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Behavior of P(Z, = k) as n — oo, with kK > 1

Let Z, be a GW process with reproduction law specified by the p.g.f f.
Then
E(s?) = f(s) (s [0,1])
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Introduction Galton Watson processes

Behavior of P(Z, = k) as n — oo, with kK > 1

Let Z, be a GW process with reproduction law specified by the p.g.f f.
Then

E(s™)=f"(s)  (s€0.1])

In the supercritical case (f'(1) > 1),

P(Zp — 00) >0, P(Zy—>occorineN:Z,=0)=1
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Behavior of P(Z, = k) as n — oo, with kK > 1

Let Z, be a GW process with reproduction law specified by the p.g.f f.
Then

E(s?) = f(s) (s [0,1])
In the supercritical case (f'(1) > 1),

P(Zp — 00) >0, P(Zy—>occorineN:Z,=0)=1

What about
{Z, = k} k=1

and its probability £$(0)/k ?

g eee
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Coly e p e
Proofs of the asymptotic behavior P1(Z, = 1)

@ easyif P{(Z; =0) =0 (pe = 0)
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Proofs of the asymptotic behavior P1(Z, = 1)

@ easy if P1(Zy =0) =0 (pe = 0)
@ analytical proofs [Athreya,Ney 70s]

@ The reduced tree (i.e. keeping only the survival branches) of a
supercritical GW is a supercritical GW (without extinction!) [see
e.g. Peres Lyons’s book]

@ spine decomposition [Lyons Peres Pemantle 95, Geiger 99]
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Coly e p e
Proofs of the asymptotic behavior P1(Z, = 1)

@ easy if P1(Zy =0) =0 (pe = 0)
@ analytical proofs [Athreya,Ney 70s]

@ The reduced tree (i.e. keeping only the survival branches) of a
supercritical GW is a supercritical GW (without extinction!) [see
e.g. Peres Lyons’s book]

@ spine decomposition [Lyons Peres Pemantle 95, Geiger 99]

@ a supercritical GW conditioned to become extincted is a subcritical
GW

Conclusion : if P1(Zy =1) >0
P1(Zn = 1) ~ cf'(pe)” (n— o0)

where pe = P(3n: Z,=0) =inf{s € [0,1] : f(s) = s}
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Galton Watson processes
Motivations for random environments

@ To evaluate the number N,(k) of infected cells with k parasites in
Kimmel’s branching model

No(k) ~ 2"B(Zy = k) (n — o0)

where Z, is a branching process in random environment.
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Galton Watson processes
Motivations for random environments

@ To evaluate the number N,(k) of infected cells with k parasites in
Kimmel’s branching model

No(k) ~ 2"B(Zy = k) (n — o0)

where Z, is a branching process in random environment.

@ To understand the role of environmental and demographic
stochasticity in the evolution of a population

@ To characterize the lower large deviations of BPRE

P(1<Z,<c")~7? (n— )
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BPRE Introduction

Branching processes in random environment (BPRE) generalize
Galton Watson processes [Smith, Wilkinson 69] :

In each generation, one pick in an i.i.d. manner an environment which
gives the reproduction law of each individual.
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BPRE Introduction

Description of a BPRE (Z,) >0

Now, in each generation, we pick randomly an environment in an i.i.d.
manner :

& = environment in generation /.
The reproduction law in environment e is given by the r.v. Ng :

fo(s) := E(sN®), m(e) := E(N(e)) = fi(1).
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Description of a BPRE (Z,) >0

Now, in each generation, we pick randomly an environment in an i.i.d.
manner :

& = environment in generation /.
The reproduction law in environment e is given by the r.v. Ng :

fo(s) := E(sN®), m(e) := E(N(e)) = fi(1).

