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Abstract

We consider a branching random walk on R with a stationary and ergodic environment
& = (&) indexed by time n € N. Let Z,, be the counting measure of particles of generation n.
We consider the case where the corresponding branching process {Z,(R)} (n € N) is supercrit-
ical. We establish large deviation principles, central limit theorems and a local limit theorem
for the sequence of counting measures {Z,}, and prove that the position R, (resp. L) of
rightmost (resp. leftmost) particles of generation n satisfies a law of large numbers.
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1 Introduction

A random environment in time is modeled as a stationary and ergodic sequence of random vari-
ables, &,, indexed by the time n € N, taking values in some measurable space ©. Each realization
of &, corresponds to a distribution 7, = n(&,) on N X R xR x ---.

When the environment & = (§,,) is given, the process can be described as follows. At time 0,
there is an initial particle () of generation 0 located at Sy = 0 € R; at time 1, it is replaced by
N = N(0) particles of generation 1, located at L; = L;(0), 1 <4 < N, where the random vector
Xp=(N,L1,La,---) e NXR xR x .- is of distribution 1y = n(&y) (given the environment &). In
general, each particle u = g - - - u,, of generation n located at .S, is replaced at time n+1 by N (u)
new particles ui of generation n + 1, located at

where the random vector X,, = (N(u), Li(u), La(u),---) is of distribution 0, = n(§,). Note that
the values L;(u) for i > N, do not play any role for our model; we introduce them only for
convenience. We can for example take L;(u) = 0 for ¢ > N,. All particles behave independently
conditioned on the environment &.

Let (I',IP¢) be the probability space under which the process is defined when the environment
¢ is fixed. As usual, P¢ is called quenched law. The total probability space can be formulated as
the product space (I' x ON, P), where P = P¢ ® 7 in the sense that for all measurable and positive

, we have
g /ngP’: /@N </Fg(€7y)dP§(y)> dr (&),

where 7 is the law of the environment £. The total probability P is usually called annealed
law. The quenched law P may be considered to be the conditional probability of P given §.
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Let U = {0} U,;>; N" be the set of all finite sequence u = uj---u,. By definition, under Py,
the random vectors {X,}, indexed by u € U, are independent of each other, and each X, has
distribution n,, = (&) if |u| = n, where |u| denotes the length of u.

Let T be the Galton-Watson tree with defining element { N,,}. We have: (a) § € T; (b) ifu € T,
then wi € T if and only if 1 <i < N,; (¢) ui € T implies u € T. Let T,, = {u € T : |u| = n} be the
set of particles of generation n and

Zn=Y s,

’lLETn

be the counting measure of particles of generation n, so that for a subset A of R, Z,,(A) is the
number of particles of generation n located in A.
For any finite sequence u, let

Ny,
=1

be the counting measure corresponding to the random vector X,, whose increasing points are
L;i(u), 1 <i < N,. Denote
Xn = X(ugln),

where ugp = (1,1,---) and wp|n is the restriction to its first n terms, with the convention that
up|0 = 0. For simplicity, we introduce the following notations:

n—1
Ny=Xn(R), my=EN,, Py=1 and P, =EcZ,(R) =[] ma (1.1)
=0

Let
Fo=0(&), Fn=0(& (N(u),L1(u),La(u), ) :|ul <n) forn>1

be the o-field containing all the information concerning the first n generations. It is well known
that the sequence {Z,(R)/P,} is a non-negative martingale under P¢ for every £ with respect to
the filtration F,,, hence it converges almost surely (a.s.) to a random variable denoted by W.
Throughout this paper we always assume that

N
Elogmg € (0,00) and E—Ilogt N < cc. (1.2)
mo

The first condition means that the corresponding branching process in random environment,
{Z,(R)}, is supercritical; the second implies that W is non-degenerate. Hence (see e.g. Athreya
and Karlin (1971, [1]))

Pe(W > 0) = Pe(Z,(R) — 00) = ILm Pe(Zn(R) >0) >0 a.s..
n—oo
In this paper, we are interested in asymptotic properties of the sequence of measures {Z,}.
Our first objective is to show a large deviation principle for {Z,(n-)} (Theorem 3.2). Our
approach uses the Géartner-Ellis theorem. In the proof, we first demonstrate that the sequence
of quenched means {E¢Z,(n-)} satisfies a large deviation principle, and then show that the free

energy W, where Z,(t) = > et e!Sn denotes the partition function, converges a.s. to a
limit that we calculate explicitly (Theorem 3.1). Moreover, we also show that the position R,
(resp. L) of rightmost (resp. leftmost) particles of generation n satisfies a law of large numbers
(Theorem 3.4): % (resp. %) converges a.s. to a limit that we determine explicitly. These results
generalize those of Biggins (1977, [4]), Franchi (1995, [14]) and Chauvin & Rouault (1997, [9]) for
the deterministic environment case.

Our second objective is to show central limit theorems and related results for {Z,}. For a
deterministic branching random walk, Kaplan and Asmussen (1976, [21]) proved the following



IEXO(

central limit theorem. Assume that m = EN € (1,00) and that ) has mean 0 and variance 1.

If EN (log N)'*¢ < oo for some & > 0, then
m~ " Z,(—o0,v/nx] = ®(x)W  a.s. Vz €R, (1.3)

where ®(z) is the distribution function of the standard normal distribution N(0,1). They also
gave a local version of (1.3) under the stronger moment condition that EN(log N)? < oo for
some vy > 3/2. The formule (1.3), which was first conjectured by Harris [16], has been studied
by many authors, see e.g. Stam (1966, [32]), Kaplan & Asmussen (1976, [21]), Klebaner (1982,
[23]) and Biggins (1990, [7]). We shall show the following version of (1.3) (Theorem 10.2) for a
branching random walk in a random environment: under certain moment conditions, the sequence
of probability measures %@W, with (an,b,) that we calculate explicitly, converges to the
standard normal distribution N'(0,1) in law a.s. on the survival event {Z,, — oco}. The technic
in the proof is a mixture of Klebaner (1982) and Biggins (1990) by considering the characteristic
function and choosing an appropriate truncation function. We shall also show a corresponding local
limit theorem (Theorem 10.4) under stronger moment conditions, which generalizes the result of
Biggins (1990, Theorem 7) on deterministic branching random walks. From Theorem 10.4 we
obtain another form of local limit theorem (Corollary 10.5), which coincides with the result of
Kaplan & Asmussen (1976, Theorem 2) for the deterministic environment case.

Moreover, we shall also show large deviation principles and central limit theorems for proba-

EeZn(n) EZn(- Zn (- Zn(-
7@ Erw) Brgm and EeZ2gy

bility mesures with different normings:

The rest of paper is organized as follows. In Sections 2 - 5, we consider large deviations. In
Section 2, we show large deviation principles for E¢Z,,(n-), EZ,(n-) and EE Z( (R) In Section 3,
we state a convergence result for the free energy, a large deviation prmmple for Z,(n-) and laws
of large numbers for R, and L,. In Sectlon 4, we prove the results of Section 3. In Section 5, we
show a large deviation principle for Eg — ((R)) In Sections 6 - 12, we study central limit theorems.
In Section 6, we consider a branching random walk in a varying environment and present the
corresponding limit theorems. In Sections 7 and 8, we prove the results of Section 6. From
Sections 9 to 12, we return to a branching random walk in a random environment: in Section 9, we

%, %”(()) and Eg—7- 4 Z((?R)‘ in Section 10, we present a central

limit theorem and a local limit theorem for %é%, which are proved in Section 11; in Section 12,

show central limit theorems for

we show central limit theorems for E¢ Zn((R)) and E ZZ:(%.

2 Large deviations for E.Z,(n-), EZ,(n:) and E]Egz( (]132)

To study large deviations of Z,, we begin with the study of its quenched and annealed means. For
n € Nandt € R, let
N (u)

my(t) == Ee / ¢ X, (dr) =B Y e (ueTy), (2.1)
=1

be the Laplace transform of the counting measure describing the evolution of the system at time
n. In particular,

Eg Z etL mo EgN my.

