The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion

Bob Griffiths
University of Oxford
A \(d \)-dimensional \(\Lambda \)-Fleming-Viot process \(\{X(t)\}_{t \geq 0} \) representing frequencies of \(d \) types of individuals in a population has a generator described by

\[
\mathcal{L} g(x) = \int_0^1 \sum_{i=1}^{d} x_i \left(g(x(1 - y) + ye_i) - g(x) \right) \frac{F(dy)}{y^2}.
\]

The population is partitioned at events of change by choosing type \(i \in [d] \) to reproduce with probability \(x_i \), then rescaling the population with additional offspring \(y \) of type \(i \) to be \(x(1 - y) + ye_i \) at rate \(y^{-2}F(dy) \).
Examples

Eldon and Wakeley (2006). A model where F has a single point of increase in $(0, 1]$ with a possible atom at 0.

A natural class that arises from discrete models is when F has a Beta(α, β) density, particularly a Beta$(2 - \alpha, \alpha)$ density coming from a discrete model where the offspring distribution tails are asymptotic to a power law of index α. Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger (2005) give a connection to stable processes.

Birkner and Blath (2009) describe the Λ-Fleming-Viot process and discrete models whose limit gives rise to it.
If F has a single atom at 0, then $\{X_t\}_{t \geq 0}$ is the d-dimensional Wright-Fisher diffusion process with generator

$$\mathcal{L} = \frac{1}{2} \sum_{i,j=1}^{d} x_i (\delta_{ij} - x_j) \frac{\partial^2}{\partial x_i \partial x_j}$$

$X_1(t)$ is a one-dimensional Wright-Fisher diffusion process with generator

$$\mathcal{L} = \frac{1}{2} x (1 - x) \frac{\partial^2}{\partial x^2}$$
The Λ-coalescent process is a random tree process back in time which has multiple merger rates for a specific k lineages coalescing while n edges in the tree of

$$\lambda_{nk} = \int_0^1 x^k (1 - x)^{n-k} \frac{F(dx)}{x^2}, \quad k \geq 2$$

After coalescence there are $n - k + 1$ edges in the tree.

This process was introduced by Pitman (1999), Sagitov (1999) and has been extensively studied. Berestycki (2009); recent results in the Λ-coalescent.
There is a connection between continuous state branching processes and the Λ-coalescent. The connection is through the Laplace exponent

$$\psi(q) = \int_0^1 \left(e^{-qy} - 1 + qy \right) y^{-2} F(dy)$$

Bertoin and Le Gall (2006) showed that the Λ-coalescent comes down from infinity under the same condition that the continuous state branching process becomes extinct in finite time, that is when

$$\int_1^\infty \frac{dq}{\psi(q)} < \infty$$
Some papers on the Λ-coalescent

A Wright-Fisher generator connection

Theorem
Let \mathcal{L} be the Λ-Fleming-Viot generator, V be a uniform random variable on $[0,1]$, U a random variable on $[0,1]$ with density $2u$, $0 < u < 1$ and $W = YU$, where Y has distribution F and V, U, Y are independent. Denote the second derivatives of a function $g(x)$ by $g_{ij}(x)$.

Then

$$
\mathcal{L}g(x) = \frac{1}{2} \sum_{i,j=1}^{d} x_i (\delta_{ij} - x_j) \mathbb{E} \left[g_{ij}(x(1 - W) + WV e_i) \right]
$$

where expectation \mathbb{E} is taken over V, W.
Wright-Fisher generator

\[
\mathcal{L} g(\mathbf{x}) = \frac{1}{2} \sum_{i,j=1}^{d} x_i \delta_{ij} - x_j g_{ij}(\mathbf{x})
\]

Λ-Fleming-Viot generator

\[
\mathcal{L} g(\mathbf{x}) = \frac{1}{2} \sum_{i,j=1}^{d} x_i (\delta_{ij} - x_j) \mathbb{E}\left[g_{ij}(\mathbf{x}(1 - W) + WV \mathbf{e}_i) \right]
\]
Method of proof

\[\mathcal{L} g(\mathbf{x}) = \int_0^1 \sum_{i=1}^d x_i \left(g(\mathbf{x}(1 - y) + y\mathbf{e}_i) - g(\mathbf{x}) \right) \frac{F(dy)}{y^2} \]

\[\mathcal{L} g(\mathbf{x}) = \frac{1}{2} \sum_{i,j=1}^d x_i (\delta_{ij} - x_j) \mathbb{E} \left[g_{ij}(\mathbf{x}(1 - W) + W\mathbf{V} \mathbf{e}_i) \right] \]

