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@ Briefly explain cycle of a Virus (phage)

@ Briefly explain the experiment that monitor a small number
of phage through their life cycle

@ Use a three step statistical procedure to understand lysis
time and burst size that

e estimates the number of phage in the well
o estimates the lysis time
o estimates the burst size

@ Conclusions
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Method

@ Phage: ¢ X174

@ In 60 wells add 100 !l
host cells.

@ Target of  phage
particle.

@ Titrate 20 wells at 5
minutes prior to burst to
hone estimates of
number of phage per 5
well. We call this the
early time data.

@ Titrate another well
every 30 seconds. We
call this the late time
point data.
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Notation

@ T;=time to burst of phage .

@ t = time when well is sampled

Cr = burst size at time T for phage 1.

C; = observed count in well sampled at time ¢.
B = the number of phage in the well.

N; = the number of phage in a well that have burst by time
t, when well is sampled.

X = sum of burst times, T;, for all phage that have burst
a = slope of the linear function relating burst size to time.
u = intercept at time when burst is first possible ¢ > .

o=standard deviation or average error of predicted versus
observed burst size.




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.

@ Use the early time point data as direct observations.




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.

@ Use the early time point data as direct observations.
@ Use late time points as indirect observation.




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.

@ Use the early time point data as direct observations.
@ Use late time points as indirect observation.

e If a burst occurs by time ¢ then there was at least one
phage in that well. Assign that event probability 1 — e~#4




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.

@ Use the early time point data as direct observations.
@ Use late time points as indirect observation.

e If a burst occurs by time ¢ then there was at least one
phage in that well. Assign that event probability 1 — e~#4

e If no burst occurs by time ¢ assign that event probability
e Bd




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.
@ Use the early time point data as direct observations.

@ Use late time points as indirect observation.

e If a burst occurs by time ¢ then there was at least one
phage in that well. Assign that event probability 1 — e~#4

e If no burst occurs by time ¢ assign that event probability
e Bd

e Treat the late burst times as binary data.




Model
0@0000000

Three Step Algorithm for Estimating Lysis Time and

Burst Size

Step 1: Model and Estimate the mean number of phage per
well

@ Assume a Poisson number of phage in a well with mean s,
for day d.
@ Use the early time point data as direct observations.

@ Use late time points as indirect observation.

e If a burst occurs by time ¢ then there was at least one
phage in that well. Assign that event probability 1 — e~#4

e If no burst occurs by time ¢ assign that event probability
e Bd

e Treat the late burst times as binary data.

@ Combine early and late data using maximum likelihood to
estimate 5;—the mean number of phage in a well on day d.
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Step 2: Model and Estimate Lysis Time

@ Assume the time to burst, T" follows a lagged exponential
PT<t)y=wg=1-— e~ (t=to)/A

@ N, = the number of phage in a well that have burst by time
t, when well is sampled. N; is Poisson with mean Swy.

@ LetY; be 1if Ny > 0 and 0 otherwise
@ Use binary Y; to estimate A and ¢,




Model
[e]e]e]e]e] lelele)

Three Step Algorithm for Estimating Lysis Time and
Burst Size

Step 3: Model and Estimate Burst Size

Cr=aoT + pu+e

where ¢ is normally distributed with mean 0 and variance o>.
Note that none of the terms in the equation are directly
observable
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Step 3: Model and Estimate Burst Size

Observable Counts Equation

B B B
Ci=a) THT,<tt+pd HL<t}+> &l{T <t}
=1 =1 =1

Ci=aXy+pNg+6

where ¢ is normally distributed with mean zero and variance
]VtO'2
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Step 3: Model and Estimate Burst Size using EM Algorithm

0 Begin with initial guesses for N; and X for each well.
Q Given these values, estimate « and p using least-squares

Cir — aXtr — pNg )2 Ci,r — &Xtr — filNg,r)?
minz ( t,r OAL r 12 t,r) _ Z ( t,r At r 2 t,r)
b Nt,r t,r Nt,r
where r indexes the well.
© Given estimates & and j estimate o2 using

6’2 _ l Z (Ct,'r - dXt,'r - ﬂNt,r)Q
Nt T

t,r 9

0 Impute the values X: and N; using their posterior expected values
E(Xt Ictﬂ“&v ﬂv &2)

E(Nt‘Ct7rOA£,ﬂ, &2)

© return to step 2 until convergence occurs.
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Imputing X; and V;

ntht,Xt ntht’/BatO? )fCt<Ct’nt,xt,Oé,,Uz, 02)
E(Ni|Ct) ZZ fo,(cr)
Tt nt t

fUtht,Xt nt,xt\ﬁ to, )fct(Ct!ntwn%% 02)
E(Xi|Ct) = ZZ feo, (cr)
T n t

fo(C) =D frex, (ne, mil B, to, M) fo (e, w, o, 1, 0°)

ng,Tt

@ [ is estimated in step 1
@ )\t is estimated in step 2

@ 1, 0? are updated from the "M" part of the EM algorithm in
step 3
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Initial Data on Burst Size

@ Burst size was only recorded after 26 minutes. Thus there
was no way to detect a time trend for this data.

@ This would appear to make data analysis easier. Since we
would need to assume a = 0, so the observed burst counts
depend only on N the initial number of phage in the well.
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Special case of no time trend a = 0

Observable Counts Equation

B B
Cr=pY HTi<t}+> &I{T; <t}
=1 i=1

Ci=uNg+46

where ¢ is normally distributed with mean zero and variance
]\ftO'2
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Estimating Mean Burst Size 1 with high Variance

Density
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Estimating Mean Burst Size 1 from 26 Minute Data

plate count
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More Data Came in

New Data Structure

@ Process was monitored more extensively so bursts events
and multiple time points were recorded.

@ This revealed a time trend in burst size, which helped
explain the data.

@ This produced lower variance, and better imputation.

@ The EM algorithm now worked.
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Estimating Slope a and Intercept

Observable Counts Equation

B B B
Ci=a) THT,<tt+pd HL<t}+> &l{T <t}
=1 =1 =1

Ci=aXy+pNg+6

where ¢ is normally distributed with mean zero and variance
]VtO'2
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The estimated lysis time until burst probability > 0, tp= 14.5
minutes. Estimated mean lysis time is
A+t = 5.8+ 14.5 = 20.3 minutes.

Probabilty of B
00 02 04 06 08 10
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Slope intercept

@ The estimated burst size at ¢y is © = 67.0. The estimated
increase in burst size per minute is a = 13.1.
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Full Data

Slope intercept

@ The estimated burst size at ¢y is © = 67.0. The estimated
increase in burst size per minute is a = 13.1.

@ The estimated mean burst size is 143 phage: 67 +
13.1(5.8).
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Parameter estimates

Parameter | Estimate | Confidence Interval
oY 13.1 (6.0,22.5)
m 67.0 (56.8,87.0)
o 47.7 (36.3,57.8)
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Conclusions

@ Either ‘Missing data’ or ‘censored data’ challenge any
statistical modeling effort. This data set has both.

@ We address the challenges in 3 steps: (1) estimating the
number of phage in each well, (2) estimating the lysis time,
and (3) estimate the burst size.

@ A rigorously validation process using simulations offers
credibility to the lysis time and size estimates for ¢ X 174
and indicates the methods may be extended to other lytic
phage.

Support: Paul Joyce and Craig Miller were funded by NIH R01
GMO076040
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