We assume that

/
E|L1| < oo, E|logmg(t)| < oo and E| 022| < 0 (2.2)
mo

for all £ € R. The last two moment conditions imply that
my(t)

A(t) = Elogmo(t) and A'(t) := B "




are well defined as real numbers, that A(¢) is differentiable everywhere on R with A’(t) as its

derivative (this can be easily verified by the dominated convergence theorem, using the fact that
m(t)
mo(t)

the function ¢ — is increasing). Let

A (z) = igﬂg{l‘t —At)}

be the Legendre transform of A. Then
A () = tA' (t) — A(t) if x=A(t) for some t € R,
7 4 if x> AN(+00)orz < A(—00),
and

min A*(z) = A*(A'(0)) = —A(0) = —Elogmg < 0.

x

With these notations, now we can state our large deviation principle for the quenched means
E¢Zp(n-), which will leads to a large deviation principle about Z,(n-).

Theorem 2.1 (Large deviation principle for quenched means E¢ Z,,(n-)). Assume (2.2). For almost
every &, the sequence of finite measures A — E¢Z,(nA) satisfies a principle of large deviation with
rate function A*: for each measurable subset A of R,

1
— inf A*(z) < liminf —logE:Z,(nA)

TEA° n—oo 1
1
< limsup —logE¢Z,(nA) < — inf A*(z),
n—oo T €A

where A° denotes the interior of A, and A its closure.
Proof. Notice that the measures g, () = E¢Z,(-) satisfy

Gn(t) = / e gu(dr) = Fe 3 €5 = mo(t)...mn_1 ().

UETn

By the ergodic theorem,

lim 1 log Gn(t) = A(t) := Elogmg(t) a.s..

n—oo N

Therefore, applying the Gértner-Ellis theorem ([11], p.53, Exercise 2.3.20) to the sequence of
normalized probability measures ¢,(n-)/¢,(R), we obtain the desired result. O

If the environment is 4.¢.d., similar results can be established for annealed means. Let
Ay (t) = log Emg(t),
and A} be its Legendre transform. Then we have:

Theorem 2.2 (Large deviation principle for annealed means EZ,,(n-)). Assume that &, are i.i.d..
If Emg(t) € (0,00) for all t € R, then the sequence of finite measures A — BEZ,(nA) satisfies a
principle of large deviation with rate function A} : for each measurable subset A of R,

1
. « < Tliminf L
zlenjo A (z) < hnrglo%f - logEZ,(nA)

1
limsup —logEZ,,(nA) < — inf A} (z),

n—oo M T€EA

IN

where A° denotes the interior of A, and A its closure.



Remark. It is easy to see that

Ao(t) > A(t) and  A%(z) < A*(z).

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1, with ¢,(-) = EZ, (). Notice
that when &, are i.i.d.,

an(t) = /e qn(d EZe"—Emo )"

ueTn
O
Zn ()

If we consider the measures E instead of = Zn()
Ee Zn(R)

EZn(R)

, we can obtain another large deviation
principle.

Theorem 2.3 (Large deviation principle for Eg (() ). Assume that &, are i.i.d.. Let Ay (t) =

R)
log Emo—(ot) and AY be its Legendre transform. If ]Em%—o) € (0,00) for all t € R, then the sequence

of finite measures A — E Z”("&)) satisfies a principle of large deviation with rate function AX: for

each measurable subset A of R,

o1 Zn(nA)
— * < —
Juf AS(x) < liminfClogEp oy Zn(R)

. 1 Zn(nA) e w
< 1 —1 E7<— f A2
= e Pz, my = RN

where A° denotes the interior of A, and A its closure.

Proof. The proof is still similar to that of Theorem 2.1, with ¢,(-) = Eg Z((?R) whose Laplace

inl0)i= [ an(an) = (22200)"

transform 1is

O]

3 Convergence of the free energy; large deviations for Z,(n-); po-
sitions of rightmost and leftmost particles

Now we consider large deviations for the sequence of measures {Z,(n-)}. Let

Zn(t) = /mz =) e (3.1)

uETn

be the Laplace transform of Z,,, also called partition function by physicians. We are interested in

the convergence of the free energy W. To this end we define two critical values t_ and .
Let

p(t) = tA'(t) — A(t), teR.

Notice that p'(t) = tA”(t). Therefore p(t) decreases on (—o0, 0], increases on [0,00), and attains
its minimum at 0:

mtin p(t) = p(0) = —A(0) < 0.

Let
=inf{t € R:tA'(t) — A(t) <0},



ty =sup{t € R:tA'(t) — A(t) < 0}.

Then —oo <t_ <0<ty < oo, t_ and t4 are two solutions of tA’(t) — A(t) = 0 if they are finite.
For simplicity, we also assume that
N>1 a.s., (3.2)

so that Z,(R) — oo a.s..

Theorem 3.1 (Convergence of the free energy). It is a.s. that for allt € R,

. At)  aif te(t-,ty),
08 Zn() _ 54y .= tﬁ’EtJF% z? 310 (3:3)
(o) if <t

For the deterministic environment case, see Chauvin & Rouault (1997, [9]) and Franchi (1995,
[14]).

Let A*(z) be the Legendre transform of A(¢). By Theorem 3.1 and the Gértner- Ellis’ theorem,
we immediately obtain the following large deviation principe for Z,(n-).

lim
n— o0 n

Theorem 3.2 (Large deviation principle for Z,,(n-)). It is a.s. that the sequence of finite measures
A — Z,(nA) satisfies a principle of large deviation with rate function A*: for each measurable
subset A of R,

~ 1
— inf A*(z) < liminf—log Z,(nA)

TEA° n—o0o 1
1 -
< limsup — log Z,,(nA) < — inf A*(x),
n—oo T z€A

where A° denotes the interior of A, and A its closure.

Remark. It can be seen that A(t) < A(t), so that A*(x) > A*(z). Moreover,

= L A@) i e NG, A
A ($)_{ +oo if x<A(t-)or 11+>A/(t+)7

Corollary 3.3. It is a.s. that

lim 2 log Zy[nz, 00) = —A*(z) > 0 if 2 € (A(0), A'(£+)),

n—oo n
1
le ~log Zp(—oo,nx] = —A*(x) > 0 if x € (N (t_),A'(0)).
n—oo N
For deterministic branching random walks, see Biggins (1977, [4]) and Chauvin & Rouault
(1997, [9]).
Remark.
z € (A'(0),A'(ty)) if and only if z > A’(0) and A*(z) < 0.
x € (A'(t-),A(0)) if and only if x < A’(0) and A*(z) < 0.
If the set T,, # 0, let

L, =min S, (resp. R, = maxS5,)
uclly UETn

be the position of leftmost (resp. rightmost) particles of generation n. We can see that L,, (resp.
R,,) satisfies a law of large numbers.

Theorem 3.4 (Asymptotic properties of L,, and Ry,). It is a.s. that
L

. n /
T =)
S Y
A T = A

For deterministic branching random walks, see Biggins (1977) and Chauvin & Rouault (1997).



4 Proofs of Theorems 3.1 and 3.4

Let us give the proofs of Theorems 3.1 and 3.4 which are composed by some lemmas. Similar
arguments have been used in Franchi (1995, [14]) and Chauvin & Rouault (1997).
Observe that ~ '
W (t) o Zn(t) — Zue'ﬂ‘n e
" EeZn(t)  mo(t)..mn_1(t)

is a martingale, therefore it converges a.s. to a random variable W (t) € [0, 00). In the deterministic
environment case, this martingale has been studied by Kahane & Peyriere (1976), Biggins (1977),
Durrett & Liggett (1983), Guivarc’h (1990), Lyons (1997) and Liu (1997, 1998, 2000, 2001), etc.
in different contexts.

The following lemma concerns the non degeneration of W (t).

Lemma 4.1. Ift € (t_,t;) and EWy(t)log™ Wi (t) < oo, then
W(t) >0 as.

Ift<t_ ort>ty, then
W(t)=0 as.

Notice that t € (t_,t) is equivalent to tA’(t) — A(t) < 0. Therefore the lemma is an immediate
consequence of Theorem 7.2 of Biggins and Kyprianous (2004) on a branching process in a random
environment, or of a result of Kuhlbusch (2004, [22]) on weighted branching processes in random
environment.