Show that the generators have the same answer acting on

\[g(\mathbf{x}) = \exp \left\{ \sum_{i=1}^d \eta_i x_i \right\}, \quad \eta \in \mathbb{R}^d \]
1-dimensional generator

Wright-Fisher diffusion generator

\[\mathcal{L}g(x) = \frac{1}{2}x(1 - x)g''(x) \]

Λ-Fleming-Viot process generator

\[\mathcal{L}g(x) = \frac{1}{2}x(1 - x)\mathbb{E}\left[g''(x(1 - W) + WV)\right] \]

or

\[\mathcal{L}g(x) = \frac{1}{2}x(1 - x)\mathbb{E}\left[\frac{g'(x(1 - W) + W) - g'(x(1 - W))}{W}\right] \]
The Laplace transform of W is related to the Laplace exponent by

$$
\mathbb{E}[e^{-\eta W}] = 2 \int_0^1 \frac{e^{-\eta y} - 1 + \eta y}{(y\eta)^2} F(dy)
$$

$W = UY$ is continuous in $(0, 1)$ with a possible atom at 0.

$$P(W = 0) = P(Y = 0)$$
Adding mutation

The generator has an additional term added of

\[\frac{\theta}{2} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} p_{ji}x_j - x_i \right) \frac{\partial}{\partial x_i} \]

If mutation is parent independent \(\theta p_{ij} = \theta_j \), not depending on \(i \), and the additional term is

\[\frac{1}{2} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} \theta_j x_j - \theta x_i \right) \frac{\partial}{\partial x_i} \]
Eigenstructure of the Λ-Fleming-Viot process

Theorem
Let $\{\lambda_n\}, \{P_n(x)\}$ be the eigenvalues and eigenvectors of \mathcal{L}, the generator which includes mutation, satisfying

$$\mathcal{L}P_n(x) = -\lambda_n P_n(x)$$

Denote the $d-1$ eigenvalues of the mutation matrix P which have modulus less than 1 by $\{\phi_k\}_{k=1}^{d-1}$.

The eigenvalues of \mathcal{L} are

$$\lambda_n = \frac{1}{2} n(n-1) \mathbb{E} \left[(1 - W)^{n-2} \right] + \frac{\theta}{2} \sum_{k=1}^{d-1} (1 - \phi_k) n_k$$
Polynomial Eigenvectors

Denote the $d-1$ eigenvalues of P which have modulus less than 1 by $\{\phi_k\}_{k=1}^{d-1}$ corresponding to eigenvectors which are rows of a $d - 1 \times d$ matrix R satisfying

$$
\sum_{i=1}^{d} r_{ki} p_{ji} = \phi_k r_{kj}, \ k = 1, \ldots, d - 1.
$$

Define a $d - 1$ dimensional vector $\xi = Rx$.

The polynomials $P_n(x)$ are polynomials in the $d - 1$ terms in $\xi = (\xi_1, \ldots, \xi_{d-1})$ whose only leading term of degree n is

$$
\prod_{j=1}^{d-1} \xi_j^{n_j}
$$
In the parent independent model of mutation

\[\lambda_n = \lambda_n = \frac{1}{2} n \left\{ (n - 1) \mathbb{E} \left[(1 - W)^{n-2} \right] + \theta \right\} \]

repeated \(\binom{n+d-2}{n} \) times with non-unique polynomial eigenfunctions within the same degree \(n \).

The non-unit eigenvalues of the mutation matrix with identical rows are zero.

Wright-Fisher diffusion, general mutation structure.

\[\lambda_n = \frac{1}{2} n(n - 1) + \frac{\theta}{2} \sum_{k=1}^{d-1} (1 - \phi_k) n_k \]
Λ-coalescent eigenvalues and rates

$$\frac{1}{2}n(n - 1)E[(1 - W)^{n-2}] = \sum_{k=2}^{\infty} \binom{n}{k} \lambda_{nk}$$

which is the total jump rate away from n individuals.

