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Aim : We try to understand the interplay between migration and
local competition in the evolution of the phenotypic composition of
a population.

First example : heterogeneous environment favors diversity

Figure : Finches from the Galapagos Archipelago
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Second example : impact of mutation on invasion

Figure : Female
cane toad

Figure : Distribution (1935 to 2004) and
predicted spread of Cane Toads in Australia.
Source : www.environment.gov.au
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asexual reproduction,

spatially explicit individual-based model,

X i
t ∈ X is the location of individual i at time t, where X is an

open bounded subset of Rd .

U i
t ∈ U is the trait of individual i at time t, where U is a

compact set of Rq.

Definition

The population is modeled by the finite measure

νKt =
1

K

Nt∑
i=1

δ(X i
t ,U

i
t)

where Nt is the number of individuals alive at time t and K > 0 is
a parameter which will be specified later.
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Space evolution

The migration of an individual of trait u is described by a
diffusion process normally reflected at the boundary of X :

dXt =
√

2m(Xt , u)Id · dBt + b(Xt , u)dt − dkt

|k |t =
t∫

0

1{Xs∈∂X}d |k |s ; kt =
t∫

0

n(Xs)d |k|s

where k is a continuous, increasing process and B is a
d-dimensional Brownian motion.
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Phenotypic evolution

Birth : An individual described by (x , u) gives birth to a
clonal child at rate λ1(x , u),

Death : An individual described by (x , u) dies at rate λ2(x , u).

We denote its growth rate by a(x , u) = λ1(x , u)− λ2(x , u).

Birth with mutation : Each individual gives birth to mutant
child at a certain rate, the trait of the child is chosen
according to a Gaussian law.
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Competition : If the population is described by

ν =
1

K

n∑
i=1

δ(xi ), the spatial competition against an individual

(x , u) is given by :

µ(x , u)I ? ν(x , u) = µ(x , u)
1

K

n∑
i=1

I (x − x i )

where I is a competition kernel.
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Simulations

We can then simulate with a computer the behaviour of this
population. We present an example here :

the space X is (0, 1), and individuals move according to a
symmetric diffusion (m is constant, b ≡ 0),

the space of traits U is equal to [0, 1],

the growth rate is a(x , u) = max(−1, 1− 20(x − u)2),

two individuals are in competition if and only if their distance
is smaller than δ = 0.1.

10/27 Hélène Leman Influence of space



Introduction
Probabilistic model

Monomorphic populations
Perspectives

Model’s description
Simulations
Large population approximation and existence of a density

Figure : (a) t=300
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Figure : (b) t=600
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Figure : (c) t=1500
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Figure : (d) t=4000
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Large population approximation : K → +∞

If the coefficients are bounded and if m has a positive lower bound,
the following theorem holds.

Theorem (Champagnat-Méléard 2007)

For all T > 0, if (νK0 )K>0 converges in law to some deterministic
finite measure ξ0 which has a density with respect to Lebesgue
measure dxdu then (νK )K>0 converges in law as a process in
D([0,T ],MF (X̄ × U)) to a deterministic function
ξ ∈ C([0,T ],MF (X̄ × U)). For all t, ξt has a density with respect
to Lebesgue measure.
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The density function gt(x , u) is a weak solution to the partial
differential equation :



∂tgt(x , u) = ∆(m(x , u)gt(x , u))−∇(b(x , u)gt(x , u))

+ a(x , u)gt(x , u)

+ µ(x , u)

∫
X

I (x − y)gt(y , u)dygt(x , u),

g0 is the density function of ξ0,

∂ngt(x , u) = 0 ∀(t, x , u) ∈ [0,T ]× ∂X × U .
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In the case of a monomorphic population, the evolution equation is


∂tgt(x) = ∆(mgt)(x) + a(x)gt(x)

− µ(x)

(∫
X

I (x − y)gt(y)dy

)
gt(x), ∀x ∈ X

∂ngt(x) = 0, ∀x ∈ ∂X , ∀t ∈ R,

where gt is the density at time t of the population on X .