For every n € N, conditionally on

gn - 67
we have
Zn
Zn+1 — Z Nf)
i=1

where (N)jen are i.i.d. r.v. distributed as N(e).
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il
Description of a BPRE (Z,) >0

Now, in each generation, we pick randomly an environment in an i.i.d.
manner :

& = environment in generation /.
The reproduction law in environment e is given by the r.v. Ng :

fo(s) := E(sN®), m(e) := E(N(e)) = fi(1).

For every n € N, conditionally on

gn — 67
we have
Zn
Zn+1 = Z Nf)
i=1

where (N)jen are i.i.d. r.v. distributed as N(e).

Z becomes extincted a.s. iff E[log(m(€))] < 0. [Athreya, Karlin 71}.
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Supercritical BPRE with P(Z; =0) > 0

Let us note Q¢ the random reproduction law, i.e. the law of N(E),
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Supercritical BPRE with P(Z; =0) > 0

Let us note Q¢ the random reproduction law, i.e. the law of N(E),
Z:={j>1:P(Q:(j)>0,Q:(0) >0) >0}

and introduce the set CI(Z) of integers which can be reached from Z
by Z :

CI(Z):={k>1:3n>0andj e Z with P;(Z, = k) > 0}.
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Supercritical BPRE with P(Z; =0) > 0

Let us note Q¢ the random reproduction law, i.e. the law of N(E),
Z:={j>1:P(Q:(j)>0,Q:(0) >0) >0}

and introduce the set CI(Z) of integers which can be reached from Z
by Z :

CI(Z):={k>1:3n>0andj e Z with P;(Z, = k) > 0}.
Finally, the reproduction between generation i and n is given by

fi,n = fg,‘ 6:-+0 fgn_1
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BPRE Small positive values

Supercritical BPRE with P(Z; =0) > 0
Keeping these notations
7 := {j >1: P(Qs(j) > 0,Q¢(0) >0) > 0}
CI(Z):={k>1:3n>0andj e Z with P;(Z, = k) > 0}.
fi,n = fgi 0--0 fgn_1

Theorem
The following limits exist and coincide for all k,j € CI(Z),

— lim 1logPk(Zy =) = — lim $10gE[fy n(0)" "N £ (fi1.(0))]

where z; is the smallest element of T.
This common limit is denoted ¢ and ¢ € (0,00).

v

Vincent Bansaye (Polytechnique) 16th june. Cirm. 8/21



BPRE Small positive values
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[Geiger 99] construction with T(¢) trees conditioned on extinction and
T() unconditioned trees.
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BPRE Small positive values
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[Geiger 99] construction with T(¢) trees conditioned on extinction and
T() unconditioned trees.
To get p > 0, we use an estimation of f; ,(0) due to Agresti, which gives

a lower bound using the random walk S, = Zf;& log m(&;)
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Gl esiice 2lbes
Example of BPRE Il

Cumulative effect
of the environment
8, = £l leg(mie)))
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Gl esiice 2lbes
What about environmental stochasticity ?

We note S, = 3.7 log m(&;) and
E(Zy | €0, En1) = NZg m(&;) = exp(Sn)
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What about environmental stochasticity ?
We note S, = 3.7 log m(&;) and
E(Zn | €0, €n-1) = Ny m(&;) = exp(Sp)
and
A(x) = sup{tx — log E(exp(tX)) : t € R}
Proposition ( scenario)

If truncated moment assumption (or P(m(€) > 1) = 1) is fulfilled, then

p < N0)

Informally : we focus on {S, ~ 0}, so the probability that the population
survives without tending to oo decreases polynomially.
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What about environmental stochasticity ?
We note S, = 3.7 log m(&;) and
E(Zy | €0, -+ Ep-1) = N2y M(E;) = exp(Sn)

and
A(x) = sup{tx — log E(exp(tX)) : t € R}

Proposition ( scenario)
If truncated moment assumption (or P(m(€) > 1) = 1) is fulfilled, then

p < N0)

Informally : we focus on {S, ~ 0}, so the probability that the population
survives without tending to co decreases polynomially.
Proof : Change of probability so that the r.w. S becomes critical and