These are the eigenvalues in the Λ-coalescent tree.
The individual rates can be expressed as

\[
\binom{n}{k} \lambda_{nk} = \binom{n}{k} \int_0^1 y^k (1 - y)^{n-k} \frac{F(dy)}{y^2}
\]

\[
= \frac{n}{2} \mathbb{E} \left[\frac{P_k(n, W) - P_{k-1}(n, W)}{W^2} \right],
\]

where

\[
P_k(n, w) = \binom{n - 1}{k - 1} (1 - w)^{n-k} w^k
\]

is a negative binomial probability of a waiting time of \(n\) trials to obtain \(k\) successes, where the success probability is \(w\).
Two types

The generator is specified by

$$\mathcal{L}g(x) = \frac{1}{2}x(1 - x)\mathbb{E}\left[g''\left(x(1 - W) + WV\right)\right] + \frac{1}{2}(\theta_1 - \theta x)g'(x)$$

The eigenvalues are

$$\lambda_n = \frac{1}{2}n \left\{ (n - 1)\mathbb{E}\left[(1 - W)^{n-2}\right] + \theta \right\}$$

and the eigenvectors are polynomials satisfying

$$\mathcal{L}P_n(x) = -\lambda_n P_n(x), \ n \geq 1.$$
Polynomial eigenvectors

\[
\frac{1}{2}x(1-x)E \left[\frac{P'_n(x(1-W)+W) - P'_n(x(1-W))}{W} \right] \\
+ \frac{1}{2}(\theta_1 - \theta x)P'_n(x) \\
= \frac{1}{2}n \left[(n-1)E[(1-W)^{n-2}] + \theta \right] P_n(x)
\]

The monic polynomial \(P_n(x) \) is uniquely defined by recursion of its coefficients.
Stationary distribution $\psi(x)$

\[\int_0^1 \mathcal{L} g(x) \psi(x) \, dx = 0 \]

\[\sigma^2(x) = x(1-x), \; \mu(x) = \theta_1 - \theta x \]

\[k(x) = \mathbb{E} \left[(1 - W)^{-2} g(x(1-W) + VW) \right] \]

An equation for the stationary distribution

\[0 = \int_0^1 \left[k(x) \frac{1}{2} \frac{d^2}{dx^2} \left[\sigma^2(x) \psi(x) \right] - g(x) \frac{d}{dx} \left[\mu(x) \psi(x) \right] \right] \, dx \]

\[+ k(x) \frac{d}{dx} \left[\frac{1}{2} \sigma^2(x) \psi(x) \right] \bigg|_0^1 + g(x) \mu(x) \psi(x) \bigg|_0^1 \]
In a diffusion process \(k(x) = g(x) \) and the boundary terms vanish. Then there is a solution found by solving

\[
\frac{1}{2} \frac{d^2}{dx^2} \left[\sigma^2(x) \psi(x) \right] - \frac{d}{dx} \left[\mu(x) \psi(x) \right] = 0
\]

however \(k(x) \neq g(x) \) so we do not have an equation like this.
Green's function, $\gamma(x)$

Solve, for a given function $g(x)$

$$\mathcal{L}\gamma(x) = -g(x), \quad \gamma(0) = \gamma(1) = 0.$$

Then

$$\gamma(x) = \int_0^1 G(x, \xi) g(\xi) d\xi$$

A non-linear equation, equivalent to

$$\frac{1}{2}x(1 - x) \mathbb{E}\left[\gamma''(x(1 - W) + VW) \right] = -g(x)$$
Green’s function solution

Define

\[k(x) = \mathbb{E} \left[(1 - W)^{-2\gamma} (x(1 - W) + VW) \right] \]

then

\[k''(x) = -2 \frac{g(x)}{x(1 - x)} \]

with a solution

\[k(x) = k(0)(1 - x) + k(1)x + (1 - x) \int_0^x \frac{2g(\eta)}{1 - \eta} d\eta + x \int_x^1 \frac{2g(\eta)}{\eta} d\eta \]
Mean time to absorption

If \(g(x) = 1, \ x \in (0, 1) \) then \(\gamma(x) \) is the mean time to absorption at 0 or 1 when \(X(0) = x \).

\[
\gamma(x) = k(0)(1 - x) + k(1)x
\]

\[
+ (1 - x) \int_0^x \frac{2}{(1 - \eta)} d\eta + x \int_x^1 \frac{2}{\eta} d\eta
\]

There is a non-linear equation to solve of

\[
k(x) = k(0)(1 - x) + k(1)x - 2(1 - x) \log(1 - x) - 2x \log x
\]

where

\[
k(x) = E\left[(1 - W)^{-2} \gamma(x(1 - W) + VW) \right]
\]
Stationary distribution, Λ-Fleming process with mutation

Let Z be a random variable with the size-biassed distribution of X, Z_* a size-biassed Z random variable and Z^* a size-biassed random variable with respect to $1 - Z$.