Result : if I ≡ 1, gt tends to a stationary state when t tends to
+∞.

18/27 Hélène Leman Influence of space



Introduction
Probabilistic model

Monomorphic populations
Perspectives

Evolution equation
Existence of a stationary state
Proof

Lemma

If

min
u∈K1

1

‖u‖2
L2

[∫
X

m|∇u|2dx −
∫
X

a(x)u2(x)dx

]
= −Ca < 0,

then −∆(mg)(x) =

(
a(x)− µ(x)

∫
X

I (x − y)g(y)dy

)
g(x) sur X

∂ng(x) = 0 pour tout x ∈ ∂X .

has a positive solution in L2(X ).

Proof : Find a fixed-point of a function χ.
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Using the Krein-Rutman theorem,

Theorem (Krein-Rutman)

Let E be a Banach space, and A :

(
E 7→ E

f → g

)
.

If A is continuous, compact, and if there exists a closed cone K such that :

if g ∈ K, then A(g) ∈ Int{K},

then there exists a simple positive eigenvalue of A with eigenvector in Int{K}.

we conclude that for all f ∈ L2, there exist cf ∈ R and g ∈ C 2,
positive, such that {

Lf (g) = cf g ∀x ∈ X
∂ng(x) = 0 ∀x ∈ ∂X .

where Lf (g) = −∆(mg)− (a− µ(I ∗ f ))g .
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We construct a function χ :

(
L2(X ) 7→ L2(X )

f → g

)
,

g is the positive eigenvector, defined previously, such that

cg = 0.

cg = min
u ∈ H1, u > 0,

∂nu = 0

1

‖u‖2
L2

[ ∫
X

m|∇u|2dx −
∫
X

a(x)u2(x)dx

+

∫
X
µ(x)(I ∗ g)(x)u2(x)dx

]
.
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If χ has a fixed point g , then χ(g) = g , so{
Lg (g) = cg g ∀x ∈ X
∂ng(x) = 0 ∀x ∈ ∂X

and cg = 0.

i.e. {
−∆(mg) = (a− µ(I ∗ g))g ∀x ∈ X
∂ng(x) = 0 ∀x ∈ ∂X
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Fixed-point theorem

We used this fixed point theorem.

Theorem (Schaefer)

Let E be a Banach space, χ : E 7→ E , continuous, compact and
such that there exists R > 0 satisfying :

if ∃g ∈ E , g = tχ(g), with t ∈ [0, 1[, then ‖g‖E ≤ R,

then χ has a fixed point in E .
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Smoothness of χ

χ is compact :
We take A = {f ∈ L2, ‖f ‖L2 ≤ M} and show that χ(A) is a
bounded set of H1, so it is a compact of L2.

χ is continuous :
To show this, we write χ as a composition of continous
functions.

24/27 Hélène Leman Influence of space



Introduction
Probabilistic model

Monomorphic populations
Perspectives

Evolution equation
Existence of a stationary state
Proof

Smoothness of χ

χ is compact :
We take A = {f ∈ L2, ‖f ‖L2 ≤ M} and show that χ(A) is a
bounded set of H1, so it is a compact of L2.

χ is continuous :
To show this, we write χ as a composition of continous
functions.

24/27 Hélène Leman Influence of space



Introduction
Probabilistic model

Monomorphic populations
Perspectives

Evolution equation
Existence of a stationary state
Proof

Degree hypothesis

Let t be in ]0, 1[ and g be in L2 such that g = tχ(g).

If X ⊂ R then
‖g‖L2 ≤ C‖g‖∞ ≤ R.

So χ has a fixed point, i.e. there exists a positive stationary
solution.

If X ⊂ Rd , d > 1, and if we add the hypothesis

(H) ∃k , k ′ > 0/ ∀x ∈ X , k ≤ I (x) ≤ k ′,

then
‖g‖L2 ≤ R.

So χ has a fixed point, i.e. there exists a positive stationary
solution.
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Define the probability for a mutant to survive and invade an
established monomorphic population,

Study the evolution of a population with two or more traits.

Thank you !
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