Lemma 4.2. Ift € (t_,ty), then

lim llog Zn(t) = A(t) a.s.. (4.1)

n—oo N

Proof. 1f EW1(t)logt Wi (t) < oo, by Lemma 4.1, W(t) > 0 a.s.. Consequently,
1, - 1 14
Zlog Z,(t) = —log Wi (1) + = Y " logm;(t) — E1 t) = A(t) a.s..
2108 0(0) = Tog Walt) + - 3 log i) = Elogma(t) = AG) as

We now consider the general case where EWy(t) log™ W1 () may be infinite. We only consider
the case where t € [0,t4) (the case where ¢t € (t_,0]) can be considered in a similar way, or by
considering (—L,,) instead of (Ly,)).

For the lower bound, we use an truncating argument. For ¢ € N, we construct a new branching
random walk in a random environment (BRWRE) using X¢(u) = (N(u) A ¢, L1(u), La(u), - )
instead of X (u) = (N(u), L1(u), L2(u),- -+ ), where and throughout we write a A b = min(a,b). We
shall apply Lemma 4.1 to the new BRWRE. We define mg,(t), Wg(t), A.(t) and tG for the new
BRWRE just as just as my,(t) W, (t), A(t) and ¢t were defined for the original BRWRE.

We first show that A.(t) := Elogmo(t) T A(t) as ¢ T co. Clearly, m§(t) = Ee SN etFi 4 mp(t)
as ¢ 1 oo. This leads to Elog™ m§(t) T Elog™ mg(t) by the monotone convergence theorem. On
the other hand, for ¢ > 1, we have

log™ mé(t) < log™ my(t) = log™ Ege'™t < tRe|Ly]

(as Egetlr > e Eell1l by Jensen’s inequality). Therefore by the condition E|L;| < oo and the
dominated convergence theorem, Elog™ m§(t) | Elog™ mo(t).

We next prove that for ¢ > 0 large enough, t € [0, ), which is equivalent to tAL(t) — A.(t) < 0.
Recall that t € [0,,¢4) is equivalent to tA’(t) — A(t) < 0. By the definition of A’(t), there exists a
h > 0 such that

A+ 1) - A@)

Y —A(t) <0.



Since A. T A as ¢ T 0o, we have for ¢ large enough,

tAc(t + h) — Ac(2)

- — A(t) <. (4.2)
The convexity of A.(t) shows that
AL < Ac(t+ h}i —Ac(t) ' (4.3)
Combing (4.4) with (4.2) we obtain for ¢ large enough,
tAL(t) — Ac(t) < 0. (4.4)

We finally prove that EW{(¢)logt WE(t) < oo. Let Y = WE(t). we define a random variable
X whose distribution is determined by

Eeg(X) = EcYg(Y)

for all bounded and measurable function g (notice that E¢Y = 1 by definition). For x € R, let

l(:c):{ r/e ifx<e,

logx ifx>e.
It is clear that [ is concave and logt z < I(z) < 14 log™ x for all z € R. Thus
E¢Ylogt Y = Eelogt X < Eel(x)

I(EeX) = I(EeY?)
1+logt EcY?

4 [ em§(2t)
1+ log (mg(t)Q )

where the last inequality holds as (32N et1)2 < (N A ¢) YV e?* i, Taking expectation in the
above inequality , we get

IAIN

IN

6(2t
EW(t)logT Wi(t) =EY logtY < 1+Elog" <Cmc0((t)2)>
My

< 1+logc+ Elog™ mo(2t) + 2Elog™ m§(t) < oo.

We have therefore proved that for ¢ > 0 large enough, the new BRWRE satisfies the conditions
of Lemma 4.1, so that

1 -
lim —log Z; (t) = Elogmg(t) = Ac(t) a.s..

n—oo N

Notice that Z,(t) > Z¢(t). It follows that

lim inf ! log Zn(t) > Ac(t) a.s..

n—oo N
Letting ¢ T oo, we obtain
1 .
liminf —log Z,,(t) > A(t) a.s..

n—oo n

For th upper bound, from the decomposition 1 log Zn(t) = Llog W, (t)+ 1 Z?;ol log m;(t) and
the fact that W, (t) — W (t) < oo a.s., we obtain that

1 ~
limsup —log Z,,(t) < A(t) a.s..

n—oo M

This completes the proof. ]



Lemma 4.3. It is a.s. that R
limsup — < A/(t).
n

n—0o0

Proof. For a > A'(ty4), we have A*(a) > 0. By Theorem 2.1,

1
lim —E¢Z,[lan,00) = —A"(a) <0 a.s..

n—oo n
This leads to ), P¢(Zy[an, 00) > 1) < oo a.s.. It follows that by Borel-Cantelli’s lemma, P¢ a.s. ,
Zplan,00) =0  for n large enough.

Therefore R, < an, so that a.s.,

R
limsup —2 < a.

n—oo N
Letting a | A’(t+), we obtain the desired result. O
Lemma 4.4. Ift > t,, then a.s.,
. log Zn(t) A
nILngO — = tA(t4). (4.5)

Proof. For the upper bound, we only consider the case where ¢, < oco. Choose 0 < tg < t4 < t.
Since S, < R,, for u € T,,, we have

tSu S tUSu + (t - tO)Rm

so that ) )
Zn(t) < Zy(to)ett0)Fn,
Thus . -
log Z, (¢ log Z,, (¢ R
g Zn(1) < og Zn(to) + (t —to) —2.
n n n
Letting n — oo and using Lemma 4.3, we get a.s.,
log Z,,(t
tim sup 22200 < A1) 4 (¢ — 10)A (1.
n—00 n
Letting to T t+ and using A(t4) — t1A'(t4+) = 0, we obtain a.s.,
log Zy,(t
lim sup log Zu(t) < tA'(ty).
n—00 n

For the lower bound, as log Zn(t) is a convex function of ¢, for t_ <ty < t; < t4 < t, we have

log Zn(t) —log Zn(to) - log Zn(tl) —log Zn(to)
t—to - t1 —to '

Dividing the inequality by n and applying Lemma 4.2 to ty and 1, we obtain a.s.,

liminfw > A(to) + tt ~ 10 (A1) — Ato)).

n—00 n 1 — 1o

Letting t; | tg, we get a.s.,

log Zy,
lim inf 08 2nlt) (*)

n—00 n

> A(to) + (t — to)A'(to).
Letting to 1 t+ and using A(t4) — t1A'(¢4) = 0, we obtain a.s.,

log Z,
lim inf L(t)

n—o0 n

> tA (ty).

This completes the proof. O



Lemma 4.5. It is a.s. that R
lim inf — > A'(t,).

n—oo N

Proof. Notice that S, < R, for u € T,, we have
Zn(t) < Zp(R)etin,

so that for each 0 < t < o0, 3
log Zn(t) _ log Zn(R) Fn (4.6)
n n n

If t; < oo, then by Lemma 4.4, the above inequality gives for t > ¢, a.s.,

1 R
!/ . . n
N(ty) < E]Elogmo + hnrggf —

Letting t 1 0o, we obtain the desired result. If ¢; = oo, then by Lemma 4.2, the inequality (4.6)

gives for t > 0, a.s.,
A) _

. Elogmg + liminf &

n—oo n

&+ | =

Letting t 1 oo, we get a.s.,

=

liminf — > A'(c0) = A'(t4).
n

n—oo

O

The conclusions for ¢ < ¢t_ and L,, can be obtained in a similar way, or by applying the obtained
results for ¢t > ¢, and R, to the opposite branching random walk —.S,,. Hence Theorem 3.4 holds,
and (3.3) holds a.s. for each fixed t € R. So a.s. (3.3) holds for all rational ¢, and therefore for all
real t by the convexity of log Z,(t). This ends the proof of Theorem 3.1.

Zn(n-)
Zn(R)

5 Large deviations for [E;

Using the lower bound in Therorem 3.2 and the upper bound Theorem 2.1, we have the following
theorem.