{1<Zy <k} >"{_min 8 >0,8,<C}
i=0---n—

for k, not growing fast.
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Some special class of reproduction laws

We recall that a probability generating function is linear fractional (LF)
if there exist positive real numbers m and b such that

f(s)=1—-(1-s8)/(m '+ bm2(1-13s)/2).
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BPRE The linear fractional case

Some special class of reproduction laws

We recall that a probability generating function is linear fractional (LF)

if there exist positive real numbers m and b such that
f(s)=1—-(1-s8)/(m '+ bm2(1-13s)/2).

The good news

@ This family of p.g.f is stable by composition
o zp=1

@ it is representative ?
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Supercritical regimes

Theorem

If N(E) is a.s. linear fractional, then for every k > 1, —p is

log E[m(&)"] , i Ellog(m(€))/m(£)] >0

1
lim —logP(Z, =k)=—0= { ) olse

n—oo N
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Supercritical regimes

Theorem

If N(E) is a.s. linear fractional, then for every k > 1, —p is

1
Jlim_ - logP(Zp = k)= —0= { —N\(0) , else

log E[m(€)~1] , ifE[log(m(E))/m(E)] >

v

Theorem (Dekking 88 ; D’Souza, Hambly 97 ; Guivarc’h, Liu 01;
Geiger, Kersting, Vatutin 03)

In the subcritical case, then

i Lioge(z, > 0)= { o9EmE . AEloa(mE)me) <0

Recall a supercritical GW conditioned to become extincted is a
subcritical GW.
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BPRE The linear fractional case

MRCA,= most recent common ancestor of individuals living at time n.
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BPRE The linear fractional case

MRCA,= most recent common ancestor of individuals living at time n.
Proposition
(i) IfEflog(m(&))/m(€)] > 0, then for every § € (0,1],

limsup 1 log P1(MRCA, > dn|Z, = 2) < 0.

n— oo
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BPRE The linear fractional case

MRCA,= most recent common ancestor of individuals living at time n.
Proposition
(i) IfEflog(m(&))/m(€)] > 0, then for every § € (0,1],

limsup 1 log P1(MRCA, > dn|Z, = 2) < 0.

(ii) If E[log(m(€))/m(€)] < 0, then

lim inf P+ (MRCA = n|Z, = 2) > 0 ; liminf Py (MRCA, = 1/Z; = 2) > 0.
—00

n—oo
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BPRE The linear fractional case

MRCA,= most recent common ancestor of individuals living at time n.
Proposition
(i) IfEflog(m(&))/m(€)] > 0, then for every § € (0,1],

limsup 1 log P1(MRCA, > dn|Z, = 2) < 0.

(ii) If E[log(m(€))/m(€)] < 0, then

lim inf P+ (MRCA = n|Z, = 2) > 0 ; liminf Py (MRCA, = 1/Z; = 2) > 0.
—00

n—oo

(iii) If E[log(m(€))/m(E)] = 0O, then for every sequence (xn)nen SUch
that x, € [1, n], we have

lim 1 log Py (MACA, = xn| Zy = 2) = 0.
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Lower Large Deviations
Now...lower larger deviations

In the supercritical regime, on the survival event, with N(€) log N(€)
moment assumption [Athreya Karlin 71]

Zy ~ Wexp(Sp) ~ exp(E(logm(€)n)) n— oo, W>0
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Lower Large Deviations
Now...lower larger deviations

In the supercritical regime, on the survival event, with N(€) log N(€)
moment assumption [Athreya Karlin 71]

Zy ~ Wexp(Sp) ~ exp(E(logm(€)n)) n— oo, W>0

Let us now focus on
{0 < Z, <exp(dn)}

where 6 < E(log m(&)).
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eey LA s
case without extinction, with J. Berestycki 09

Here, P(Z; = 0) = 0 and Z grows a.s.

