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General theme 1.

Deterministic evolutionary population genetics 

theory is currently motivated by the need to 

consider whole genome data in non-randomly-

mating diploid populations, (particularly the 

human population) and has thus moved to the 

whole-genome, non-random-mating diploid

case. This talk discusses aspects of this theory 

and considers possible extensions to the 

corresponding stochastic theory.



General theme 2. The Price equation.

The Price equation is part of the deterministic whole-genome 
theory of population genetics in which no assumption is 
made about the mating scheme. It is little-known in standard 
population genetics theory.

The Price equation is used to discuss:-

1. Evolution.

2. The correlation between relatives for a metrical trait.

3.    Kin and group selection matters. 



The Price equation

What is it? There are two versions. 

1. The original (1970) Price version. This involves 
only allelic  (gene) frequency changes from one 
generation to the next.

2.    The later (1972) version, involving  a generalization 
to changes in any character from one generation to 
the next.

What benefits are there in using the Price equation?



Answer #1 (Gardner, Current Biology, Vol 18)

“Price discovered an entirely novel approach to 

population genetics, and the basis for a general 

theory of selection – the Price equation. The 

Price equation has come to underpin several 

key areas in evolutionary theory.”



Answer # 2. (Grafen (2008)). The Price equation can be 

used to show how individuals in a population “solve 

the [evolutionary] optimization problem”. 

(WJE: Whatever this expression means - See comments 

later on this claim).

More generally, enthusiasts for the equation claim that it 

explains everything about evolution.



Answer #3 (Ewens, Marseille, 2012)

The Price equation is an interesting result that allows one 

to do some “unusual” calculations. This arises because 

it looks at parent-offspring relationships in a way that is 

different from that used in classical population genetics. 

The “Price” approach might also possibly be associated 

with coalescent calculations (see later). 

However, claims for its usefulness are exaggerated. Also, 

several either wrong or trivial results have been derived 

from it. Further, aspects of the general form of the 

equation is suspect.
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What is fitness?

The Price equation was originally written under the view that the 
fitness of any diploid individual is the actual number of genes 
at any locus that he passes on to the next generation (i.e. his 
number of offspring). Under this viewpoint I write wi as the 
fitness of individual i,   (i = 1, 2, …, N).

In classical population genetics a fitness is a parameter, and is 
associated with a genotype. All individuals of the same 
genotype have the same fitness. So when considering classical 
population genetics I write wg as the fitness of genotype g

(g = 1, 2, …, approx 10^5000).      (Why so many?)

There is of course an infinite population translation between the 
two approaches.  



The original Price equation

This refers to the change in frequency of some gene A between a 
parental and a daughter generation. 

Label individuals in the parent generation by i (i = 1, 2, …, N). 
Let qi be the proportion of A genes in individual i (qi = 0, 1/2 
or 1). The parental generation frequency of A is thus �i qi /N.

Let individual i transmit wi genes to the next generation. Let ni' 
of these be A genes. Write

�qi = ni'/wi - qi.

This is the difference between the frequency of the A gene  
transmitted by individual i and the frequency in that 
individual.
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Is this equation useful?

Finite N – thus it admits a stochastic version.

(As N increases, the mean of the second term 
approaches 0. Thus there is only one term on the RHS 
in the infinite population version.)

The focus on individuals instead of genotypes (as 
indicated by the notation) leads to the possibility of 
using the equation for kin and group selection 
questions and to discuss altruism. 

Other uses – see later.



The general Price equation.

Consider some metrical trait, say z = (mature age) height. Let zi be the height of individual i
(i = 1, 2, …, N) in a parental generation. 

The average height in this generation is N-1� zi.

Write the average height of the offspring of individual i as

The average height of individuals in the offspring generation is then

The change        in average height between parental and daughter generations is the 
difference between these two quantities.

(There is a problem here - an offspring is the product of two parents, 
so how is the accounting done?  This seems unresolved.)
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Writing      

this is then 

This is the (general form of the) Price equation.
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The Price equation uses an “accounting system”, and 
therefore also a notation system, that is different from 
the classical one. 

Considering for example genotype frequencies, we have 

Classical population genetics notation:

Offspring generation frequency of genotype “g” is xg'. 

“Price” notation:

Average offspring generation frequency of individuals who 
are the offspring of genotype “g” parents is xg'.
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Thus the Price approach with reversed arrows looks 

like a coalescent approach.

It would be desirable to construct a stochastic theory 

based on the Price equation in connection with the 

coalescent.

In view of this, and for other reasons, it is interesting 

to consider further aspects of the Price equation

and its relation to classical population genetics    

theory for the whole-genome, non-random-mating 

diploid case.



To discuss potential merits of the Price approach we consider a 
parental and a daughter generation at the same time points in 
their respective life cycles. We choose the time of conception 
of both, and call these time points A and C respectively. It is 
also necessary to consider the time when the parental 
generation reproduces (time point B).

