-conditioned problems ditficult?

(see also Exercice 2.5)



lll-conditioned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed’ lines of equal function value (high
curvatures)

A

Condition number equals nine here. Condition numbers up to 10°
are not unusual in real world problems.

gradient direction —f'(x)?!