Theorem 5.1. If a.s. P¢(N < 1) = 0 and EcN'*® < K for some constants § > 0 and K > 0,
then a.s., for each measurable subset A of R,

s | Zn(nA)
— xlenjo A*(z) —Elogmg < llnII_l>£f - log E¢ Zn(R)
Zn(nA)

1
< limsup — logE < — inf A*(z) — Elog myg,

where A° denotes the interior of A, and A its closure.
Notice that A*(z) = A*(z) for = € (A/(t_), A’(t;)). From Theorem 5.1 we obtain

Corollary 5.2. If a.s. P¢(N < 1) =0 and ]EgNH"S < K for some constants § > 0 and K > 0,
then a.s.,

o1 Zp[nx,00) . ) , ,
. 1 Zn(—oo,nzv] _ * ; / !
nlirrolo - log E¢ R A (x) —Elogmg if x € (A'(t-), A'(0)).

Theorem 5.1 is a combination of Lemmas 5.1 and 5.4 below.
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Lemma 5.1 (Lower bound). It is a.s. that for each measurable subset A of R,

Zn(nA .
lim géfﬁ log Ee < Zn(ZR))> >~ inf &*(2) — Elogmy. (5.1)

Proof. By Therorem 3.2, a.s.

hm 1nf flogZ (nA) > — inf A*(z),

r€eA°

which implies that for each € > 0, a.s.
Zn(nA)
Zn(R)

1 ~
lim P, ( log > —A*(x) — Elogmg — g) =1.
n—oo n

Write f(A) = — inf,e 40 A*(x) — Elogmg. Notice that

Fe ( Zn(R) ) = K <() {2288 >exp (n(f(A)—€))}

exp (0l (4) — ) Pe 110y 2200 > ) ).

Y

We have a.s.

%logEg (Z;n(glg)> > f(A) —e+— L logIP’g (ilog Z;:glg) > f(A) — E> :

Taking inferior limit and letting ¢ — 0, we obtain (5.1). ]

To obtain the upper bound, we need certain moment conditions.

Lemma 5.2 ([18], Theorem 3.1). If a.s. P¢(N < 1) = 0 and EcN'* < K for some constants
d >0 and K > 0, then for each s > 0, there exists a constants Cs > 0 such that EcW™° < Cs a.s..

Lemma 5.3. If a.s. P¢(N < 1) =0 and EcN'° < K for some constants § > 0 and K > 0, then
a.s.

1
lim —logP¢(Z,(R) < elElogmo=e)ny — _ o (5.2)

n—oo n

Proof. Denote W,, = Z,(R)/P,. Notice that Vs > 0, sup, E¢W* = EcW~°. Lemma 5.2 shows
that EcW ™% < 0o a.s.. By Markov’s inequality, a.s.

Pe (Z0(R) < e®osmo=an)

n—1

< EW, ®exp (s ((E logmg — e)n — Z log mz>)
=0
n—1

< EW %exp <s ((E logmg — e)n — Z log mz> )
i=0

Hence a.s.

1 1 n—1
— log P¢ (ZH(R) < e(Elogmo—E)n) flog]EgVV + s <Elog mg—¢€— — E log mz) .
n

1=0

Taking superior limit, we get a.s.
1
lim sup — log PP¢ (Z (R) < e(Elogm"*E)n> < —es.
n—oo

Letting s — 0o, we obtain (5.2). O
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Lemma 5.4 (Upper bound). If a.s. P¢(N < 1) = 0 and E¢N'° < K for some constant § > 0
and K > 0, then it is a.s. that for each measurable subset A of R,

1 Zn(nA
liTILILSOIép - log E¢ < Zn(ZR))> < —;gg A*(z) — E'logmy. (5.3)

Proof. Notice that for each £ > 0, a.s.

Zn(nA)\ Zn(nA) Zp(nA)
EE(ZAR)) = <Zn(R>1{Zn<R>>e<Elogmo—€>n} TR Z.®) Hz sy

< e_(Elong_E)”Ean(nA) + PE (ZH(R> < e(Elogmo—a)n) )

1 Zn (nA) 1 (EL _
_ K < — og mo E)TLE < (Elogmo—e)n
n log 13 < n( ) > n 10g (6 §Zn(nA) + Pg (Zn(R) e )) .

Taking superior limit in the above inequality, and using Theorem 2.1 and Lemma 5.3, we obtain

) 1 Zn(nA)
1 —logE
el B < Zn(R) >

a.sS.

1 1
< max {lim sup —log E¢Z,(nA) — Elog mg + ¢, limsup — logP¢ (ZR(R) < e(Elog mo*g)") }

n—oo N n—oo N

= max{— inf A*(z) —Elogmg+¢, —o0} = — inf A"(z) —Elogmg + €.
€A €A

Then let € — 0. O]

6 Branching random walk in varying environment

Kaplan and Asmussen (1976, [21]) showed that under certain moment conditions, the probability
measures %&)‘“’)
deterministic environment for some sequence (an, b,). Biggins (1990, [7]) proved the same results
under weaker moments conditions. We want to generalize these results to branching random
walk with random environment in time. But instead of studying the case of random environment
directly, we first introduce branching random walk with varying environment in time and give
some related results.

A branching random walk with a varying environment in time is modeled in a similar way as
the branching random walk with a random environment in time. Let {X,,} be a sequence of point
processes on R. The distribution of X, is denoted by 7,. At time 0, there is an initial particle ()
of generation 0 located at Sy = 0; at time 1, it is replaced by N = N(()) particles of generation 1,
located at L; = L;(0), 1 <14 < N, where the point process Xy = (N, Ly, Lo, - -+ ) is an independent
copy of Xy . In general, each particle u = u; - - - u, of generation n located at 5, is replaced at
time n+1 by N(u) new particles ui of generation n + 1, located at

satisfy a central limit and a local limit theorem for a branching random walk in

where the point process formulated by the number of offspring and there displacements, {X (u) =
(N(u), L1(u), La(u),---)}, is an independent copy of X,. All particles behave independently,
namely, the point processes { X (u)} are independent of each other. In particular, {X (u) : u € T, }
are independent of each other and have a common distribution 7,,. Let Z, = ) .1 ds, be the
counting measure of particles of generation n. As the case of random environment, we introduce
the following notations:

n—1
Ny, =Xu(R), my=EN,  PR=1 and P,=EZ,(R)=]]ma. (6.1)
=0

12



Assume that

1 1
0<my, <oo, liminf—logP, >0 and liminf—logm, =0. (6.2)

n—oo n n—oo n

Thus for some ¢ > 1, there exists an integer ng depending on ¢ such that
P,>c" for all n > ng (6.3)

Denote T" the probability space under which the process is defined. Let Fy = {0,I'} and F,, =
o((N(u),Li(u), La(u),--+) : |u] < m) for n > 1 be the o-field containing all the information
concerning the first n generations, then the sequence {Z, (R)/P,} forms a non-negative martingale
with respect to the filtration F,, and converges a.s. to a random variable W'.

Let v, be the intensity measure of the point process fi—z in the sense that for a subset A of R,
EX,(A
vn(A) = 771( ) ,

mp
and let ¢, be the corresponding characteristic function, i.e.
. 1 .
On(t) = /e”xun(dx) = E/e”xXn(dx). (6.4)
mn

The characteristic function of % is defined as

U, (t) = ;n / e 7, (dx) = Pi > et (6.5)

n ’U,GTTL

It is not difficult to see that ¢; and ¥,, have the following relation:

n—1
B, (1) = [ ¢i()- (6.6)
=0

Furthermore, denote
n—1
vp(e) = Z/ |z|°v;(dx). (6.7)
i=0

Condition (A). There is a non-degenerate probability distribution L(x) and constants {an,by}
with b,, — oo such that

n—1

eitan TT éu(t/bn) — o(t) = / e L ().
=0

Similar conditions were posed by Klebaner (1982, [23]) and Biggins (1990, [7]). If additionally
bn+1/bn, — 1, then the limit distribution would be in What Feller (1971, [13]) calls the class L,
also known as the self-decomposable distributions.

Denote G, (z) = vp * - - - * vp—1(x), we introduce another condition:

Condition (B). There exist constants {ay, by} with b, — 0o such that G, (byx + a,) converges to

a non-degenerate probability distribution L(z) .

It is clear that if (B) holds with {an,bn}, then (A) holds with af, = %) and ¢, = b,
Let pin = [avy(de) and 02 = [ |z — pyl*ve(dz). Take a, = 307 p; and b, = (307 07)1/2,
if moreover by, satisfying b,41/b, — 1, then G, (bnx + a,) — L(x). In particular, if {v,} satis-
fies Lindeberg or Liapounoff conditions, then the limiting distribution L is standard normal, i.e.