Let B be Bernoulli random variable, independent of the other random variables in the following equation such that

$$P(B = 1) = \frac{\theta - \theta_1}{\theta(\theta_1 + 1)}$$

An interesting distributional identity

$$VZ_* =^\mathcal{D} (1 - B)VZ + B(Z^*(1 - W) + WV)$$
The frequency spectrum in the infinitely-many-alleles model

Take a limit from a d-allele model with $\theta_i = \theta/d$, $i \in [d]$. The limit is a point process $\{X_i\}_{i=1}^{\infty}$. The 1-dimensional frequency spectrum $h(x)$ is a non-negative measure such that for suitable functions k on [0,1] in the stationary distribution

$$\mathbb{E}\left[\sum_{i=1}^{\infty} k(X_i)\right] = \int_{0}^{1} k(x)h(x)dx.$$

Symmetry in the d-allele model shows that

$$\int_{0}^{1} k(x)h(x)dx = \lim_{d \to \infty} d\mathbb{E}\left[k(X_1)\right].$$

The classical Wright-Fisher diffusion gives rise to the Poisson-Dirichlet process with a frequency spectrum of

$$h(x) = \theta x^{-1}(1-x)^{\theta-1}, \ 0 < x < 1.$$
Let Z have a density

$$f(z) = zh(z), \quad 0 < z < 1$$

Interesting identity

$$VZ_* \overset{\mathcal{D}}{=} Z^*(1 - W) + WV$$

where Z_* is size-biassed with respect to Z, and Z^* is size-biassing with respect to $1 - Z$.

The constant θ appears in the identity through scaling in the size-biassed distributions.

Limit distribution of excess life in a renewal process

$$P(VZ_* > \eta) = \int_{\eta}^{1} \frac{P(Z > z)}{\mathbb{E}[Z]} dz$$
Typed dual Λ-coalescent

The Λ-Fleming-Viot process is dual to the system of coalescing lineages $\{L(t)\}_{t \geq 0}$ which takes values in \mathbb{Z}^d_+ and for which the transition rates are, for $i, j \in [d]$ and $l \geq 2$,

$$q_\Lambda(\xi, \xi - e_i(l - 1)) = \int_{[0,1]} \binom{|\xi|}{l} y^l(1 - y)|\xi| - l F(dy) \frac{y^2}{y^2} \times \frac{\xi_i + 1 - l \mathcal{M}(\xi - e_i(l - 1))}{|\xi| + 1 - l \mathcal{M}(\xi)}$$

$$q_\Lambda(\xi, \xi + e_i - e_j) = \mu_{ij}(\xi_i + 1 - \delta_{ij}) \frac{\mathcal{M}(\xi + e_i - e_j)}{\mathcal{M}(\xi)}$$

The process is constructed as a moment dual from the generator.
A different dual process

Define a sequence of monic polynomials \(\{g_n(x)\} \) by the generator equation

\[
\frac{1}{2}x(1-x)Eg''_n(x(1-W)+VW) + \frac{1}{2}(\theta_1 - \theta x)g'_n(x)
\]

\[
= \binom{n}{2}E(1-W)^{n-2}[g_{n-1}(x) - g_n(x)] + n\frac{1}{2}[\theta_1 g_{n-1}(x) - \theta g_n(x)]
\]

The defining equation mimics the Wright-Fisher diffusion acting on test functions \(g_n(x) = x^n \)

\[
\frac{1}{2}x(1-x)\frac{d^2}{dx^2}x^n + \frac{1}{2}(\theta_1 - \theta x)\frac{d}{dx}x^n
\]

\[
= \binom{n}{2}(x^{n-1} - x^n) + \frac{1}{2}n(\theta_1 x^{n-1} - \theta x^n)
\]
Jacobi polynomial analogues
The eigenfunctions are polynomials \(\{P_n(x)\} \) satisfying

\[
\mathcal{L} P_n(x) = \lambda_n P_n(x)
\]

\[
P_n(x) = g_n(x) + \sum_{r=0}^{n-1} c_{nr} g_r(x)
\]

The coefficients are

\[
c_{nr} = \frac{\lambda_{r+1} \cdots \lambda_n}{(\lambda_r - \lambda_n) \cdots (\lambda_{n-1} - \lambda_n)}
\]

where

\[
\lambda_n = \frac{n}{2} \left[(n - 1) \mathbb{E}(1 - W)^{n-2} + \theta \right]
\]

\[
\lambda_n^\circ = \frac{n}{2} \left[(n - 1) \mathbb{E}(1 - W)^{n-2} + \theta_1 \right]
\]
In the stationary distribution

$$\mathbb{E}[g_n(X)] = \omega_n$$

where ω_n is a Beta moment analog

$$\omega_n = \frac{\prod_{j=1}^{n} \left((j - 1)\mathbb{E}(1 - W)^{j-2} + \theta_1 \right)}{\prod_{j=1}^{n} \left((j - 1)\mathbb{E}(1 - W)^{j-2} + \theta \right)}$$

