On the extinction of CSBP with catastrophes

C. Smadi, with V. Bansaye and J. C. Pardo Millan

- CSBP's with catastrophes
- Existence and long time behavior
- Speed of extinction
- Application : parasite infection in dividing cells

- CSBP's with catastrophes
- Existence and long time behavior
- Speed of extinction
- 4 Application : parasite infection in dividing cells

• Continuous time and continuous state space

- Continuous time and continuous state space
- ullet Non negative Markov Process absorbed at 0 and ∞

- Continuous time and continuous state space
- ullet Non negative Markov Process absorbed at 0 and ∞
- Branching property

$$Z_{x+y} \stackrel{\mathcal{L}}{=} Z_x^{(1)} + Z_y^{(2)}$$

where $Z^{(1)}$ and $Z^{(2)}$ are independent copies of Z

- Continuous time and continuous state space
- ullet Non negative Markov Process absorbed at 0 and ∞
- Branching property

$$Z_{x+y} \stackrel{\mathcal{L}}{=} Z_x^{(1)} + Z_y^{(2)}$$

where $Z^{(1)}$ and $Z^{(2)}$ are independent copies of Z

CSBP ←⇒ Scaling limit of GW (Lamperti 1967)

Solution of an SDE (Fu and Li 2010)

$$Z_t = Z_0 + \int_0^t \mathbf{g} Z_s ds + \int_0^t \sqrt{2\sigma^2 Z_s} dB_s + \int_0^t \int_0^\infty \int_0^{Z_{s-}} z \widetilde{N}_0(ds, dz, du)$$

- g malthusian parameter
- B brownian motion, N_0 Poisson random measure $(ds\mu(dz)du)$, independent of B
- \tilde{N}_0 compensated measure of N_0 .

Stable CSBP's : a particular class (1)

Why?

- Applications
- Simplest ones
- Exact speed of extinction
- Give bounds for speed of extinction of a wide class of CSBP's with catastrophes

Stable CSBP's : a particular class (2)

 \bullet Simplest ones : scaling limit of renormalized GW with the same law μ

Stable CSBP's : a particular class (2)

- ullet Simplest ones : scaling limit of renormalized GW with the same law μ
- If the process is continuous and has finite variance, Feller process:

$$Y_t = Y_0 + \int_0^t gY_s ds + \int_0^t \sqrt{\sigma^2 Y_s} dB_s$$

Stable CSBP's : a particular class (2)

- ullet Simplest ones : scaling limit of renormalized GW with the same law μ
- If the process is continuous and has finite variance, Feller process:

$$Y_t = Y_0 + \int_0^t g Y_s ds + \int_0^t \sqrt{\sigma^2 Y_s} dB_s$$

Otherwise stable CSBP :

$$Y_t = Y_0 + \int_0^t g Y_s ds + \int_0^t \int_0^\infty \int_0^{Y_s^-} z \tilde{N_0}(ds, dz, du)$$

where $N_0(ds, dz, du)$ is a Poisson random measure with intensity $ds \frac{Cdz}{z^2 + \beta} du$

CSBP with catastrophes

- Catastrophes independent of the CSBP
- N_1 Poisson Point Process with intensity $dt\nu(dx)$
- Finally, process solution of

$$Y_{t} = Y_{0} + \int_{0}^{t} gY_{s}ds + \int_{0}^{t} \sqrt{2\sigma^{2}Y_{s}}dB_{s}$$

$$+ \int_{0}^{t} \int_{[0,\infty)} \int_{0}^{Y_{s-}} z\widetilde{N}_{0}(ds, dz, du)$$

$$+ \int_{0}^{t} \int_{[0,\infty)} (z-1)Y_{s-}N_{1}(ds, dz)$$

- CSBP's with catastrophes
- 2 Existence and long time behavior
- Speed of extinction
- 4 Application : parasite infection in dividing cells

$$Y_{t} = Y_{0} + \int_{0}^{t} gY_{s} ds + \int_{0}^{t} \sqrt{2\sigma^{2} Y_{s}} dB_{s}$$