Lix) = ®(x) = o= [*, e™"/2dt,

We have the following result:
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Theorem 6.1. For a branching random walk in a varying environment satisfying (6.2), assume
that for some 6 > 0,

1 + 100t AT \1HO
for some € > 0 and y1 < 00,
vn(e) = o(n™), (6.9)
and for some 5 > 0,
bl =o(n™"), (6.10)
then
n—1
Uy (t/b) =W [ [ ¢it/bn) =0 as.. (6.11)
=0
If in addition (A) holds, then
e, (t/b,) — g(t)W a.s., (6.12)
and for x a continuity point of L,
P Z, (=00, by(x + ay)] = L(z)W a.s.. (6.13)

The null set can be taken to be independent of t in (6.12) and x in (6.13) respectively, and (6.12)
holds uniformly for t in compact sets.

Remark. The above conclusions were obtained by Biggins (1990, [7], Theorem 1 and 2) un-
der similar hypothesis with (6.8) replaced by a condition [zlogzF(dz) < oo, where F(z) :=

Zgjio sup,, P(N,, = k). In homogeneous case, F' is simply the distribution function which deter-
mines the offspring’s number, but in general, F' has not such a concrete expression as (6.8).

The following theorem is a local limit theorem. We use the notation a, ~ b, to signify that
apn /by, — 1 as n — oo.

Theorem 6.2. For a branching random walk in a varying environment satisfying (6.2), assume
that (A) holds with by, ~ 6n?Y for some constants 0 < v < % and 0 > 0, g is integrable and for some
>0,

sup \STS lpi(t)] =: ¢, < 1. (6.14)
If (6.9) holds and _
zn: WENn(long NP < o (6.15)
for some 6 > 0 and 8 > v, then
sup ‘ann*lZn(x,:L’ +h) — Whpr(z/b, — an)‘ -0 a.s., (6.16)

z€R

where pr(x) denotes the density function of L.

7 Proof of Theorem 6.1

To prove Theorem 6.1, we only need to show (6.11), for it is obvious that (6.12) is directly from
(6.11), and (6.13) is from (6.12) by applying the continuity theorem. The rest assertions are
according to Biggins (1990, [7], Theorem 2) . We remark here that our proof is inspired by Biggins
(1990, [7]) and Klebaner (1982, [23]).
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We will use a truncation method. Let x > 0 be a constant. Let an be equal to X,, on
{Ny,(log N,)* < P41} and be empty otherwise; the rest of the notations is extended similarly.
Let I5(2) = Lizoga)s<poy,) and I =1 — Iy, so

mn,m = ENnIn(Nn)y

and

(1) = / " Dy e (d) = E / e X, (dx) I, (Ny,).

The proof of Theorem 6.1 is composed of several lemmas.

mnﬁ

Lemma 7.1. Let 8 > 0. If Y., WIEN (log™ N,,)' B (log™ log™ N,,)'0 < oo holds for

some § > 0, then for all k, >, 7P (1 — 1My /my) < 0.

Proof. We can calculate

mn I'i -
270 = D (= in)
mpy

n
= > —EN,I(N, )1{Nn>a}+Z—EN I (No) N, <a}»

where ¢ is a constant. Since P,, — oo, the convergence of the second series above is obvious. It
suffices to show that of the first series for suitable a. Take f(z) = (logz)'*?(loglog z)1+%). f(x)
is increasing and positive on (a, +00). Noticing (6.3), we have for n large enough,

nf .
—EN I (Nn) 1N, >0}

mn

o F log N)") |

mMp f(Pn—H) {(Nn>a}
C

mpn(logn)i+o
C

mpn(logn)i+o

IN
|
=

IN

EN, (log Ny,)' ™ (loglog N;,) ' 014y, w0y
EN, (log" N,,)'*#(log* log* N,,)1*9,

where C' is a constant, and like a, in general, it does not necessarily stand for the same constant
throughout. The convergence of the series ) WEN (log™ N,,)"*?(log™* log™ N,,)' 9 im-

plies that of the series » ™ IEN LS (Nn) 1N, >a)- O

Lemma 7.2 ([7], Lemma 3 (ii)). If >, (1 — My /mpn) < 00, then
n—1 n—1
H éi,n(t/bn) — H ¢i(t/by) — 0, as n — 00. (7.1)
i=0 =0

The formula (7.1) shows that we can prove (6.11) with ¢; . in place of ¢;. For simplicity, let
7 m
Cn(t) = an,n(t) and Wy = ﬂ’

mnp

where the value of x will be fixed to be suitably large later.
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Let UV () := m ! [ e X (u)(dz) if u € T,,. Then
‘I/n+1(t) WG (£) Wn (1)
= 2 3 UL NW) + 5 S e (B LN (W) — wntalr))
" ueT, " ueT,

= An( >+ Bn(t)

By iteration, we obtain

o (i) = () Mo (5) =5 (4 () () T () o2

Thus

U, (t/by) — W H Ci(t/bp)

n—1 n—1
= > Ai(t/bn) H w;C;(t/bn) + ZB (t/bn) [ wi¢i(t/bn)
1=k Jj=i+1 7=i+1
+ (m(t/bn) [T wiGit/bn) =W H g(t/bn)) : (7.3)
i=k =0

Let « > 1. Take k = J(n) = j if j* < n < (j 4+ 1)%, so that k* ~ n, which means k goes to
infinity more slowly than n. For this &k, we will show that each term in the right side of (7.3) is
negligible.

Lemma 7.3. If )" (1 — 1y ./m,) < oo, then

n—1
ZAz t/by) H w;¢;(t/by) a.s., asn — oo. (7.4)
i=k j=i+1

Proof. Notice that

ZA ijgj <Z|A|<Z ZN VIE(N (). (7.5)
=k j=itl " =i
Since
c N L pn e = S s
(Z vy |;sz u)IE( ) = ;0 EENZIi (N;) = ;(1 o ) < o0
we get
Z Z N(u u)) < oo.
Bmi (2,
which implies (7.4), combined with (7.5). O

Lemma 7.4. If for some §1 >0 ,

1 +
then
n—1
Z i(t/br) H w;G(t/bn) a.s., asn — oo. (7.7)
i=k Jj=i+1
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Remark. Obviously (6.8) implies (7.6).

Proof. Let
n—1
Cn =Y Bi(t/bn) H w;Ci(t/bn)
i=k j=i+1

We want to show that >°°°  E|C,|? < oo, which implies (7.6). Since E(B;|F;) = 0, we have

E|C,|* = var(Cy,) = var ZB H w;Gj <Zvar

i=k Jj=i+1

where the notation var denotes variance. Moreover,

1 (1)
_ \ . ) <
ol var(WVL(NG)) < P2

]

var(B;) = E(var(B;|F;)) <

ENZIL;(N;),

where ‘117(11)(75) = mgl feitxXn(dx). We denote J~! be the inverse mapping of J, J~(j) = {n :
J(n ) = j} and |J71(j)| be the number of the elements in J~!(j). It is not difficult to see that
() = OG- and S_, |J-1(j)| = O(i®). Hence,

0o oo n—1
>_EIC,[?
n=1

AN

(]

]
ias!

S -
&=
=,
~

=

— Z > ZHmENQI N;)

Jj=lneJj- (y)z J

< L0y N)

= ZZ\Jl i(Ni)
=1 j=1

. 00

CZ P2 ENZI;(N;)
i=1""

:CZ

. . j& .
The second series above converges, since ), 5— < oco. For the first series above, take f(z) =
L)

Oé

)1{N>a}+CZ IEN Li(N) 1y, <a)-

z(log )~ (@101 - f(z) is increasing and positive on (a, +00). We have for i large enough,

Za
; EN?Ii(Ni)1{N,>a}

i~ f(Piy1)

< EN? Lin.