------A---------------B--C------>

We use a single dash (') to denote changes (�) in any quantity 
between time points A and B, a double dash ('') to denote 
changes between time points B and C, and � to denote the 
inter-generational change between time points A and C.

Thus � =  �' + �''



What merits are there in using the Price equation 

approach? Consider the frequency of  the allele 

A at locus A. In classical theory this changes 

between time-points A and B, due to selection. 

However it does NOT change between time-

points A and B within an individual. Further, 

the mean frequency with which an individual 

transmits this allele to his/her offspring is the 

same as the frequency within that individual 

him/herself. This makes the second term in the 

Price equation “close to” zero.



The within generation change �' depends only on (viability) 
selection, and has nothing to do with recombination 
phenomena or the mating scheme. It has be called the 
“selection change”. (This however is not quite accurate – see 
later.)

The B to C change �'' does not depend on selection, but does
depend on recombination phenomena and the mating scheme. 
It can be called the “transmission” change. Thus another 
frequently-used notation is

� =  �selection + �transmission

What can be said, in the classical theory, about these changes, if 
we make no assumptions about the mating scheme or the 
recombination structure?



The classical theory. 

Let “g” index whole genome genotypes. Write wg as the fitness of genotype g and xg the 
“time-point A” frequency of this genotype.

The population mean fitness at time point A is

Because of the different fitnesses of the various genotypes, the population frequency of 
genotype g at time point B has changed to 

Thus the change in mean fitness between time points A and B is

The variance �w
2 is the TOTAL variance in fitness in the parental generation at the time 

of its conception. (This is a standard result.)

However, we cannot say anything about the change in mean fitness between time points B 
and C. 

gg g wxw �=

./'
wwxx ggg =

./)()(' 22
wwwxw wgg g σ=−=∆ �



Consider next some arbitrary character z. All individuals of genotype 
g have character value zg. The respective means of the character 
within the parental generation at time points A and B are

The change in the mean of the character within the parental 
generation (i.e. between time points A and B) is

(Mis)using the word covariance, this gives

}1)/{('' −=−=∆ � wwzxzzz ggg g

),cov()(' 1
wzwz

−
=∆

wwzxzzxz ggg ggg g /'and �� ==

).()( 1
wwzxw gg

g

g −= �
−



The right hand term is the first term on the right-hand 
side of the classical population genetics Price 
“covariance” equation, and also in the Price 
equation itself.

Thus this must be the “selection” term (�') in the Price 
equation, and thus the second term on the right-
hand side of the Price equation must be the 
“transmission” term (�'').

What can be said in general about the “transmission 
term” �'' in both the classical and the “Price”
theory?



Nothing.

Unless further assumptions are made  about recombination and 
the mating scheme, the Price equation and the classical theory 
are  in general useless in discussing inter-generational changes 
that depend on genotype frequencies. 

They are both “dynamically insufficient”. 

Thus if we define evolution minimally as a process relating
whole-genome properties of a parental and a daughter 
generation, both the Price equation and the classical theory 
usually cannot even say anything about evolutionary properties 
from one generation to the next, unless further assumptions are 
made.



What then can we salvage from all this? There are 
two answers to this question.

First, if the first term on the right-hand side of the 
Price equation provides useful information about 
the action of selection (more important, if it 
captures all the evolutionary change in the character 
that can be assigned to selection) then that might be 
useful. 

Second, in the classical theory and the 
deterministic version of the Price equation there 
are no changes in allelic frequencies between time 
points B and C, whatever the mating scheme and 
recombination structure might be. 



Therefore the only transmission changes that we can 

calculate, and thus the only inter-generational 

changes (�) that we can calculate, must be those that 

depend only on allelic frequencies. 

This motivated a focus on allelic frequencies and the 

Fundamental Theorem of Natural Selection (Fisher).

This leads to the concept of the “average effect” of an 

allele and, in turn, to a (brief) discussion of the 

Fundamental Theorem of Natural Selection (FTNS). 



The average effects for fitness of all the alleles at all the 

loci in the genome are defined by a least-squares 

procedure. The “alpha version” definition of  the average 

effect of allele Aaj at gene locus j in the genome is �aj.  

These average effects are defined by minimizing 

where the outer summation is over all G genotypes in the 

genome, and the inner (g) summation is over all alleles at 

all loci occurring within genotype g, with allele �aj

counted in as many times (0, 1 or 2) as the allele Aaj

occurs in genotype g. 
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The �aj values are given implicitly as the solution of the matrix 
equation

A� =      �

for a (known) matrix A. � is the vector of inter- (and intra-) 
generational changes in allelic frequencies. 

The sum of squares removed by fitting the �aj values is the 
(whole genome) additive genetic variance �A

2, whose value is 
2     �'�. 