Theorem
If the mean and variance of reproduction law are bounded a.s.

%Iog P(0 < Z, < exp(9n)) =3 —x(0)

where

x(0) = tei[r(l)fﬂ{—ﬂog(ﬁ’ﬁ (1 =1))+ (0 = OMc/(1 - 1)}

+ uniform dimensional convergence of the trajectory
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Going farther... Lower Large Deviations

case with possible extinction, with C. Boeinghoff

Theorem

Moment assumptions about the mean offspring.

%Iog P(0 < Z, < exp(6n)) =5 —x(0)

where

x(0) = inf {TP+(1 —HA@/(1 - 1)}

te[0,1]

+ finite dimensional convergence of the trajectory
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Lower Large Deviations
...and cell infection model

In Kimmel’s (general) branching model
@ the cell divides in discrete time and the population is a binary tree.
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In Kimmel’s (general) branching model
@ the cell divides in discrete time and the population is a binary tree.

@ the parasites population grows inside the cells following a Galton
Watson process

@ the parasites are shared randomly in the two daughter’s cells
(for example, by a binomial repartition with a random parameter P
picked in a iid manner for every cell)
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Lower Large Deviations
...and cell infection model

In Kimmel’s (general) branching model
@ the cell divides in discrete time and the population is a binary tree.
@ the parasites population grows inside the cells following a Galton
Watson process

@ the parasites are shared randomly in the two daughter’s cells

(for example, by a binomial repartition with a random parameter P
picked in a iid manner for every cell)

The number of parasites in a random cell line is a BPRE (a GW
process iff P =1/2 a.s).

Motivations come from experiments in TaMaRa’s laboratory, which
note a strong asymmetry.

A random environment (in time) can be added (for growth and sharing).
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generation 0

parasite
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generation 0 generation 1

parasite
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Going far Lower Large Deviations

generation 0 generation 1
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Going far Lower Large Deviations

generation 0 generation 1
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Going far Lower Large Deviations

generation 0 generation 1 generation 2

\O
G
L
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Counting cells...

Let us call G, the cells in generation n and

the number of cells with k parasites in generation n. Then
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Let us call G, the cells in generation n and
the number of cells with k parasites in generation n. Then

E(Nn(A)) = 2"P(Z, € A)
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Counting cells...

Let us call G, the cells in generation n and
Nn(A) = #{i € Gy: Z € A}
the number of cells with k parasites in generation n. Then
E(Np(A)) = 2"P(Z, € A)
and in particular
Llog EN,[exp(nd), o0) =3 2 — x(0)
TlogENy{k} =32 — ¢

-> The two stochasticities of the model (growth and sharing) appear
along the lineage (separately or combined).
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Going farther.. Lower Large Deviations

Different regimes for the cell infection

P=p as my = mp my =m(1 —p)
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Conclusion Rate function y for LD of BPRE

@ Kozlov [06, Discrt. Math. Appl.] : geometric offspring distributions,
upper rate function x(6) = A(9).

@ B. & Beresticky [09, MPRF] : P(Z; = 0) = 0, lower rate function :
x(€) = infyepo 1{—tlog(P1(Z1 = 1)) + (1 — )A(c/(1 — 1))}

@ Kersting & Boeinghoff [10, SPA] : Geometric tail offspring
distribution upper rate function

x(0) = infrego 1y { £+ (1 = DAUO - w)/(1 = 1) }

@ Kozlov [10, TPA] : Geometric offspring distributions. Finer
estimates for upper large deviations.

@ B. & Boeinghoff [11, EJP] : Possible heavy tails, upper rate
function x(0) = infre(o.1).ucio.0] {t’y FBu+(1— A0 —u)/(1 — t))}

@ B. & Boeinghoff [12] : lower large deviations and probability to stay
bounded without extinction

x(0) = infrepo 1 {te + (1 = OAO/(1 — 1))}
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