= P f({Ni(log Ny
C _

< mENi(logNi)a+l+5l Hl{N1->a}
C

< R ———EN;log™ N;,

if we take k > a+91. Then by (7.6), i

2Ii(Ni)1{n,>a}-
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Lemma 7.5. If " (1 — 1y ./my) < 0o and (6.9), (6.10) hold, then
n—1 n—1
Ui(t/bn) [[ wiGi(t/n) =W [] Gi(t/bn) 20 as.,  asn— oo (7.8)
i=k i=0

Proof. 3,/ (1 — 1,5 /my) < oo implies that Y77 w; — 1, so the factor [[/'-) w; in (2.8) can be
ignored. Notice that

n—1 n—1
U [[a-w]]G= <\I’k— ZI}EiR)
i—k i=0

It suffices to prove that

e (55w Moo (I T

k

Z(R
U (t/by) — ’}S ) —0 a.s., as k — oo. (7.9)
k

and

n—1 n—1

[ G@mn) - T Gt/bn) =0, ask— oo (7.10)

i=k i=0
Since |e®* — 1| < Oltz|?, we have

Zn(R) 1 thi e ‘
_—— 7 < — n —
’\m (t/6n) = =5 ’ < B / e 1| Z,(de)

IN

1
Cluly* 5 / 2| Zi (de).

Assume that 0 < € < 1 (the proof for the case of € > 1 is similar). Taking expectation in the above
inequality, we obtain

E W (t/by) —

Zi(R
’;;(; ) ‘ < Cltf*sup{b,® : k* <n < (k+1)"} / |z|fvg * - -k vp_q(da)
k
k—1
< ClFp( k<0< e 1)) Y [ lelwan)
=0
= CJtI"sup{b,® : k* <n < (k+ 1)*}ug(e) = |ul~o(K1 ™).

Hence (7.9) holds if we take « large. By Lemma 7.2, we can prove (7.10) with ¢; in place of (;,
which holds directly by noticing that

n—1 n—1 n—1 k—1 k—1
[T éit/on) = [ 6it/0n)| = |]] it/bn) (1 - 11 @-(t/bn)) < [1— ] #it/bn)
i=k =0 i=k =0 i=0
_ _ Zk(R) _ Zy(R)
_ ‘IE (\I/k(t/bn) 2 )' <E ‘\I/k(t/bn) e '
Thus (7.8) holds. O

8 Proof of Theorem 6.2

We will go along the proof by following the lines in [7]. Let

1 [siniz ? 1 __x
K($> = % ( l; ) Ka(l‘) = EK(E) (CL > 0)
2
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Then
/ K(xz)dx =1 and / Ky (x)dx =
R R
1

The characteristic function of K, is denoted by k,, which vanishes outside (_Ev é), so that the

characteristic function of IZTZ * K, is integrable and so f,—z x K, has a density function DEZ‘). We

will get our result through the asymptotic property of DC(L”).

Lemma 8.1 (see [10]). If f(t) is a characteristic function such that |f(t)| < k as soon as b <
|u| < 2b, then we have for |u| < b,
2

FB<1—(1—rD)t

802
Lemma 8.2. Under the conditions of Theorem 6.2,
sup |bp D (b (x + an)) — Wpr(x)| = 0 a.s., as n — 0. (8.1)

zeR

Proof. Let A be a positive constant. By the Fourier inversion theorem,

t t :
/ <\Pn(b)ka(b)e_”“” - Wg(t)) dt’ .
Split the integral of the right side into |t| < A and |t| > A. Using Theorem 6.1 and noticing that
limy, ko (t/b,) = 1, we have

2

&) (bu(a -+ au)) = Wpr(@)| =

(R = wytn)

t : t t
= [ | (wGe —wao) ) wao|ars [ o= wgwa|a
t]<A b, bn It <A by,
t ; t
< 24 sup W, (—)e 1 — Wg(t)’ + W 1 —ko(+—)|dt - 0a.s., asn— oco.
<A bn It|<A bn

For A large, the integral of g(t) over |t| > A is small. So to show (8.1), it remains to consider

t t
U, (—)kq(—)dt| =
/M (o al;)
where U = {t : { < |t] < 1} By the decomposition (7.2),

buWnky = b \I/kszgk + b ZA H wjGika + bn ZB H w;Cika

i=k Jj=i+1 i=k Jj=i+1
Take k£ = J(n) the same as the proof of Theorem 6.1,we need to show that

/ bW (D)ka ()|
U

bZ/A Hw]g‘]kdt -0 as., asn — oo. (8.2)

Jj=i+1

and the similar result with B; in place of A;.
Firstly, for n large enough,

by, Z/A Hw]@k:dt < by Z/|A|dt

Jj=i+1

< k:“”fz o 2 NI (N ()
" =i

< z' -0 NI W),

" Jul=i
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Like the proof of Lemma 7.3, we obtain

Z ZN (u)) :gia7(1—%><oo

=

from Lemma 7.1, if we take « sufficiently near 1 such that ary < 8. Hence (8.2) is proved.
Secondly, to prove (8.2) with B; in place of A;, like the proof of Lemma 7.4, we set

bZ/B ijcjk:dt

J=1+1

Since E(B;|F;) = 0, for n large enough,

E|C,|* = wvar | b, Z/B H w;Cikadt

Jj=i+1
n—1 n—1

= b2 var / B; [] wi¢ikadt
1=k U j=it1

- bQZE/B H w;Cikadt

j=t+1

IN

n—1 n—1
biZE(/ dt) /|BZ- 11 wiGikal?at
i=k v v

j=i+1

9 n—1
< ab%Z/E|Bi|2dt
i=k U
2 n—1
= b%Z/vaﬂBﬂzdt
a “
< SENZL(N;).

Following the last part of the proof of Lemma 7.4, we obtain that > o | E|C,,|? < oo provided &
large enough, which implies that C, —> 0 a.s..
Finally, we consider by, [;; ¥ [[7=, L wiCikqdt. Clearly,

n—1

/U ), H wiCikadt

(8.3)

Since Z’“(R) — W a.s. as k — 00, it remains to consider by, [ | Hl . Gildt. Tt suffices to show that
n—1

lim sup b, t)| dt <limsup bn/ H |i(t)|dt, (8.4)
n—00 n—00 Ui:k

and there exists a constant #; > 0 (not depending on A) such that

n—1
lim sup bn/ H lpi(t)]dt < / e " duy for any A. (8.5)
Uik It]>A

n—oo
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Notice that

n—1
IT¢
i=k

b |
U .:

n—1 n—1
I1¢-11 ¢
i=k i=k

dtgbn/
Ui

n—1
dt + bn/ I 1ildt.
Ui=k

The proof of [7] Lemma 3 gives |(; — ¢;| < 2(1 —m; ,/m;), so we have

n—1
bn/ it < bn/ G — guldt
It poe

n—1 n—1
[1¢-1]#
i=k i=k

IA
'S
>
3
T 3
= L
N
[—Y

|

3|3
= e
N—

n—1 ~
< CZ(i+1)a7(1—mZ’k)—>0 as n — oo,

m;

provided ay < . Hence (8.4) holds. Now we turn to prove (8.5). Split the set U into two parts:
Uy ={t:A/b, <t <e}and Uy = {t:e<t< 1} Since for some >0, |¢;(t)] < ¢, <1 for all
|t| > ¢, by Lemma 8.1, we have for all || < ¢,

1_2
\@@ng1_7§%ﬂ<eﬂﬁ,

where v, = =% Thus
1 8.2 °

sup sup |¢;(t)| = max{e_%EZ),cL} =:c <1

i ft]=e
It follows that .
T 2
bn/ H |pi(t)|dt < Zbp ()" F 1 = 0as n — oo, (8.6)
Uz i=k “
and
n—1
bo [ [ 16i(®)ldt < / exp(—b, 2(n — k — 1)y1t2)dt. (8.7)
U1 i—k |t|2A

It is easy to see that

lim
2
n—oo bn

n—k—1_ [ & ify=4
o0 if0<’y<%.

So there exists a constant 1 > 0 such that b, 2(n — k — 1)y, > 67 for n large enough. Thus

n—1
lim sup bn/ H |i(t)|dt < / e~ gt for any A. (8.8)
Nn—00 Ur ;g [t|>A

Consequently, (8.5) holds via (8.6) and (8.8). This completes the proof. O
By a similar argument of Stone (1965, [33]), we have the following Lemma.