It is important to note that the values of the average effects 
depend the allelic frequencies, and thus change as these 
frequencies change.
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We now think of the fitness of genotype g not as wg, but instead as 

the “allele-derived” linear combination

where the (g) summation is as before. Note that using this does not 

change the “time-point A” population mean fitness, since

Although the �aj values depend on allelic frequencies and thus 

change between time-points A and B as these frequencies change, 

we consider the time point A to B “partial” change in mean 

fitness, where we ignore changes in the �aj values. This partial 

change is
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This is, exactly,               where          is the whole-genome additive 

genetic variance in fitness. 

Since this change depends on changes in gene frequencies only, it 

is thus also an inter-generational change. That is to say 

(P = partial.)  

This is the (adult version of) the Fundamental Theorem of Natural 

Selection. It is an exact whole-genome  result, independent of 

the mating scheme. 

A central point is that it is the additive genetic variance, not the 

total variance, that is relevant to the evolutionary process. This 

makes sense – it is the variance in fitness attributable to “genes 

within genotypes”.
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What are some of the misinterpretations of the FTNS given by 
devotes of the Price equation? 

Gardner, in “The Price equation”, Current Biology Vol 18, 2008:-

“The [FTNS] is easily proven using the Price equation. It is:

This is dreadful. 

(i) It is the standard intra-generational (time point A to time-
point B) result, and is thus is not relevant to evolution.

(ii) It uses the total variance in fitness, and not the additive 
genetic variance in fitness.

(iii) It implies that the mean fitness is non-decreasing from one 
generation to the next, whereas it can and often does decrease.

./)( 22
wwwpw wgg g σ=−=∆ �



Another erroneous statement of the FTNS (Rice, Evolutionary Theory) deriving 
from the Price equation is:-

This states that the total change in mean fitness between parental and daughter 
generations is the additive genetic variance divided by the mean fitness, plus 
a further term (whose value cannot be known in practice) that describes the 
change in mean fitness “due to transmission”

This comment implies that the first term is the change in mean fitness between 
time points A and B.

It follows that this equation is not correct. The change in mean fitness between 
time points A and B is (as indicated previously)
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Another aspect of the FTNS is that a basic 

assumption is that the environment changes 

rapidly, so that only “one generation to the 

next” results (such as the FTNS) are useful.

In particular, stationarity results are not useful.



Consider now the earlier claim that the first term on the 

right-hand side of the Price equation term does not 

necessarily capture all the evolutionary change in the 

character that can be assigned to selection. 

Suppose that the character “zg” is the linear approximation 

to the fitness of genotype g via summation of average 

effect, a central concept in the FTNS. That is, (see a 

previous slide),
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Then the first term in the Price equation becomes, with zg

defined as 

But this is the partial increase in mean fitness within the 
parental generation between time points A and B, not 
the total increase between those time points. Thus the 
first term on the right-hand side of the Price equation 
captures only a part of the change in mean fitness that 
is due to natural selection.
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The following “optimization” principle is claimed to 
arise using Price equation methods.

If all linear combinations of changes in the gene 
frequencies of all genes at all loci in the genome are 
zero, then by definition the individuals in the 
population have “solved the optimization problem”
and “there is no scope for selection”.

This is the same as saying: If, for all genes at all loci in 
the genome the daughter generation frequencies are 
the same as the parental generation frequencies, then 
individuals in the population have “solved the 
optimization problem”. 

This is pathetic. It says nothing.



Further problems with this “optimizing” concept:

1. Fitnesses 1.0 (A1A1) , 0.9 (A1A2), 1.0 (A2A2), both 
gene frequencies = ½, random mating. There is no 
change in gene frequencies. But the equilibrium is 
unstable, so there is scope for increasing mean 
fitness. (Consider also stochastic changes.)

2. If gene frequencies do not change between 
generations t and t+1, is it true that they will not 
change between generations t+1 and t+2?

3. Even when gene frequencies do not change under 
natural selection, genotype frequencies can be 
changing. Thus under natural selection the 
population is still “continuing to optimize”.



In the classical theory, what is optimal about natural 
selection in a Mendelian population? 

Natural selection acts in such a way that the gene 
frequency changes brought about by natural selection 
are such that, for a given increase in mean fitness 
between parent and daughter generations,  they 
maximize that part of the increase in mean fitness that 
is due to “genes within genotypes”.

(An incorrect optimizing principle found often in the 
literature is that, under natural selection, gene 
frequencies change in such a way as to maximize the 
rate of increase in mean fitness. This is not even true 
in the one-locus random-mating case.)



(i) The Price equation involves parent/offspring (P/O) 
covariances. How does it relate to standard 
population genetics covariance theory?

Standard P/O covariances are very complex. They rely 
on sums over all loci of the additive genetic variance 
at each locus, sums of all possible additive × additive 
genetic variances, sums of all possible additive ×
additive × additive genetic variances, …, assume no 
fitness differentials, and are complicated by the 
mating structure. In general they are not really 
known. (Problems associated with the “missing 
heritability”.)

The Price approach might help here, since it deals 
naturally with covariances (and thus correlations).