$$+ \int_{0}^{t} \int_{[0,\infty)} \int_{0}^{Y_{s-}} z \widetilde{N}_{0}(ds, dz, du)$$

$$+ \int_{0}^{t} \int_{[0,\infty)} (z-1) Y_{s-} N_{1}(ds, dz)$$

$$(1)$$

Proposition

lf

$$\int_{(0,\infty)} 1 \wedge \big| x - 1 \big| \nu(dx) < \infty,$$

(1) has a unique strong solution (Fu and Li 2010)

Lévy process describing environment

$$\Delta_t = \int_0^t \int_{(0,\infty)} ln(x) N_1(ds, dx) = \sum_{s \le t} ln(m_s)$$

Proposition

- (i) (Subcritical) If $(\Delta_t + gt)_{t \geq 0}$ goes to $-\infty$, then $Y_t \to 0$ a.s.
- (ii) (Critical) If $(\Delta_t+gt)_{t\geq 0}$ oscillates, then $\liminf_{t\to\infty}Y_t=0$ a.s.
- (iii) (Supercritical) If $(\Delta_t + gt)_{t \geq 0}$ goes to $+\infty$, then $\mathbb{P}(\forall t \geq 0, Y_t > 0) > 0$ and $\exists \ W \geq 0$ such that

$$e^{-gt-\Delta_t} Y_t \xrightarrow[t\to\infty]{} W \quad a.s., \qquad \{W=0\} = \Big\{\lim_{t\to\infty} Y_t = 0\Big\}.$$

Proposition (stable case, $\beta \in (0,1]$)

- (i) (Subcritical) If $(\Delta_t + gt)_{t\geq 0}$ goes to $-\infty$, then $\exists t\geq 0, Y_t=0$
- (ii) (Critical) If $(\Delta_t + gt)_{t>0}$ oscillates, then $\exists t \geq 0, Y_t = 0$
- (iii) (Supercritical) If $(\Delta_t + gt)_{t \geq 0}$ goes to $+\infty$, then $\mathbb{P}(\forall t \geq 0, Y_t > 0) > 0$ and $\exists \ W \geq 0$ such that

$$e^{-gt-\Delta_t}Y_t\xrightarrow[t\to\infty]{}W$$
 a.s., $\{W=0\}=\Big\{\lim_{t\to\infty}Y_t=0\Big\}.$

- CSBP's with catastrophes
- Existence and long time behavior
- Speed of extinction
- 4 Application : parasite infection in dividing cells

Proposition

Assume we are in the stable case $(\beta \in (0,1])$. For all $x_0 \geq 0$ and $t \geq 0$:

$$\mathbb{P}_{x_0}(Y_t > 0) = 1 - \mathbb{E}\left[\exp\left\{-x_0\left(c\int_0^t e^{-\beta(\Delta_s + gs)}ds\right)^{-1/\beta}\right\}\right].$$

Laplace exponent

•
$$\mathbb{E}[e^{\lambda \Delta_t}] = e^{t\phi(\lambda)}$$
 for $\lambda, t \geq 0$

The Laplace exponent ϕ is a convex function.

Theorem

We consider subcritical case $(\phi'(0) + g < 0)$

(a) (strongly) If
$$\phi'(1)+g<0$$
 : $\mathbb{P}_{x_0}(Y_t>0) \underset{t \to \infty}{\simeq} x_0 e^{t(\phi(1)+g)}$

- (b) (intermediate) If $\phi'(1) + g = 0$: $\mathbb{P}_{x_0}(Y_t > 0) \underset{t \to \infty}{\simeq} x_0 t^{-1/2} e^{t(\phi(1) + g)}$
- (c) (weakly) If $\phi'(1) + g > 0$: $\mathbb{P}_{x_0}(Y_t > 0) \underset{t \to \infty}{\simeq} c(x_0) t^{-3/2} e^{\tau t}$ $(\tau = \min_{\lambda \in]0,1[} \{\phi(\lambda) + g\lambda\})$