Lemma 8.3. If (8.1) holds, then Ye > 0, there exist ng > 0 and § > 0 such that ¥Yn > ngy and
YO < h <6,

h(Wpr(z) —€) < Pyt Zy(bp (2 4 an), bu(z + an + 1)) < W(Wpr(z) +€) a.s., VreR. (8.9)
The null set can be taken to be independent of x.

Now we turn to the proof of Theorem 6.2:
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Proof of Theorem 6.2. Fix h > 0. Ve > 0, take 0 < ¢’ < £/h. By Lemmas 8.2 and 8.3 , for this
g’ > 0, there exist nj, > 0 and ¢ > 0 such that Vn > n{j and V0 < b’ < ¢,

W(Wpp(z) — ') < Pt Zy(bp(x + an), bu(z + an + 1)) < W (Wpp(z) +€) as., VzeR,

Let ' = h/b,,. Then there exist 79 > 0 such that 0 < b’ < §’ for n > ng. Take ng := max{n{, o} >
0, we have Vn > ny,

h(Wpr(z) — ') < b Pt Z7(by(x + an), bp(z + an) + h) < h(Wpp(z) +€')  a.s., Vz € R,
which implies that

sup |bn Pyt Z (b (% + @), bn(z + ap) + h) — Whpp(z)| <e'h < e a.s.,

Tz€R
so that
sup |bn Pyt Zy (2 + h) — Whpr(z/by — an)| < € a.s..
z€eR
The proof is finished. ]

9 Central limit theorems for IIEES 5%(%, IIEEZZ (( )) and Eg ((%R{)

Now we return to consider the branching random walk with a random environment in time in-
troduced in Section 1. When the environment £ is fixed, a branching random walk in random
environment is in fact a branching random walk in varying environment introduced in Section 6.
We still assume (1.2), which implies that

1 1
lim —log P, = Elogmg > 0 and lim —logm, =0 a.s.
n—oo N n—oo N

by the ergodic theorem. Hence the assumption (6.2) is satisfied, so that (6.3) holds for some
constant ¢ > 1 and integer ny = no(§) depending on ¢ and . Note that all the notations and
results in Section 6 are still available under the quenched law P¢ and the corresponding expectation
Ee.

Recall that v, () = %:() is the intensity measure of . Let

fn = /xl/n(d$) and 02 = / 2 — pin |2 (di). (9.1)
We first have a central limit theorem for quenched means as follows.

Theorem 9.1 (Central limit theorem for quenched means ]]EE ZZ ((R
(0,00), then

)e If |po| < o0 a.s. and Eof €

E¢Zp(—00, bpx + ay]
Ee Zn(R)

where ap, = 377 i and by, = (7=, 02)/2.

— ®(x) a.s.,

Egzn( )

Proof. Notice that 77 J o= MoKk Vn—1(-). Tt suffices to show that {v,} satisfies Lindeberg
condition, i.e., for all t>0,
1 >
nh_}ngo 7z Z /I . | — pi|“vi(dz) =0 a.s.. (9.2)
By the ergodic theorem,
b2 1
nh_}rgo = nh_}nolO - ZO’ =FEoi >0 a.s.. (9.3)
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So for a positive constant a satisfying 0 < a? < Eo3, there exists an integer ny depending on a
and & such that b% > a?n for all n > ng. Fix a constant M > 0 . For n > max{ng, M}, we have
b2 > a’n > a®M, so that

22/

|—ps|>tby

|z — pi|vi(da) S Z/l it |z — pilvi(dz).
T—pi|>ta

Taking superior limit in the above inequality , we obtain

lim sup — 0 Z/m et 2 — pi|?v(dz)

n—oo

A
5
=

| = pilvi(de)
CLQ n—oo N Z /x | >tav/3T LA

= 2IE/ \z — po|*vo(dz).
a | —po|>ta/M

Let M — oo, it obvious that Eflwfuo|>ta\/ﬁ |z — pol?vo(dr) — 0 by the dominated convergence
theorem, since Eo? < oco. This completes the proof. O

If the environment is 7.7.d., we can obtain a central limit theorem for annealed means.

Theorem 9.2 (Central limit theorem for annealed means ]éEZZ"(( ))) Assume that {&,} are i.i.d..

Let i = Efog dr) and 6% = Ef x — 1) Xo(dz). If |ii| < co and 52 € (0,00), then

EZn(—oo, b + @)
EZn(R)

= &(x),

where G, = nji and b, = \/nc.

Proof. Denote vy, () = %. The characteristic function of 7, is denoted by @,,. We can
calculate

ant) = / ¢, (dx) = (Emg)"E / 7 7, (bud + )
. B n—1 o
= (Emyg) e /b 11 Ee / etr/bn X (dz)
=0
it /bn Emo(t/bn) "
Emo
where my,(t) := E¢ [ X, (dz). The last step above is from the independency of (&,). Denote

F(x) = IEI)E(%( ) then by the classic central limit theorem, we have

F*"(bpx + dy) — ®(z).
Therefore,
/emF*”(bndm’ +ap) — g(t) == /emp( )dzx,
1

where p(z) = ﬁe_IQ/ 2 is the density function of standard normal distribution. Notice that

/eimF*n(bndCC—i-CLn) _ eitﬁn/gn/eity/BnF*n(dy)

_ efit(zn/l_)n </ eity/EnF(dy)>n

o—itiin /b <W>n — on(t).

Emg $n
We in fact have obtained @, (t) — ¢g(t), it follows that ,,(x) — ®(z) by the continuity theorem. [
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By an argument similar to the proof of Theorem 9.2, we obtain a central limit theorem as
follows:

Theorem 9.3 (Central limit theorem for IE]EZ;L(ER)) ). Assume that {&,} arei.i.d.. Let i’ =E [ zvy(dz)

and " =E [(z — ji')?vo(dz). If |ii'] < 0o and 5" € (0,00), then

Zy(—00, b,z + @]
EEZn(R)

— O(x),

=/ __ —/ o =/
where a,, = ni' and b, = \/na’.

10 Central limit theorem and local limit theorem for

As we mentioned in last section (Section 9), we can directly use the results of Theorems 6.1 and
6.2 considering the quenched law P¢ and the corresponding expectation [E¢. However, by the good
properties of stationary and ergodic random process, we have some similar but simper and more
precise results than Theorems 6.1 and 6.2.

Theorem 10.1. Assume that for some € > 0,

v(e) == IE/ |z|vo(dx) < o0,

and by, = b, (§) satisfying

bl =o(n"7) a.s. for some v >0,

then

n—1

Uy (t/bn) =W [ [ ¢slt/bn) =0 as..

i=0

If in addition (A) holds wit {an(§),bn(§)} and ge, then
e~ MG, (t/by) — ge(t)W a.s., (10.1)
and for x a continuity point of Le,
Pyl Z,(—00, by (7 + ay)] — Le(z)W a.s..

Moreover, (10.1) holds uniformly for w in compact sets.

The following result is the most important central limit theorem of this paper.

Theorem 10.2 (Central limit theorem for Zn() ). IfE|uo|® < oo for somee > 0 and Eo € (0,0),

Zn(R)
then
Zn (=00, bpx + ap)

Zn(R)
where a, = Z?;()l i and by, = (Z?gol o).

— ®(x) a.s.on {Z,(R) = oo}, (10.2)

Remark. If E [ 2?1y(dz) < oo, it can be easily seen that Eu < oo and Eo? < oco.

Theorem 10.2 is an extension of the results of Kaplan and Asmussen (1976, II, Theorem 1) and
Biggins (1990) on deterministic branching random walks.

Similarly to the case of varying environment, we also have the local limit theorems correspond-
ing to Theorems 10.1 and 10.2 respectively.
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Theorem 10.3. Assume that vy is non-lattice a.s., (A) holds with {a,(£),b,(£)} satisfying b, ~
On"a.s. for some constants 0 < v < % and § > 0, and ge is integrable. If v(e) < oo for some e > 0,
and

N
E—(log™ N)'*? < o0 (10.3)
mo

for some B > ~, then Yh > 0,

sup |b, Pyt Zy (2, 2 + h) — Whpr (z/b, — an)| — 0 a.s.,
z€eR

where py, is the density function of Le.