Let

$$h_n = \frac{g_n}{\omega_n}$$

so

$$\mathbb{E}[h_n(X)] = 1$$
Dual Generator

\[\mathcal{L}h_n = \lambda_n \left[h_{n-1} - h_n \right] \]

Dual equation

\[\mathbb{E}_{X(0)=x}\left[h_n(X(t)) \right] = \mathbb{E}_{N(0)=n}\left[h_N(t)(x) \right] \]

where \(\{N(t), t \geq 0\} \) is a death process with rates

\[\lambda_n = \frac{1}{2} n \left((n - 1) \mathbb{E}[(1 - W)^{n-2}] + \theta \right) \]

The process \(\{N(t), t \geq 0\} \) comes down from infinity if and only if

\[\sum_{n=2}^{\infty} \lambda_n^{-1} < \infty \]

which implies the \(\Lambda \)-coalescent comes down from infinity.
The transition functions are then

\[
P(N(t) = j \mid N(0) = i) = \sum_{k=j}^{i} e^{-\lambda_k t} (-1)^{k-j} \frac{\prod\{l:j \leq l \leq k+1\} \lambda_l}{\prod\{l:j \leq l \leq k+1, l \neq k\} (\lambda_l - \lambda_k)}
\]

\[
P(N(t) = j \mid N(0) = \infty)
\]

is well defined if \(N(t)\) comes down from infinity.

In the Kingman coalescent the death rates are \(n(n - 1 + \theta)/2\) and \(N(t)\) describes the number of non-mutant lineages at time \(t\) back in the population.

Let $P(x)$ be the probability that the 1st type fixes, starting from an initial frequency of x. $P(x)$ is the solution of

$$L^\sigma P(x) = \frac{1}{2} x (1 - x) P''(x) - \sigma x (1 - x) P'(x) = 0$$

with $P(0) = 0$, $P(1) = 1$. The solution of this differential equation is

$$P(x) = \frac{e^{2\sigma x} - 1}{e^{2\sigma} - 1}$$
λ-Fleming Viot process. Fixation probability with selection.

Let \(P(x) \) be the probability that the 1st type fixes, starting from an initial frequency of \(x \). \(P(x) \) is the solution of

\[
\mathcal{L}^\sigma P(x) = \frac{1}{2}x(1-x)\mathbb{E}\left[P''((1-W)+(x-W)V)\right]-\sigma x(1-x)P'(x) = 0
\]

with \(P(0) = 0 \), \(P(1) = 1 \).

Der, Epstein and Plotkin (2011, 2012). For some measures \(F \) and \(\sigma \) it is possible that \(P(x) = 1 \) or \(0 \) for all \(x \in (0, 1) \). If \(\sigma > 0 \), fixation is certain if

\[
\sigma > -\int_0^1 \frac{\log(1 - y)}{y^2} F(dy)
\]
A computational solution for $P(x)$ when fixation or loss is not certain from $x \in (0, 1)$.

Define a sequence of polynomials $\{h_n(x)\}_{n=0}^\infty$ for a choice of pre-specified constants $\{h_n(0)\}$ as solutions of

$$
\mathbb{E} \left[\frac{h_n(x(1 - W) + W) - h_n(x(1 - W))}{W} \right] = nh_{n-1}(x)
$$

where the leading coefficient in $h_n(x)$ is

$$
\frac{1}{\prod_{j=1}^{n-1} \mathbb{E}[(1 - W)^j]}
$$
Polynomial solution for $P(x)$

$$P(x) = (e^{2\sigma} - 1)^{-1} \sum_{n=1}^{\infty} \frac{(2\sigma)^n}{n!} H_n(x),$$

where $\{H_n(x)\}$ are polynomials derived from

$$H_n(x) = \int_{0}^{x} nh_{n-1}(\xi)d\xi$$

and the constants $\{h_n(0)\}$ are chosen so that

$$\int_{0}^{1} nh_{n-1}(\xi)d\xi = 1$$

The coefficients of $H_n(x)$ are well defined by a recurrence relationship with the coefficients of $H_{n-1}(x)$.