Figure: $t \mapsto \phi(t) + gt$

Heuristically

Equivalent linked to $\mathbb{E}[\exp(\inf_{s \in [0,t]}(\Delta_s + gs))]$

Strongly subcritical

Escher transform

Other cases

- ullet Discretization of the Lévy process $\Delta_t + gt$ to obtain a random walk
- Limit theorems on functionals of arithmetico-geometric sequences $U_{n+1} = A_n U_n + B_n$ with (A_n, B_n) iid (Guivarch and Liu 2001)
- Continuous limit

- CSBP's with catastrophes
- 2 Existence and long time behavior
- Speed of extinction
- 4 Application : parasite infection in dividing cells

Model (Bansaye and Tran 2010)

Evolution of parasites in a cell

$$dX_s^i = gX_s^i ds + \sqrt{2\sigma^2 X_s^i} dB_s^i$$

Question

What is the quantity N_t^* of infected cells at time t?

Result (Bansaye and Tran 2010)

$$\mathbb{E}(N_t^*) = e^{rt} \mathbb{P}(Y_t > 0) = \mathbb{E}(N_t) \mathbb{P}(Y_t > 0)$$

$$Y_t = x_0 + \int_0^t g Y_s ds + \int_0^t \sqrt{2\sigma^2 Y_s} dB_s + \int_0^t \int_0^1 (\theta - 1) Y_{s_-} \rho(ds, d\theta)$$

 $ho(ds,d\theta)$ Poisson random measure with intensity $2rds\mathbb{P}(\Theta\in d\theta)$

Proposition

- **①** (Supercritical) If $g > 2r\mathbb{E}[\log(1/\Theta)]$, then $\mathbb{E}[N_t^*] \sim c_5 e^{rt}$,
- ② (Critical) If $g = 2r\mathbb{E} [\log(1/\Theta)]$, then $\mathbb{E} [N_t^*] \sim c_4 t^{-1/2} e^{rt}$,
- **3** (Subcritical) If $g < 2r\mathbb{E}(\log(1/\Theta))$:
 - (i) (Strongly) If $g < 2r\mathbb{E}\left(\Theta\log(1/\Theta)\right)$, $\mathbb{E}\left(N_t^*\right) \sim c_1 e^{gt}$,
 - (ii) (Intermediate) If $g = 2r\mathbb{E}(\Theta \log(1/\Theta))$, $\mathbb{E}(N_t^*) \sim c_2 t^{-1/2} e^{gt}$,
 - (iii) (Weakly) If $g > 2r\mathbb{E}(\Theta \log(1/\Theta))$, $\mathbb{E}(N_t^*) \sim c_3 t^{-3/2} e^{\alpha t}$, where $\alpha = \min_{\lambda \in [0,1]} \{(g\lambda + 2r(\mathbb{E}(\Theta^{\lambda}) 1/2)\}$.

g=growth rate of parasites, r=division rate of cells, $(\theta,1-\theta)=$ sharing law of parasites

- V. Bansaye, V.C. Tran, Branching Feller Diffusion for Cell Division with Parasite Infection, ALEA 8, 95-127, 2011
- Z. Fu and Z. Li: Stochastic equations of non-negative processes with jumps, Stoch. Proc. Appl., 120, 306-330, 2010.
- J. Geiger, G. Kersting, V. A. Vatutin, Limit theorems for subcritical branching processes in random environment, Annales de l'Institut H. Poincarré, PR 39, 4, 593-620, 2003
- Y. Guivarc'h, Q. Liu, Asymptotic properties of branching processes in random environment, C.R. Acad. Sci. Paris, t.332, Serie I. 339-344, 2001
- J. Lamperti, Z. Wahrscheinlichkeitstheorie and Verw. Gebiete, The limit of a sequence of branching processes, Probability Theory and Related Fields, vol 7, 4, 271-288, 1967