Theorem 10.4 below is a direct consequence of Theorem 10.3. To verify the conditions of
Theorem 10.3, see the proof of Theorem 10.2.

Theorem 10.4 (Local limit theorem for ZZ:((R%). Assume that vy is non-lattice a.s.. If E|uo|® < oo

for some ¢ > 0, Eog € (0,00), and
N
E— (log* N)? < o0
mo

for some B > %, then Yh > 0,

Zn(x,z+ h) T —ap
———~—h
z® ",

sup |by, ) =0 as.on{Z,(R) — oo},

where a,, = Z?;ol Wi, by = (Z?;OI o2)Y?, and p(z) = \/%6_“”2/2 is the density function of standard

normal distribution.

For the deterministic environment case, similar result was showed by Biggins (1990).

From Theorem 10.4, we immediately obtain the following corollary.
Corollary 10.5. Under the conditions of Theorem 10.4, we have Ya < b,

Zn(a+ an, b+ ay) . 1
Zn(R) vV 271'

where a, = Z?;Ol i and by, = (2:7‘%01 af)1/2.

1= 7

bn

(b—a) a.s.on{Z,(R) — oo},

Corollary 10.5 coincide with a result of Kaplan and Asmussen (1976, II, Theorem 2) on deter-
ministic branching random walks.

11 Proofs of Theorems 10.1-10.3

Before of the proof of Theorem 10.1, we prove a lemma at first.

Lemma 11.1. Let § > 0. If Eﬁ—g(logfr No)*P < oo, then for all k, 3, nP(1 — My . /mp) < 00
a.s..

Proof. As the proof of Lemma 7.1, we have

M, 1
1-——) = —E:Ny I, (Ny).
S (1T ) = X e )

n n

By (6.3), for n large enough,

EeNoIS(Np) < EeNplin, (log Ny yesent1]-
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Taking expectation for the series > %EEan{Nn(log Np)r>cnt1}, We have

B
n

n
No
= ;nﬁETn’Ol{NO(logNo)ﬁ>cn+l}

No
= B Y 0 LiNottog Noyesent)
n

N
< CE—2(log* No)'** < o0,
mo

so that Y nP(1 — iy ./mp) < 00 as.. O

Proof of Theorem 10.1. From the proof of Theorem 6.1, we know that in fact, instead of (6.8),
we only need (7.6) and ), (1 — mmy, x/my,) < oo for the suitable x. For the branching random
walk in a stationary and ergodic random environment, Lemma 11.1 tells us that the condition
Eﬁ—g logt Ny < oo ensures Y., (1 — 1y, x/mp) < co. And it also ensures (7.6), since for any §; > 0,

1
§ + — E +
E < W}EgNn 10g Nn> = n1+61 ]Ei log NO < 00.
n

n

By the ergodic theorem,
lim Unle) =v(e) < 00 a.s..
n n

Hence the condition (6.9) holds. Thus Theorem 10.1 is just a direct consequence of Theorem

6.1. O

Proof of Theorem 10.2. We will use Theorem 10.1 to prove Theorem 10.2. Assume that 0 < e < 2
(otherwise, consider min{e, 2} instead of €), then

v(e) = E/ [ (dz) < C. (E/ 1 — polFro(dz) +]E|u0]5> < 0.

By (9.3), b, ~ Eo3\/n a.s., which implies that for any 0 < v < 3, b;' = o(n"7")a.s.. The proof of

n

Theorem 9.1 show that {I/n} satisfies Lindeberg condition, so that (A) holds with a], = a, /b, and
bl = b,. By Theorem 10.1,

P 7, (=00, bpx 4 ap] = ®(2)W  a.s.

Notice that Z,(R)/P, — W a.s. and P(W > 0) = P(Z,(R) — oc). Thus (10.2) holds. O

1

Lemma 11.2. Let A > 0 be a constant. Assume that b, ~ 0n”a.s. for some constants 0 <y < 3.

If vy is non-lattice a.s.,then there exists a constant 81 > 0 (not depending on A) such that

n—o0

n—1
limsupbn/ H\(bi(t)]dtS/ e dt as., (11.1)
Uiy [t]>A

where k = J(n) the same as the proof of Theorem 6.1 and U = {t: i < [t| < iy

Proof. Take 0 < 2¢e < é Like the last part of the proof of Theorem 6.2, split U into U; and Us, so

/H\@ |dt_b/H|¢Z ) dt + by, / qubl )|dt.

Ui g, Uz j—
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Since v; is non-lattice a.s., we have

sup |gi(t)] =:ci(e,a) = ¢ < 1 a.s.. (11.2)
e<|t|<a~1!

Hence by Lemma 8.1, for |t| < e,

1— 012 2 1 12 2 —a;t?
lpi(t)| < 1— Wt < exp(— S t“)=e" a.s., (11.3)

)
where «a; = 18% > 0 a.s.. Using (11.2), we immediately get

/H\@ )| < b ch—>0 a.s., (11.4)

U2 j=k

since

1
i log by, + > 1 log¢;

=Elogcy <0 a.s..
n—oo n

Observe that

-1 :
Yo _ { #Eag >0 ify=1 s

00 ifo<y<i
Take 0 < 6; < an Using (11.3), we have for n large,
/ H i (t)|dt < / exp(— QZazﬂ Ydu < / e "dt  as. (11.5)
U g It[>A It/>A
(11.4) and (11.5) yield (11.1). O

Proof of Theorem 10.3. In the proof of Lemma 8.2, the condition (6.14) is just used to ensure (8.5)
(i.e.(11.1) in random environment), which always holds in random environment if ; is non-lattice
a.s., by Lemma 11.2. Besides,

1 1 Ny
E ——EN,(log" N,)'*? | = —— _E—(log" No)'*? <
(zn: g8 60087 N | =3 i (08T M) < o0

So (10.3) implies (6.15). Theorem 10.3 is a consequence of Theorem 6.2. O

12 Central limit theorems for [ ZZ”(SIQ) and E ZZ”(SIQ)

From Theorem 10 2, it is not hard to obtam the following central limit theorems for the probability
measures Eg( \Z (R) > 0) and E(Z ®) ]Z (R) > 0):

Theorem 12.1 (Central limit theorems for E¢ Znl). and EZZ"(R ). If E|lpol® < oo for some e >0

Zn(R)
and Eo? € (0,00), then

Ee (Z"(_Ozo;?g Fanll Ry > 0) S ®(z)  as., (12.1)
E < Z"(_OZZ(’I’S ol ;R > 0) — ®(z), (12.2)

where a, = S i and by, = (X1 02)1/2.
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Proof. Theorem 12.1 is a consequence of Theorem 10.2. We only prove (12.2), the proof for (12.1)
is similar. By Theorem 10.2,

Zn(—00, by + ay)
< Zn(R)

— ‘I)(x)) 1z, (R)—oc} — 0 a.s.. (12.3)

The condition En% log™ N < oo ensures that

lim P(Z,(R) > 0) = P(Z,(R) — o0) > 0.

n—o0

Observing that

(g

Zn(R) > 0> )

_ 1 Zn(_oo7bnl‘—|—an]
~ sz sy [Flmmea (5w aw)
1 Zin(—00, bnx + an
< =g FUeem - o) (25 - o)
1 Zn(—00, bpx + ay]
THZ.®) > 0) ‘El{z"(R““} ( Za®) <I>(:c)>

i

we only need to show that the two terms in the right side of the inequality above tend to zero as
n tends to infinity. Since

0< Zn (=00, bpx + ay]
- Zn(R)

<1 and 0< ®(z) <1,

we have

Zn (—00, bz + ay)
Zn(R)

Notice (12.3), by the dominated convergence theorem, we get

— &(x)

‘El{zn(ug)%o} (Z"(Z"(_Zo:(’]l:’;x +an)) <I>(3:)> ' 0.

For the first term, we have

Zn(—00,bpx + an
‘E(l{Zn(R)>O} — 1z, ®)>oc}) < ( Z.(R) I ‘P(x))‘

< Ellyz,®)>0) — 142, (R)—o0}l
— P(Zu(R) > 0) — P(Zy(R) = o0) — 0.

This completes the proof. ]
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